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prospective validation of a model to
predict 60-day end-of-life in hospitalized
adults upon admission at three sites
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Abstract

Background: Automated systems that use machine learning to estimate a patient’s risk of death are being
developed to influence care. There remains sparse transparent reporting of model generalizability in different
subpopulations especially for implemented systems.

Methods: A prognostic study included adult admissions at a multi-site, academic medical center between 2015
and 2017. A predictive model for all-cause mortality (including initiation of hospice care) within 60 days of
admission was developed. Model generalizability is assessed in temporal validation in the context of potential
demographic bias. A subsequent prospective cohort study was conducted at the same sites between October 2018
and June 2019. Model performance during prospective validation was quantified with areas under the receiver
operating characteristic and precision recall curves stratified by site. Prospective results include timeliness, positive
predictive value, and the number of actionable predictions.

Results: Three years of development data included 128,941 inpatient admissions (94,733 unique patients) across
sites where patients are mostly white (61%) and female (60%) and 4.2% led to death within 60 days. A random
forest model incorporating 9614 predictors produced areas under the receiver operating characteristic and
precision recall curves of 87.2 (95% CI, 86.1–88.2) and 28.0 (95% CI, 25.0–31.0) in temporal validation. Performance
marginally diverges within sites as the patient mix shifts from development to validation (patients of one site
increases from 10 to 38%). Applied prospectively for nine months, 41,728 predictions were generated in real-time
(median [IQR], 1.3 [0.9, 32] minutes). An operating criterion of 75% positive predictive value identified 104
predictions at very high risk (0.25%) where 65% (50 from 77 well-timed predictions) led to death within 60 days.

Conclusion: Temporal validation demonstrates good model discrimination for 60-day mortality. Slight performance
variations are observed across demographic subpopulations. The model was implemented prospectively and
successfully produced meaningful estimates of risk within minutes of admission.

Keywords: Mortality prediction, Palliative care, Supportive care, End-of-life care, Advance directives, Medical
informatics, Machine learning, Electronic health records
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Background
Supportive and palliative care
Supportive care describes a myriad of interventions
intended to prevent or improve symptoms of disease or
side-effects of treatment. Patients with terminal illness
often receive supportive care as their disease progresses
towards palliative and end-of-life care. Unfortunately,
many patients do not receive palliative care until their
last weeks of life [1] despite guidelines recommending
palliative care for any patient diagnosed with a chronic
or serious illness that will ultimately lead to their death
[2]. Practical methods to identify patients who would
benefit from palliative and, more generally, supportive
care and end-of-life planning are needed [3].
Physicians make treatment decisions—including

whether to initiate or defer palliative care—based upon
their perception of a patient’s condition. Unfortunately,
physicians tend to be optimistic when estimating prog-
nosis [4–6]. Since the entire process relies on human
judgement, patients who have previously been over-
looked for supportive care can continue to slip through
the cracks. Automated systems can augment clinician
gestalt as a failsafe mechanism to improve quality and
consistency of care.

Mortality prediction
Many systems have been developed to estimate mortality
risk. Early methods developed scores to be applied, by
hand, at the bedside with a small number of parameters.
Promising recent works apply machine learning to pre-
dict mortality risk upon admission, or shortly afterwards,
to prompt palliative care [7–9]. These works rely on
high-level administrative data [9], claims data [10], bill-
ing codes from the electronic health record (EHR) [7,
11], or concepts extracted from clinical notes [8]. Many
of these works focus on long-term mortality, typically 1-
year, or restrict to specific cohorts or datasets that limit
their utility to influence care decisions. Although many
models have been developed, few machine learning sys-
tems are implemented in clinical practice [12]. Even
fewer studies have assessed model safety and perform-
ance across sites.

Objective
To develop and validate a machine learning model to
predict short-term mortality at the instant of inpatient
admission using EHR data. Model validation consists of
two steps: first, model generalization is investigated by
assessing testing set performance across sites. Second,
the model is implemented and prospectively validated to
assess technical feasibility and real-world performance
before release into the EHR.

Methods
Data
Study setting
This prognostic study was conducted at NYU Langone
Health, a multi-site academic medical center in New
York City. At the time of model development, July 2018,
NYU Langone Health consisted of approximately 1300
beds across one general and one Orthopedics hospital in
the borough of Manhattan and one general hospital in
Brooklyn.
This project met the definition of quality improvement

outlined by the NYU Grossman School of Medicine IRB
and is not considered human subjects research and did
not require IRB approval. This study follows the report-
ing guidelines set out in the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis
or Diagnosis (TRIPOD) statement.

Patient population
A retrospective dataset was selected by identifying all
adults hospitalized between January 1, 2015 and
December 31, 2017 (> 18 years old at admission). Admis-
sions for inpatient hospice care were excluded along
with observation stays but patients ‘boarding’ in the
emergency department were included. No other inclu-
sion criteria were imposed.

Mortality outcomes
All-cause death outcomes in the community can be
problematic for predictive modeling as patients can die
anywhere and reporting of deaths can vary widely. One
of the primary challenges is missingness that can be
caused by a variety of practical, social and technical rea-
sons. Researchers often improve their data by combining
several sources of data into a composite [13]. We follow
this trend and exploit three available sources: 1) internal
system-wide death data, 2) purchased death data
(derived from the Social Security Administration’s
Master Death File), and 3) hospice discharge disposition
data (both inpatient and home hospice). None of these
mechanisms perfectly capture all deaths but, together,
establish a measure of ‘end-of-life’ where the addition of
hospice improves robustness but adds noise (eResults
and eFigure 1).
After extensive discussion with physicians, a primary

outcome of mortality within 60 days of admission was
selected. The rationale for 60 days is to promote urgency
in end-of-life decision-making while allowing sufficient
time to initiate supportive and palliative care interven-
tions, both during the hospitalization and in the commu-
nity post-discharge. At the time of model development
(July 2018), more than 6months had passed since the
end of the study period ensuring adequate time for 60-
day outcomes to accrue.
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Feature construction
To estimate risk within minutes of admission, all predic-
tors must be reliably accessible at that time (i.e. data
collected after arrival likely cannot be used). Instead, one
year of historical data (up to the day prior) is considered
for each admission. Patient demographics and discrete
data describing prior encounters are collected along with
several categories of coded data used in related works [7,
10, 11], namely: ICD-10 (International Classification of
Diseases) diagnosis codes, CPT (Current Procedural Ter-
minology) procedure codes, RxNorm medication codes,
and LOINC (Logical Observation Identifiers Names and
Codes) laboratory result codes. Each data type, except
demographics, are dated in a patient’s history and can
occur many times.
Features are constructed from these data similarly to

related works [7, 10, 11]. Specifically, each patient’s his-
tory is segmented into four time slices with boundaries
at 30, 90, and 180 days preceding admission [7], exclud-
ing all data collected more than a year prior. Each data
category (e.g. ICD-10 diagnoses) is aggregated in each
slice into:

� Count of each unique code,
� Count of unique codes and total code count across

days, and
� Mean, variance, minimum, maximum, and range of

the daily number of codes.

While a typical patient may have fewer than a dozen
unique ICD-10 codes, all patients have aggregate values,
e.g. total codes during slice and max number of daily

codes. With these features, a model may learn differ-
ences in specific disease types as well as disease burden
and utilization with these features.

Experimental design
A retrospective cohort-study experimental design that
‘enrolls’ each admission is employed with a temporally
separated testing set. This design has been demonstrated
in prior work [14] to improve implementation perform-
ance without overestimation during validation. Three
years of data were partitioned into training and testing
cohorts on January 1, 2017 resulting in 24 and 12
months respectively as described in Fig. 1a. No other co-
hort selection criteria were applied during the training
period—all (re)admissions were included. Patients who
were readmitted within the testing period (2017) follow-
ing their ‘enrollment’ during the training period (2015/
2016) are excluded to ensure no individual patient is
present in both groups.
A dramatic increase in monthly admissions is evident

in Fig. 1 as the NYU Langone Brooklyn hospital transi-
tioned onto the existing EHR system in August 2016.
The training cohort therefore underrepresents Brooklyn
patients with only 4.5 months of data included (19%
from 24months). This non-random underrepresentation
during model derivation is a blatant example of a wider
challenge faced by any predictive model: generalizing
into a future population.

Model development
Many thousands of candidate predictors are expected
where only a small fraction exist for a typical patient.

Fig. 1 Monthly admissions stratified by a) model development cohort and b) hospital location
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With this many predictors, overfitting to spurious asso-
ciations and small samples is difficult to avoid. Predic-
tors are pruned by requiring at least once occurrence in
both outcome groups (i.e. survival and death) and a total
count exceeding 100. This leaves 9614 features (11% of
87,226) for modeling. Some training cohort patients
(19.6%) are left with only demographic features and are
removed from model training. No data imputation is
performed.
Many of these features are sparse (e.g. specific ICD-10

codes), others are complete but highly nonlinear (e.g.
count of procedure codes) which complicate modeling.
An algorithm is needed that can learn which features—
and which values within those features—are prognostic.
Three classifiers were considered (eMethods): logistic re-
gression with lasso regularization [15], XGBoost [16],
and random forest [17]. The later two are tree-based al-
gorithms, known for their consistent performance on a
variety of datasets [18] and within similar mortality work
[10, 19]. Parameter selection was conducted within 5-
fold cross validation by sampling patients (not admis-
sions [20]) before retraining one model on the entire
training set (eMethods). Model performance within the
testing set is assessed with area under the receiver
operating characteristic (AUROC) and area under the
precision recall curve (AUPRC). To evaluate the impact
of Brooklyn underrepresentation during training, testing
set performance is compared across locations by consid-
ering principles of model transparency [21] and model
fairness [22] (eMethods).

Implementation
Operating threshold
Before implementation, an operating threshold for inter-
vention must be selected (eMethods). Clinical stake-
holders selected a criterion of 75% positive predictive
value (PPV), corresponding to one false positive from
four high-risk predictions. The 75% PPV criterion was
imposed on the testing set under bootstrap conditions to
calculate a robust threshold (eMethods).

Prospective validation
In order to assess the model’s utility to influence care
decisions, it was implemented and prospectively applied
to patient data in a controlled manner. A ‘silent-live’
phase allowed prospective data to be collected but
predictions were withheld from clinicians until initial re-
sults were assessed and any technical issues resolved.
This interim period provides time to develop a clinical
workflow.
After a successful silent-live period, the model was

deployed live where it would deliver estimates of risk in
near real-time to enable prospective validation. Data
spanning nine months between October 2018 and June

2019 was used for analysis. During this period, all new
inpatient admissions were collected but predictions were
never made for children, nor those with no prior data
(i.e. only demographics). For this prospective cohort
study, patient data was collected to enable analysis of
prediction volume, timeliness, and PPV when imple-
mented live. Patient outcomes were only collected for
patients identified at high-risk.

Evaluation in the context of potential demographic Bias
Model fairness is an increasingly important factor affect-
ing deployment of predictive models, especially in appli-
cations involving vulnerable populations. Model fairness
is closely related to how a model generalizes across pop-
ulations—particularly demographic groups—and impacts
patient safety. Several recent works have reported that
the explicit removal of ‘sensitive’ data elements—such as
gender or race—may perpetuate inequalities observed
within the data [22, 23]. In the interest of transparency
[21] (one pillar of responsible machine learning), model
performance in different strata of sensitive demographics
is investigated (eMethods, eResults, eFigures 5 and 6).
One model, trained on the entire training set is applied
to sub-cohorts of the testing cohort by combinations of
sensitive demographics (e.g. Black women admitted in
Brooklyn) and various measures of model performance
are reported. This procedure is repeated for a second
model where all sensitive demographics are excluded or
‘masked’ during training (eMethods and eResults).

Results
Patient cohort and outcomes
In the three calendar years considered, 128,941 inpatient
admissions occurred across the three hospitals including
94,733 unique patients. The population is mostly white
(61%) and female (60%). Patient demographics with
location, comorbidity, and outcome characteristics are
reported in Table 1. The underrepresentation of Brook-
lyn patients in the training cohort and considerable
structural differences between locations (eTable 1) lead
to differences when comparing training and testing sets.
Of all admissions, 4.2% led to death or hospice within
60 days and the median time from admission to outcome
is 53 days with no drastic differences by cohort or demo-
graphics (eFigure 2).

Retrospective modeling
Performance within the training cohort
Sampling from the training set produced five compar-
able folds for cross-validation, each with a similar
number of patients (14,230–14,617) and outcome rate
(3.9–4.3%). AUROC and AUPRC within cross-validation
from each model is reported in Table 2. The random
forest classifier with 100 trees and a maximum depth of

Major and Aphinyanaphongs BMC Medical Informatics and Decision Making          (2020) 20:214 Page 4 of 10



Table 1 Demographics, outcome, comorbidity, and model predictor characteristics of the model development population

All Patients
n = 128,941

Training Set
n = 72,437

Testing Set
n = 46,458

Demographics a

Measure Value

Age % (n) % (n) % (n) *

18–29 11.5% (14786) 10.7% (7778) 13.1% (6087)

30–39 17.5% (22607) 18.0% (13053) 18.0% (8361)

40–49 9.45% (12183) 9.49% (6877) 9.69% (4504)

50–59 13.3% (17204) 13.5% (9784) 13.4% (6206)

60–69 18.2% (23500) 18.7% (13556) 17.3% (8026)

70–79 15.8% (20388) 15.8% (11439) 15.1% (7008)

80–89 10.7% (13839) 10.5% (7588) 10.2% (4748)

90+ 3.44% (4434) 3.26% (2362) 3.27% (1518)

Ethnicity b % (n) % (n) % (n) *

Hispanic 9.75% (3467) 9.77% (2336) 8.62% (666)

Not Hispanic 90.3% (32086) 90.2% (21584) 91.4% (7060)

Unknown -- (93388) -- (48517) -- (38732)

Race % (n) % (n) % (n) *

Black 10.9% (14033) 11.0% (7933) 10.7% (4987)

East Asian 7.38% (9520) 6.50% (4707) 9.10% (4230)

West Asian 1.66% (2146) 1.68% (1219) 1.74% (807)

White 61.6% (79424) 64.1% (46404) 57.3% (26642)

Other 16.4% (21181) 14.8% (10692) 18.8% (8714)

Unknown 2.05% (2637) 2.05% (1482) 2.32% (1078)

Sex % (n) % (n) % (n)

Female 60.1% (77478) 60.3% (43664) 60.5% (28130)

Male 39.9% (51459) 39.7% (28770) 39.4% (18327)

Unknown 0% (4) 0% (3) 0% (1)

Site % (n) % (n) % (n) *

Tisch 63.4% (81807) 72.3% (52398) 49.2% (22877)

Orthopedic 15.6% (20137) 18.1% (13122) 12.8% (5938)

Brooklyn 20.9% (26997) 9.55% (6917) 38% (17643)

Outcomes c % (n) % (n) % (n)

Any known death 7.93% (10229) 9.00% (6521) 5.20% (2414) *

60-day death 4.15% (5356) 4.05% (2935) 3.57% (1657) *

Median [IQR] Median [IQR] Median [IQR]

Days from admission to death 53 [6, 205] 83 [12, 306] 21 [1, 92.75] *

Comorbidities d Median [IQR] Median [IQR] Median [IQR]

Charlson Score 1 [0, 2] 1 [0, 2] 0 [0, 2] *

% (n) % (n) % (n)

AIDS/HIV 0.626% (635) 0.61% (349) 0.506% (176)

Cancer (any malignancy) 16.8% (17094) 18.2% (10432) 13.2% (4594) *

Cerebrovascular disease 10.0% (10149) 9.99% (5716) 8.13% (2826) *

Chronic obstructive pulmonary disease 17.9% (18218) 18.6% (10649) 13.5% (4703) *

Congestive heart failure 12.0% (12144) 11.8% (6774) 8.56% (2978) *
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Table 1 Demographics, outcome, comorbidity, and model predictor characteristics of the model development population
(Continued)

All Patients
n = 128,941

Training Set
n = 72,437

Testing Set
n = 46,458

Dementia 3.67% (3721) 3.18% (1819) 3.09% (1075)

Diabetes with chronic complications 6.34% (6439) 4.9% (2806) 5.68% (1977) *

Diabetes without chronic complications 16.8% (17019) 16.2% (9256) 14.4% (4995) *

Hemiplegia or paraplegia 2.92% (2962) 2.83% (1617) 2.35% (817) *

Metastatic solid tumor 6.02% (6115) 6.39% (3657) 4.55% (1584) *

Mild liver disease 6.40% (6495) 6.23% (3566) 5.14% (1787) *

Moderate or severe liver disease 1.62% (1642) 1.59% (910) 1.11% (385) *

Myocardial infarction 9.73% (9874) 9.48% (5423) 6.9% (2400) *

Peptic ulcer disease 1.84% (1871) 1.76% (1009) 1.27% (443) *

Peripheral vascular disease 13.1% (13278) 13.0% (7446) 9.97% (3469) *

Renal disease 10.9% (11093) 10.4% (5937) 7.93% (2759) *

Rheumatoid disease 2.87% (2915) 3.11% (1781) 2.06% (718) *

Predictors

Range Measure Median [IQR] Median [IQR]

1–30 days # of diagnoses 3 [0, 12] 3 [0, 13] 2 [0, 10] *

1–30 days # of lab results 0 [0, 46] 3 [0, 47] 0 [0, 43] *

1–30 days # of office visits 3 [1, 6] 3 [1, 6] 2 [1, 5] *

1–30 days # of emergency department visits 0 [0, 0] 0 [0, 0] 0 [0, 0] *

1–30 days # of hospitalizations 0 [0, 0] 0 [0, 0] 0 [0, 0] *

1–365 days # of diagnoses 15 [2, 51] 14 [2, 52] 11 [0, 36] *

1–365 days # of lab results 35 [0, 151] 34 [0, 142] 15 [0, 84] *

1–365 days # of office visits 11 [5, 25] 11 [5, 25] 9 [4, 20] *

1–365 days # of emergency department visits 0 [0, 1] 0 [0, 1] 0 [0, 1]

1–365 days # of hospitalizations 0 [0, 1] 0 [0, 1] 0 [0, 0] *

*: Differences between training and testing sets are computed with: 1) χ2 tests for demographics; 2) proportion tests for individual comorbidities and mortality
rates; and 3) Mann-Whitney tests for Charlson score and days from admission to death. In all cases, statistical significance is indicated (*) for adjusted p < 0.05
using a Bonferroni correction
a: Demographics coded within the EHR at the time of admission
b: Ethnicity contains many missing values which are omitted before computing the proportion and difference between groups
c: Including death and initiation of hospice care
d: Comorbidities are derived from ICD-10 diagnosis codes present in each patient’s year of history pre-admission using the diagnostic groups of the Charlson
Comorbidity Index as implemented in the comorbidity R package [24]. Patients with no documented history are omitted from the denominator of
each comorbidity

Table 2 Model performance within cross-validation, applied to the testing set, and stratified by site

Model Cohort Measure AUROC AUPRC

Lasso regression Training
(Cross-validation)

Mean
[min, max]

78.8
[78.0, 80.2]

21.0
[18.3, 22.0]

XGBoost Training
(Cross-validation)

Mean
[min, max]

84.6
[83.8, 86.0]

25.7
[21.2, 27.4]

Random forest Training
(Cross-validation)

Mean
[min, max]

86.9
[85.3, 87.7]

26.4
[20.1, 31.0]

Testing
(Bootstrapped)

Median
[95% CI]

87.2
[86.1, 88.2]

28.0
[25.0, 31.0]

Brooklyn Median
[95% CI]

83.8
[81.9, 85.6]

26.6
[22.5, 31.0]

Non-Brooklyn Median
[95% CI]

88.9
[87.5, 90.2]

30.1
[26.4, 33.7]
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1000 (eResults) outperformed the lasso regression model
with marginal improvement over the XGBoost model
and was selected as the final model (Table 2). The most
influential predictors are aggregates that describe
utilization (eTable 2).

Performance within the testing cohort
When applied to the testing cohort, the random forest
model performs similarly to cross-validation, with me-
dian and 95% confidence intervals (CIs) for AUROC and
AUPRC reported in Table 2. The receiver operating
characteristics and precision-recall curves of the entire
testing set are described in Fig. 2 with the selected
threshold highlighted. (Calibration is assessed in eResults
and eFigure 3). Each category of data contributes to
overall redundancy where removing any one has little to
no effect on overall performance (eTable 3).

Performance across sites within the testing cohort
Table 2 also describes model performance within the
Brooklyn sub-cohort, reporting a marginal decrease in
AUROC, compared to the Non-Brooklyn group
(combining Manhattan hospitals as both are faithfully
represented). This divergence is visible within Fig. 2a. A
similar pattern is observed in AUPRC, as described in
Table 2 and Fig. 2b. Despite the visible region of de-
creased performance towards the bottom-left corner, the
three curves of Fig. 2b overlap at PPV above 50% where

our supportive care application is likely to operate. That
is, the marginally worse global performance does not im-
pact localized performance. (Calibration across locations
is also assessed in eResults and eFigure 3).

Operating threshold within the testing cohort
A criterion for 75% PPV yields an operating threshold of
0.355 with 4.6% sensitivity/recall where patients exceed-
ing this threshold are at very high risk of dying (eFigure
2B). Less than 5% of all deaths in the 60 days following
admission can be predicted while maintaining this strict
PPV constraint (no more than one false positive from
four high-risk predictions). All-cause mortality includes
entirely unpredictable deaths, increasing the denomin-
ator and shrinking sensitivity. This 4.6% group consti-
tutes a real, potentially impactful group of patients at
very high risk of dying.
Although the location-specific precision-recall curves

of Fig. 2b overlap at 75% PPV, the corresponding thresh-
olds are not guaranteed to be similar. Distributions of
predicted probabilities across the three hospitals sug-
gests high similarity between the two general hospitals
(Brooklyn and Tisch) except in the very high-risk range
(eFigure 4). When the operating threshold is applied to
only Brooklyn patients, PPV shifts up to 92% as
highlighted in Fig. 2b. The distributional differences be-
tween Brooklyn and non-Brooklyn populations com-
bined with the imbalanced training proportions result in

Fig. 2 Performance curves from the complete testing cohort and further stratified by location. a receiver operating characteristic, and b
precision-recall curves. The selected threshold is highlighted along with each corresponding point once stratified by location
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very precise, conservative application of the model to
Brooklyn patients.
Application of one institution-wide threshold at

Brooklyn poses little risk to patients but does perpetuate
underrepresentation of Brooklyn patients. Several
threshold-agnostic and threshold-specific measures of
model performance are compared across locations and
further across demographic sub-populations of sex, race,
and ethnicity (eMethods, eResults, eFigures 5 and 6).
Discrepancies in performance consistently under-
represent Brooklyn patients at very high risk of dying
but similar differences are observed across other demo-
graphics. Removal of race and ethnicity as features
worsens these disparities. This bias further highlights the
need for transparency and pragmatic solutions to reach
equity.

Prospective validation
Our model was silently tested for 12 weeks, beginning
August 2018, by sending an once-a-day email to assess
validity of patients above the operating threshold (and a
sample below). The vast majority (78%; 74 of 95) of pa-
tients reviewed by a hospitalist were expected to benefit
from supportive care. At the time of review, many of
these patients were not, at least yet, receiving supportive
care. Multiple comorbidities and complex disease were
common, including patients who were not considered
appropriate for intervention. During this period, a near
real-time prediction system was developed to generate a
prediction for each patient within minutes of admission.
After a successful silent-live period, the model was im-

plemented live in October 2018. In the nine months
through June 2019:

1. 49,785 inpatient admissions were detected for
prediction,

2. 48,797 sets of data were collected from the
database,

3. 41,728 predictions were made, where
4. 104 predictions exceeded the threshold.

Of the over forty thousand predictions, the median
[IQR] time difference between admission and risk as-
sessment was 1.3 [0.9, 32] minutes where 68% of predic-
tions are made within five minutes of admission
(database downtime causes delay where < 8% exceed six
hours). Of 104 high-risk predictions, 27 were ill-timed
(11 hospice admissions, 5 post-transplant admissions,
and 11 encounters erroneously labeled ‘inpatient’). From
the 77 well-timed predictions, 50 (65%) led to death or
hospice within 60 days (median [IQR]: 25 [13, 61] days).
Only 10 admissions (13%) have no known end-of-life
outcome at last censor (median [IQR]: 250 [60, 292]
days). Live application of our model has identified

patients at very high risk of short-term death within mi-
nutes of admission.

Discussion
Prospective results and application feasibility
Prospective implementation of the final model produces
a total of 41,728 predictions over nine months. The 75%
PPV operating threshold identifies 104 admissions
(0.25%) at very high risk. Although this proportion is
small, it is consistent with other work and underscores
how difficult it is to predict end-of-life with high confi-
dence. The model is not perfect but neither is the stand-
ard of care. Many identified patients die within 60 days
(65%) and may have benefited from earlier, more com-
prehensive discussions about their goals of care. Future
work will assess the ability of physicians to recognize
which identified patients will not die and the impact of
predictions upon clinical intervention. The model and
prediction system are working as designed and will be
expanded into practice to recommend supportive care.

Generalization to Brooklyn cohort
An evolving patient population is common in many ap-
plications and creates a practical challenge for prospect-
ive validation. In this case the mechanism of change is
apparent: a new hospital was brought into the system
that treats a new population with varying comorbidities
and social determinants of health. Although this cause is
obvious, the consequences are not. Along with an in-
crease in proportion of patients observed at the Brooklyn
hospital (38.0% in testing up from 9.5%; Table 1), there
are corresponding structural differences in age, race, sex,
outcome, and comorbidities between Manhattan and
Brooklyn sites (eTable 1). These differences, indicative of
a larger disparity between sites, further complicate
generalization. Despite this, a model trained with only
10% of cases being from a new hospital can adapt to be
performant and safely applied in a shifted patient mix.
The underrepresentation of Brooklyn patients during

training does affect model performance at the Brooklyn
hospital and their representation in the identified high-
risk group (eFigures 5 and 6). A larger sample of
Brooklyn patients for model training may improve the
model’s ability to learn the new site and improve per-
formance. Any potential risk to patient safety is miti-
gated as only patient-positive interventions [25] will be
applied to identified patients with no change in care for
unidentified patients. However, it is unfair to Brooklyn
patients to concentrate the intervention and its benefits
to Manhattan. One recent model fairness work [22] has
suggested the use of multiple thresholds, one for each
sensitive group. This concept resembles affirmative ac-
tion, especially when intentionally used to help over-
come a well-established social challenge discernible
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within data. A Brooklyn-specific threshold would ‘lower
the bar’ for Brooklyn patients to the same predefined
75% PPV (or lower) in an attempt to encourage adoption
and more widespread use of supportive care in that
community. A 75% PPV threshold specific to Brooklyn
was estimated at 0.295 which, when applied during the
nine months of prospective validation, would have iden-
tified 450% more Brooklyn patients (55 vs. 10).

Limitations
Not all aspects of generalizability or model fairness
could be assessed in this work. Some aspects that need
further assessment include: 1) data collection that may
be different between locations, 2) generalization to simi-
lar patients in different geographic locations, 3) applica-
tion of the model to sites that use different EHR
technologies, 4) more formal statistical methods to
model multiple sites.

Conclusion
A machine learning model was developed and validated
on retrospective patient data from three hospital sites.
Assessment of model performance across sites and po-
tentially sensitive demographics suggest varying degrees
of unfairness as the one model and one operating
threshold imperfectly learn differences in site, sex, race
and ethnicity. Any degree of unfairness is ameliorated
since the shift in performance at the underrepresented
site raises the precision and sustains patient safety in the
case of a patient-positive intervention. The model was
implemented after initial testing reported the majority of
cases were appropriate for intervention. When live, the
model can deliver predictions within minutes of admis-
sion to prompt consideration by the care team and influ-
ence decision-making.
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