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Abstract

Background: Case-based reasoning is a proven method that relies on learned cases from the past for decision
support of a new case. The accuracy of such a system depends on the applied similarity measure, which quantifies
the similarity between two cases. This work proposes a collection of methods for similarity measures especially for
comparison of clinical cases based on survival data, as they are available for example from clinical trials.

Methods: Our approach is intended to be used in scenarios, where it is of interest to use longitudinal data, such as
survival data, for a case-based reasoning approach. This might be especially important, where uncertainty about the
ideal therapy decision exists. The collection of methods consists of definitions of the local similarity of nominal as
well as numeric attributes, a calculation of attribute weights, a feature selection method and finally a global
similarity measure. All of them use survival time (consisting of survival status and overall survival) as a reference of
similarity. As a baseline, we calculate a survival function for each value of any given clinical attribute.

Results: We define the similarity between values of the same attribute by putting the estimated survival functions
in relation to each other. Finally, we quantify the similarity by determining the area between corresponding curves
of survival functions. The proposed global similarity measure is designed especially for cases from randomized
clinical trials or other collections of clinical data with survival information. Overall survival can be considered as an
eligible and alternative solution for similarity calculations. It is especially useful, when similarity measures that
depend on the classic solution-describing attribute “applied therapy” are not applicable. This is often the case for
data from clinical trials containing randomized arms.

Conclusions: In silico evaluation scenarios showed that the mean accuracy of biomarker detection in k=10 most
similar cases is higher (0.909-0.998) than for competing similarity measures, such as Heterogeneous Euclidian-
Overlap Metric (0.657-0.831) and Discretized Value Difference Metric (0.535-0.671). The weight calculation method
showed a more than six times (6.59-6.95) higher weight for biomarker attributes over non-biomarker attributes.
These results suggest that the similarity measure described here is suitable for applications based on survival data.
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Background
Introduction

methodology has been developed from the 1980s onwards
[1, 2]. It has been applied, for example, to electronic health

Solving problems on the basis of a solution that worked for
a similar problem in the past is a well-known human strat-
egy. In the field of medicine, this principle is applied either
knowingly or unknowingly when a physician recalls past
cases and how they were treated. Modelling this approach
into computer systems has been subject of research for de-
cades. For example, the case-based reasoning (CBR)
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records as a secondary use [3, 4]. More recently, patient
similarity has been recognized as an important principle
for systems medicine and precision medicine [5]. Since it is
a broad and general approach, CBR and the underlying
similarity measures can be applied to a variety of fields.
Successful models and clinical decision support systems
were first applied for medical fields like dentistry [6], oste-
opathy [7], psychology [8], diabetes [9], and other complex
diseases like cancers [10-12].
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For use in an electronic decision support system, a case
base is established to provide historic case descriptions
and solution approaches. Each case is described by a set of
attributes such as symptom descriptions or laboratory
values, treatments, and the outcome. To quantify similar-
ity between two cases, for each of these attributes a simi-
larity measure has to be defined that will provide a local
similarity value for the two instances of the attribute. A
variety of similarity measures has been described, for ex-
ample by fuzzy matching [13], cross-correlation [14], and
Bayes’ theorem [15]. For this paper, it is important to dis-
tinguish between numeric and nominal value domains of
attributes. If an attribute has a numeric value domain, like
body temperature, the similarity between two instances
can be calculated by a function like the Euclidian distance
function. In contrast, for attributes with a nominal value
domain like blood groups, it is often necessary to prepare
a context-specific matrix representing the similarity values
of all possible value pairs.

In many similarity measures, the overall or global simi-
larity between two cases is achieved by accumulating these
local similarity values into a single similarity value. The
difficulty here is to decide how much impact a single attri-
bute has on the overall similarity (attribute’s weight). For
example, the attribute “sex” might be less relevant for
overall similarity in a specific context like sepsis than the
attribute “fever”. In this example, the weight of “fever”
should be higher than the weight of “sex”.

The local similarity matrices of nominal attributes and
the weights of attributes are often defined manually by do-
main experts like medical specialists [8, 16—18]. This
works well for straightforward domains with low complex-
ity. However, in complex domains even clinical experts in
the same field may have different views on the impact of
an attribute on the disease of interest. A more objective
approach is to derive the similarity from the data in the
case base. There are a number of CBR algorithms that are
able to learn local similarities from the case base itself.
However, many of them are based on the dependency of
one or more solution-describing attributes. In clinical con-
texts, this is often the case for the attribute “applied ther-
apy”. A special case where such CBR based systems
struggle is when data from randomized clinical trials is an-
alyzed. Here, this dependency would cause a huge bias,
because therapy arms (novel therapy against gold standard
or placebo therapy) are usually randomized. As an alterna-
tive, a similarity measure depending on “overall survival
time” might make more sense as it is considered authentic
in assessing the success of clinical trials. However, the
authors of this article are not aware of the existence of a
similarity measure with an explicit focus on “overall
survival time”.

A problem in obtaining knowledge from clinical or
laboratory data is that the influence of each attribute on
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the given disease might not be fully discovered yet. As a
consequence, for many of the complex diseases men-
tioned above it is not always clear, which therapy is the
individually most suitable for a given patient. Usually,
the therapy that showed the best overall performance for
a patient cohort is recommended for all patients. This,
however, neglects the possibility that subtypes with
uneven distribution might exist, where patients with a
rare subtype might benefit more from a non-standard
treatment. To address these issues, we propose several
methods for a similarity measure that are based on the
analysis of survival data as they are available for example
from clinical trials. Each method may be used independ-
ently from the others. Additionally, we propose a com-
pletely composed measure as an example. For patients
suffering from life-threatening diseases like cancers, the
outcome survival time is often considered the most im-
portant measure for the therapy success. In contrast to
existing solutions, we calculate the similarity matrix
based on the survival probability that is associated with
the values of an attribute.

For our approach, we analyze survival data of patients in
our case base with the help of survival functions. Conse-
quently, we learn the significance of each case-describing
attribute with respect to survival time. Weights for mer-
ging the local similarity values into a global value are cal-
culated on the basis of survival data as well. The attributes
describing a case may include all types of structured clin-
ical data, because both, numeric and nominal values can
be processed. The resulting similarity measure is designed
for easy integration into CBR frameworks, such as myCBR
[19, 20] and eXiT*CBR [21].

Related work

In the last years, many new approaches have been devel-
oped in the field of CBR and related topics such as simi-
larity measures and information retrieval. For example,
Goel and Diaz-Agudo provide a comprehensive overview
on the development in the field [22]. Especially interest-
ing examples are works on textual CBR and spatial CBR.
Textual CBR is a subdomain of CBR where the know-
ledge source is available in textual form. In the clinical
domain, this could be medical reports, like discharge or
referral letters. In order to retrieve knowledge from un-
structured text data, further techniques must be applied
initially to transformation information into structured
case representations [23]. A common way to achieve this
is the textual analysis with methods from natural lan-
guage processing [24]. An example for spatial CBR is Q-
CBR (Qualitative Case-Based Reasoning) that has shown
promising results using Qualitative Spatial Reasoning
(QSR) theory for retrieval in the technical domain of ro-
botics artificial intelligence [25]. Here, qualitative spatial
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relations between objects are assumed, aiming to model
the human common sense understanding of space.

Closely related to similarity measures, distance functions
are often used to determine differences in an absolute vec-
tor space. So, instead of a similarity that usually has a
value range of [0.0, 1.0], a distance function between two
attributes may result in any decimal number. However, a
conversion from a distance function to a similarity func-
tion is feasible in many cases. The by far most commonly
used methods are the Euclidian Distance function and the
Manhattan (city-block) function. Both are equivalent to
the Minkowskian r-distance function [26] with » =1 and
2, respectively, however, they do not handle non-numeric
(nominal) attributes appropriately.

The Heterogeneous Euclidian-Overlap Metric (HEOM)
[27, 28] tackles this issue by a dedicated handling of nom-
inal and continuous attributes. The overlap metric applies
for nominal attributes and results in a distance of 1.0 for
matching and 0.0 for not matching attributes, respectively.
On the contrary, for linear attributes the numeric value
difference of the attributes is normalized by dividing by
the range of all possible values for that specific attribute a
(range, = max,-min,). The normalization fails, however, if
the value range is defined too tight. Also, the nominal
value handling is not able to compute distances other than
the extreme ones. Expert domain knowledge must be
added to further differentiate such cases.

The Value Difference Metric (VDM) [29] was initially
introduced by Stanfill and Walz. In this approach the
difference between two nominal values (of the same at-
tribute) depends on the conditional probability that the
output class is ¢, given that attribute a has the value x:
P(c|xy). Wilson and Martinez [30] published an im-
proved version of VDM that adds the ability to handle
continuous attributes. This is done by transforming
them into a fixed number of equally sized intervals that
enables them to be treated in the same way as a nominal
attribute (DVDM, short for Discretized VDM). The
overall distance of two cases is then determined by the
Euclidian Distance. The Interpolated and Windowed
VDM (IVDM/WVDM) are furthermore smoothing the
steps between probability input classes. The VDM's
strength is the assignment of case bases with verified
knowledge about the solution that is known to be the
best available. However, it cannot learn local similarities
when the solution attribute is numeric, like the overall
survival.

Methods

In a typical randomized controlled trial a new therapy
(e.g. medication) is compared to either the standard or a
placebo medication (competing therapy). For fatal dis-
eases, like many cancer types, the performance between
the new and the competing therapy is compared with
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the help of overall survival (OS) information of each
therapy group (sub-cohort) after therapy onset. The sur-
vival function basically represents the probability of sur-
vival over time.

As a result, survival functions enable the visualization
of the survival probability (y-axis) over time (x-axis).
This method is commonly used to compare the out-
comes of two competing therapies in clinical trials.
When two therapies are compared, the one with pre-
dominantly higher survival probabilities is considered
superior since subjects tend to survive or to die later in
the course of observation.

Survival functions as a measure for similarity
In evaluations of clinical trials, survival functions are cal-
culated and plotted to visually represent the difference
in survival for each attribute value, e.g. for each therapy
arm of the study cohort. This way the differences in sur-
vival probabilities of the study arms can be visually com-
pared and also calculated for any point in time. As a
result, an extensive survival analysis on attribute value
level can be performed and will be used to define local
similarities as a consequence.

Formally, survival functions are defined as follows: Let f
be a probability density function. Then, the survival func-
tion S: [0, ) — [0, 1] depending on time ¢ is defined as

S(t) = / £(x) dr. 1)

This means that the survival probability at time =0
starts with S(£=0) =1 and decreases over time. Thereby,
S(¢) is bound to the interval [0, 1].

In our approach, the Area Between two Survival func-
tions (ABS, as shown in Fig. 1) is considered a measure
for the similarity of two values of the same attribute. De-
tails for calculating the ABS are presented in the next
section. The following two examples demonstrate pos-
sible scenarios for similarities:

Scenario 1: Marginal differences between two survival
functions will occur when two sub-cohorts are com-
pared with respect to an unimportant attribute. For ex-
ample, in a cancer therapy group where the survival
probabilities are almost equal for the attribute “sex”
with its values “male” and “female”. Here, the ABS be-
tween both cohorts is very small.

Scenario 2: Huge differences are expected when
comparing two highly discriminating values of a single
attribute with regard to survival. The attribute
“metastasis formation” with the values “none” and “end
stage”, for example, will probably have an extreme
impact on the survival probability in cancer therapy.
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Fig. 1 Survival plots of two values “label0” and “label1” of an attribute are shown. The shaded area between these plots is the Area Between
Survival functions (ABS)

J

Here, the sub-cohort with “none” metastasis will have a
better survival outcome than the “end stage” group.
This leads to a relatively high ABS.

Formal notations and definition

Let C={C;, C,,...,C,,} be the set of all cases in the case
base and A ={A,A,, ..., A,} be the set of all attributes.
Let a€ Ay x Ay x ... x A,, be an attribute vector of a cer-
tain case and let ID be the set of unique case IDs, i.e. y;
y;€1D satisty y,=y; i=jVi, j. Then, a certain case ce
C is defined as a tuple of c = (y€ID, a).

Let ¢, ¢" be two cases of the case base and ¢ = (x,a)
and ¢" = (x",a”) with IDs x, x"€ID and attribute vectors
a, a’ €Ay xAyx ... xA,. a, a" are defined as a = (ay, a,,
..oay)and a’ = (a,", a5, ...,a,").

The attribute values a; of a and a;” of a” with i ={1, 2,
...,n} of the two cases ¢ and ¢" can only be compared
pairwise for similarity. The Area Between two Survival
functions (ABS) of a particular pair i of attribute values
and a particular point in time 7 can be defined as:

ABS(T|a,a;") = / [S(¢lar)-S(¢lait)] de 2)
0

We consider the survival function as a polygonal func-
tion between the data points resulting in a step function

(cf. Figure 2). Now, the ABS between two succeeding
events can be considered as a rectangle. The calculation
of the complete ABS can now be achieved by summing
up all single rectangles. Please note that the ABS can
only be calculated for two values a; and a;” of the identi-
cal attribute A;.

Similarity metrics

The following subsections cover suggested transfer
methods from our survival-data-based similarity concept
to the different parts of a similarity measure. Further-
more, in section 2.3.4 we combine some of these
methods to a complete similarity metric that can be ap-
plied in CBR.

Local similarity

Like many other similarity measures [31, 32] and CBR
frameworks [21], we adopted the concept of differenti-
ating between a local and a global similarity function
and applied it to our approach. The local and global
similarity measures are usually defined within the inter-
val [0, 1]. Consequently, the ABS has to be transformed
to meet this constraint. Since there are numerous
transformations available, we propose the use of the
following:
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Simlocul(T|ai7 “i*) = exp(_|ABS(T|“ia “i*)D (3)

Since the similarity of two attribute values with a low
absolute value of ABS is higher compared to attribute
values with a large difference in the survival functions, we
map the ABS using an exponential function. This limits
the local similarity to the interval [0, 1] and provides low
local similarity values for high ABS values and a maximum
similarity of 1, if the attribute values are the same.

Attribute weights and feature selection

In our approach, the purpose of the attributes’ weights is
to define the survival impact of each attribute on a glo-
bal scale. We define this global scale with the help of a
special normalization area ABS,,,, that reflects the at-
tribute with the most extreme impact with reference to
survival: the survival status.

ABSorm (T) = [ [S(¢|alive)-S(¢|deceased)] d¢ (4)

o —

No other attribute can possibly have values with a big-
ger impact on survival than the survival status itself. The
resulting ABS, ., is illustrated in Fig. 3 as striped area.

In order to determine the impact of a particular attri-
bute A; on a global scale, the maximum ABS of the attri-
bute is computed (ABS maa,). This area provides

information about how much impact the attribute has
with respect to all other attributes. The attribute’s
weight w4, is the rate between area ABS x4, and the
normalization area ABS, ., as in Eq. (5). Figure 4 shows
a visual comparison between both areas.

ABS max,
CL’Aj: ABSnr:zrm) (5)

The concept of using weights is furthermore particu-
larly suitable for feature selection, because attributes
with a low impact on survival will get a correspondingly
low weight. Attributes below a certain weight’s thres-
hold could be omitted to reduce overall computation
complexity without decreasing the accuracy of
similarities.

Handling of numeric attributes

A characteristic of survival estimators is that they are lim-
ited to nominal attribute values. Clinical data, however,
usually contains a large portion of attributes with numeric
values, e.g. laboratory results or other measurements that
are considered relevant for diagnosis or therapy.

For continuous value domains, survival estimators
could be applied by interpreting each number as a
nominal value, but this approach would lead to an
extreme overfitting. Especially decimal values, like a
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specific laboratory attribute, are rarely repeated and
thus could lead to as many survival functions as there
are cases in the case base. To cope with this issue,
numeric attributes have to be nominalized. The goal
is to transform the attribute’s numeric range into two
nominal groups. A cutoff value for dichotomization is
chosen that maximizes the ABS between both groups.

As a first step, a temporary cutoff value c is set for each
unique value of the numeric attribute to normalize. For a
temporary cutoff value ¢ the ABS between the two groups
“less than or equal to ¢ ” and “greater than ¢ ” is calculated:

ABS(Tla;<c,a; > ¢) = /[S(t|ai£c)—S(t|ai >c)]dt (6)

Figure 5 shows the ABS results from all temporary
cutoffs ¢ for the exemplary numeric values 1.0 to 2.0 of
a fictitious, but typical numeric attribute.

Here, ABS peaks at the lower and upper ends of the
temporary cutoffs can be observed. The reason for such
extremes is that cutoffs resulting in groups with a very
low number of cases show a tendency to survival func-
tions with an extreme step shape. For this reason, we
create a Weighting Function (WF) as a second step, in
order to smooth the results from the first step:

WEF(cutoff =¢) = (p- (1-p))? (7)

A smoothing factor can be configured with the vari-
able q in Eq. (7). With q =0 no smoothing effect is tak-

0.3
0.25 O
O
. 02 2
8
(%)
: m
g 0.15
g
0.1 o Py
X X
X
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Fig. 6 Effect of different smoothing factors
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ing place. Smoothing factor q > 1 will punish the critical
cutoff values on the lower and upper cutoff range, while
the midrange cutoff values are in favor (Fig. 6).

The variable p is the ratio between the number of
cases with a value less or equal to the temporary cutoff ¢
and the total number of cases with any numeric value in
the numeric attribute:

number of cases (numeric value <cutoff )
p(cutoff =¢) = - - (8)
number of cases (numeric values available)

The final cutoff value for the nominalization will now
be chosen from the temporary cutoff point with the
maximum weighted ABS (cf. Figure 7). This dichoto-
mized version of the numeric attribute will now be han-
dled like any other regular nominal attribute.

Global similarity

For a global similarity measure, we suggest to apply an
approved global similarity calculation between two cases
¢ and ¢ the Euclidean distance. Empty or other un-
known attribute values are, like in many other similarity
measures, considered as equal to any other value of a
given attribute.

The local similarity between nominal attributes is de-
termined with the method in section 2.3.1, for numeric
attributes, the methods from 2.3.3 are used. A common
extension is the embedding of a weight factor wy, for an
attribute A; with i ={1,2, ..., n} to emphasize or mitigate
the contribution effect of each attribute. However, it is
important to know that our method for weight calcula-
tion might not be suitable for use in conjunction with
our local similarity method, because both approaches
are based on the attribute’s survival time and thus,
would have impact twice. Instead, it can be used inde-
pendently for other similarity measures as an alternative

weight calculation or feature selection method. Thus,
our proposed similarity measure w4, can be used for
manual fine-tuning or simply be left with the value of 1.
The resulting similarity measure is put together in egs.
(9) and (10).

n
simgonar (Tle,¢*) = 4[> (@4, simiocar(Tlas, ai*))* (9
i=1

exp(-|ABS(T|a;, a;*)|), if a; is nominal, else (10)

exp(-|ABS(T|ai<c,a; > c)|)

1, if a; or a;" is unknown, else
siMyoeat (Tla;, @) =

Results

In the following two sections, we describe aspects to be
considered when implementing the similarity measure.
They include preprocessing steps for the data used for
cases descriptions and workflow for the similarity meas-
ure. The evaluation section covers capability aspects
using in silico datasets and compares results with com-
peting similarity measures.

Implementation

Preprocessing

The missing link in the processing chain of the usage of
the similarity measure in a real clinical domain concerns
the preprocessing of input data for the case base.
Depending on the state of the input data, different steps
might have to be applied before clinical data can be
used. Typically, these steps include cleaning, validating,
and restructuring data if necessary. The following list
gives a basic overview of preprocessing steps that we
consider especially relevant for clinical data:
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S2. Global
Similarity

S1. Local

Similarity

Fig. 8 Workflow to compare two cases for similarity

N

T3. Feature

Selection

e Spelling correction

e Checking of values for completeness

e Filtering of attributes and values that are used only
for comments

e Harmonization/aggregation of values with the same
meaning

e Dlausibility checks (e.g. numeric attributes may not
contain characters, “null” or “unknown”)

Based on our experience, we suggest to eliminate attri-
butes that are only available in few clinical cases. The
reason is that a single survival function with only few
data points (events) leads to a rough step curve and, in
our experience, leads to imprecise and thus unreliable
results. Defining a threshold for a minimum number of
data items may help to prevent step curved survival
functions.

Workflow of the similarity measure
In the previous chapter, we described all necessary steps
to calculate the overall similarity of two cases with any
available structured clinical data. The following work-
flow (illustrated in Fig. 8) is summarizing these steps
and putting them into order for implementation. It fur-
thermore distinguishes between the steps used for the
preparation (P1 and P2), training of the similarity meas-
ure (T1-T3) and for the application of the similarity
measure for the retrieval (S1 and S2).

P1. Preprocessing: data cleaning, aggregation, re-
mapping and plausibility checks.

P2. Nominalization: transformation of numeric attri-
butes into distinguishable nominal values.

T1. Survival Functions: calculation of the survival
function for each value of every attribute.

T2. Weights: calculation of the weight for every
attribute.

T3. Feature selection: identification of attributes with
high impact on survival.

S1. Local similarity: application of the local similarity
algorithm for each attribute with high survival impact.

S2. Global similarity: application of the global similar-
ity algorithm to determine the overall similarity using
the attribute weights from workflow step T2.

Evaluation

Material

An evaluation case base for similarity measures needs
some predefined and clear biomarkers, so that the similar-
ity measure can prove that it is able to detect and quantify
the biomarkers’ impact. Also, several case bases with hori-
zontal (number of attributes) and vertical (number of
cases) scalability are mandatory for extensive testing of
our approach. Since a clinical data set fulfilling these cri-
teria with sufficient quality is hardly accessible, we decided
to design a data set in silico. For this purpose, we imple-
mented a survival data set generator called “vivaGen”,
which enables the creation of custom case bases with
adjustable survival behavior of each single attribute as well
as the overall survival [33]. The program code of
“vivaGen” is open source and publicly available [34].

For this evaluation, we used “vivaGen” to generate a
set of ten random case bases with an identical base con-
figuration to simulate data from a trial. Each case base
consists of n = 1000 cases, where each case is described
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Table 1 Statistical values for biomarker detection over 10 data set iterations. Our proposed survival-time-based similarity measure
(STSM) is compared to the Heterogeneous Euclidian-Overlap Metric (HEOM), Discretized Value Difference Metric (DVDM) and a

random pick algorithm

Numeric Biomarker for arm A

Nominal Biomarker for arm A

Mean accuracy  Mean precision  Mean recall ~ Mean Fl1-score  Mean accuracy ~ Mean precision  Mean recall ~ Mean F1-score
(SD) (SD) (SD) (D) (D) (SD) (D) (SD)
STSM 0,944 (0,043) 0,946 (0,044) 0,946 (0,044) 0,946 (0,044) 0,998 (0,002) 0,999 (0,001) 0,993 (0,006) 0,996 (0,004)
HEOM 0,657 (0,013) 0,678 (0,029) 0684 (0,032) 0681 (0,03) 0,831 (0,004) 0,759 (0,011) 0,638 (0,013) 0,694 (0,012)
DVDM 0,564 (0,064) 0,595 (0,057) 0,596 (0,058) 0,596 (0,057) 0,644 (0,046) 0,401 (0,081) 0,37 (0,06) 0,384 (0,07)
RANDOM 0,502 (0,007) 0,536 (0,034) 0,535 (0,034) 0,535 (0,034) 0,582 (0,01) 03 (001) 0,298 (0,011) 0,299 (0,01)
Numeric Biomarker for arm B Nominal Biomarker for arm B
Mean accuracy Mean precision Mean recall Mean F1-score Mean accuracy Mean precision Mean recall Mean F1-score
(SD) (SD) (SD) (SD) (SD) (SD) (SD) (SD)
STSM 0,909 (0,05) 0914 (0,048) 0915 (0,048) 5(0,048) 0,997 (0,003) 1(0) 0,99 (0,009) 0,995 (0,005)
HEOM 0,661 (0,012) 0,685 (0,025) 0,7 (0,019) 0,692 (0,022) 0,83 (0,003) 0,76 (0,009) 0,648 (0,022) 0,699 (0,016)
DVDM 0,535 (0,012) 0,573 (0,022) 0577 (0,032) 0,575 (0,025) 0,671 (0,105) 0,467 (0,188) 0424 (0,151) 0444 (0,168)
RANDOM 0,505 (0,009) 0,546 (0,028) 0,545 (003) 0,546 (0,029) 0,574 (0,013) 0,303 (0,013) 0,303 (0,014) 0,303 (0,013)

by a total number of 28 attributes: 24 with random values
and four special attributes to simulate biomarkers. The
outcome attributes in the generated data sets consist of
survival time, survival status, and therapy arm (arm A and
B). In order to reduce the complexity for this evaluation,
both arms perform equally well in terms of overall survival
time. The random attributes are created with the help of
common distribution functions, namely the normal, expo-
nential, Weibull and the uniform distribution. Especially
important, however, are the biomarker attributes because
they are generated with a significant impact on the survival
time of a case when a biomarker’s value approaches a
defined value. For example, the numeric biomarker for arm
A has two extreme value ranges: if the value is around 120
the biomarker is defined as being “present” and the case’s
survival time is significant higher than average. On the
contrary, cases with values around 80 will receive a random
survival time, like the random non-biomarker attributes.
The nominal biomarkers in “vivaGen” are created with the
help of the binomial distribution and internal configuration
variables to discriminate between short- and long-time
survivors (STS and LTS). Further details about the parame-
trizing can be obtained from the Additional file 1.

Preparation

In the following two sections we will introduce scenarios
to evaluate our similarity methods. For each scenario the
identical set of case bases from “vivaGen” are used. The
generated data sets have no missing values or other
undefined attribute values and the feature selection step
(T3) is not necessary for such designed data. For
discretization of numeric values, we applied a value of 2
for the parameter q.

Biomarker detection

In the following evaluation scenario the accuracy of the
biomarker matching of similar cases is evaluated. Our
basic assumption is that similar cases are expected to
have a high matching rate in attributes with a high im-
pact on survival time, which is the case for the bio-
marker attributes in the generated data set.

In order to receive similarity values between complete
cases we applied our suggested global similarity measure
from section 2.3.4. For each of the generated case bases
we performed a leave-one-out cross-validation with inclu-
sion of the k = 10 (i.e. 1%) most similar cases as results.! It
should be mentioned that we decided to place back each
test case after drawing (urn model) in order to prevent an
increasing instability of the global similarities results due
to a running out of remaining training cases.

To see how our similarity measure performs in com-
parison with others, we considered several similarity
measures as potential counterparts. The main criteria
for choosing similarity measures for comparison was the
capability of working on our datatypes and data struc-
tures. For example, textual similarity measures were dis-
missed because in our context of survival data we do not
have textual information. Consequently, we selected the
similarity measures HEOM and DVDM (introduced in
Section 1.2) and, in addition, a “random pick” algorithm
to show how they performed on the generated data sets
in each situation. Results are available in Table 1.

Over all iterations, we measured a mean accuracy rate of
matching biomarkers for our survival-time-based similarity
measure (STSM) between 0.909 (numeric biomarker for

'In total, this leads to 100.000 single results considered for biomarker
classification.
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Table 2 Calculated weights over all attributes, only non-biomarker, and biomarker attributes over ten random case bases. The
weight values are scaled by factor 10. Additionally, the relative weight difference to the average weight over all attributes is given

All attributes

Non-biomarkers

Num. biomarker arm A

Nom. biomarker arm A

Num. biomarker arm B

Nom. biomarker arm B

Avg. Weight ~ Avg. Weight  Rel. (%) Weight Rel. (%) Weight Rel. (%) Weight Rel. (%) Weight Rel. (%)

T#1 0940 0.504 —46 3.609 +284 3636 +287 3.875 +312 3.102 +230
[T#2 0.791 0418 —47 2.950 +273 2.689 + 240 3018 +281 3469 +338
[T#3 0.929 0.548 -41 3.028 +226 3.035 +227 3416 + 268 3.382 + 264
T#4 0819 0435 —47 3287 +301 3219 +293 2962 +262 3.028 +270
[T#5 0.852 0441 —48 3445 +304 3.354 +294 3652 +329 2.827 +232
[T#6 0.903 0459 —49 3432 +280 4.109 + 355 3.368 +273 3.354 +271
T#7  1.020 0622 -39 3.145 +208 3.185 +212 3.587 +252 3712 +264
[T#8 0.871 0481 —45 3.145 + 261 3.238 +272 3.500 +302 2972 + 241
T#9 0951 0.547 —42 3386 +256 3593 +278 3.599 +279 2912 +206
[T#10  0.898 0466 —48 3753 +318 3315 +269 3233 +260 3658 +307
Mean 0897 0492 —45 3318 +271 3.337 +273 3421 +282 3.242 + 262
SD 0.064 0.060 - 0.242 - 0.362 - 0.271 - 0.300 -

arm B) and 0.998 (nominal biomarker for arm A). The
HEOM performed with a lower accuracy between 0.657
and 0.831. As expected, the DVDM approach does not
perform well with a randomized outcome (here: “therapy
arm”) in the training data set. The biomarker matching
accuracy of 0.535—0.671 is hardly higher than a similarity
measure that randomly picks cases (around 0.5).

Determine the weights of attributes

The determination of the weights of attributes is one of the
steps in the training phase of the similarity measure (T2)
that has essential impact on the subsequent feature selec-
tion step. Table 2 shows the calculated weights for each of
the ten iterations (IT) of the evaluation data sets. For a bet-
ter readability the weight values are multiplied with factor
10, which does not affect the results. The average weight of
the random attributes has a value of 0.492, which is roughly
half the size of the average weight over all attributes
(0.897). On the contrary, the weights of biomarker attri-
butes are in the range between 3.242 (nominal biomarker
for arm B) and 3.421 (numeric biomarker for arm B). This
means a roughly 3.7 [3.61-3.81] times higher weight value
than the average over all attributes, and even 6.8 [6.59-6.95]
times higher weight than non-biomarker attributes.

In our approach, the purpose of the calculations of
weights for attributes is to detect survival time differ-
ences. As mentioned above, the biomarker attributes in
the generated data sets are designed to have a significant
impact on survival time. In this sense, the results
indicate the expected behavior.

Discussion
In this paper, we introduced modular methods for creat-
ing a similarity measure by defining similarity on the

basis of survival data of attribute values. Where reason-
able, each method may be combined with the others to
form a similarity measure, as we did. It is also possible
to substitute parts of an already established measure
with our methods, for example the weight calculation or
feature selection.

In clinical domains with limited knowledge about the
best possible therapy, like in clinical trials, our ap-
proach brings its strength into play. To support finding
the hardly predictable “best suitable” therapy for a new
patient, it makes sense to take more than just the most
similar case into consideration for a therapy decision.
The reason is that the applied therapy in the retrieved
similar cases still may not necessarily be the individu-
ally best. However, a collection of similar patients is es-
pecially valuable because of the documented outcomes,
which clinicians can now further analyze. They may de-
cide to choose the same therapy for a new patient if the
treatment worked well for one or more of the most
similar patients or choose a different therapy if it did
not perform well in the past. A cancer disease of an
individual can be diagnosed in different granularities,
because a huge number of specific subtypes was found
for many cancer types [35, 36] and probably many more
are not known yet. A similarity measure that derives
similarity from survival time calculates the survival im-
pact of each attribute in order to determine similarity.
However, it is often not clear, if a parameter that could
possibly act as a biomarker for subtypes is measured at
all. Likewise, biologic effects might have more complex
interactions between several causes that might be mea-
sured by attributes or not. Such dependent effects are
currently not covered by the method presented here.
This also affects the case of rare subtypes: If a subtype
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that is only expressed by a small subset of the popu-
lation, it is reflected by our similarity measure if it is
associated to a parameter value of a single attribute
and has significant impact on survival. Any subtype
that requires a combination of attributes is currently
not addressed by this approach. However, if such a
combination is known a priori, it might be possible
to use this knowledge to adjust weighting factors if
appropriate.

Another effect with impact on the similarity calcula-
tions might occur if survival data were acquired in clin-
ical trials: Since trials typically have rigorous inclusion
criteria this might lead to a bias in the distribution of
the attribute values if they are not independent from the
inclusion criteria. For example, the value range may be
tighter than expected as compared to that observed in
the general population.

An important subject in general data analysis is the
handling of missing values. Unlike our in silico data
sets for evaluation purposes, actual clinical routine or
trial data might include incomplete documentation
with missing or mistyped values. Leaving out cases
with only few missing values may not be effective and
can dramatically decrease the number of cases, which
is especially relevant for rare diseases with a low
number of cases. For optimal performance a high
number of cases and gap-less data sets are desirable.
To tackle this issue, for example the maximum likeli-
hood estimation [37] or the expectation—maximization
algorithm [38] could be applied to interpolate missing
values.

Our method of using survival functions for patient
comparisons is a first experiment for a similarity meas-
ure of this kind. It is conceivable that this basic approach
is adaptable in domains with different assessments of
therapy success [39]. For example, in palliative medicine,
progression-free survival is often the secondary endpoint
after the overall survival [40]. In trials of the domains
gynecology and neonatology the days before planned de-
livery is considered a therapy-deciding outcome [41] and
in radiotherapy this is the case for the re-bleeding-free
survival [42].

In the evaluation section we showed that our
methods behave as expected on our in silico data
sets: the detection rate of the artificial biomarkers is
much higher than other competing similarity metrics
and also the weighting function results correctly in
higher values for biomarker than non-biomarker attri-
butes. As a next step, we are working on a validation
concept with patient data from electronic health re-
cords or clinical trials. The main issue here is that
for many malignant diseases therapy options are very
limited, or in case of clinical trials, may not be
allowed due to the study protocol. Clinical data sets
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of a cancer disease with nowadays well-proven risk
factors might be helpful, if they contain both, cases
with ineffective obsolete as well as effective modern
therapies. In this case, the calculated weights of the
risk attributes for the effective therapies should be
significantly higher than those of the obsolete thera-
pies. As a first evaluation on an actual clinical data set we
have the “colon” data set [43] in mind, available in the R
package “survival” [44].

Conclusions

In silico evaluation scenarios showed that the mean ac-
curacy of biomarker detection is higher than for compet-
ing similarity measures, such as HEOM or DVDM. The
weight calculation method showed a more than six times
higher weight for biomarker attributes over non-
biomarker attributes. These results suggest that the simi-
larity measure described here is suitable for applications
based on survival data.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512911-019-0917-6

[ Additional file 1. Parameters for data set generator tool “vivaGen”. ]
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