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Abstract

independent trial data.

future patients.

Background: Despite the growing interest in developing markers for predicting treatment response and optimizing
treatment decisions, an appropriate methodology to identify, combine and evaluate such markers has been slow to
develop. We propose a step-by-step strategy for analysing data from existing randomised trials with the aim of
identifying a multi-marker model for guiding decisions about treatment.

Methods: We start with formulating the treatment selection problem, continue with defining the treatment threshold,
prepare a list of candidate markers, develop the model, apply the model to estimate individual treatment effects, and
evaluate model performance in the study group of patients who meet the trial eligibility criteria. In this process, we rely
on some well-known techniques for multivariable prediction modelling, but focus on predicting benefit from
treatment, rather than outcome itself. We present our approach using data from a randomised trial in which 808
women with multiple pregnancy were assigned to cervical pessary or control, to prevent adverse perinatal outcomes.
Overall, cervical pessary did not reduce the risk of adverse perinatal outcomes.

Results: The treatment threshold was zero. We had a preselected list of 5 potential markers and developed a logistic
model including the markers, treatment and all marker-by-treatment interaction terms. The model was well calibrated
and identified 35% (95% confidence interval (Cl) 32 to 39%) of the trial participants as benefitting from pessary
insertion. We estimated that the risk of adverse outcome could be reduced from 13.5 to 8.1% (5.4% risk reduction; 95%
Cl 2.1 to 8.6%) through model-based selective pessary insertion. The next step is external validation upon existence of

Conclusions: We suggest revisiting existing trials data to explore whether differences in treatment benefit can be
explained by differences in baseline characteristics of patients. This could lead to treatment selection tools which, after
validation in comparable existing trials, can be introduced into clinical practice for guiding treatment decisions in

Keywords: Treatment selection, Biomarker, Randomised controlled trials, Individualised medicine, Stratified medicine,
Subgroup analysis, Prediction models, Prognostic, Model development, Validation

Background

The main goal of most randomised clinical trials is infer-
ence about the effects of treatment, typically in terms of
effectiveness, efficacy, or toxicity. If a statistically signifi-
cant treatment effect is found, this does not imply that
all eligible patients benefit from the treatment under in-
vestigation. Similarly, a failure to find such an effect does
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not necessarily mean that no patients would have a bet-
ter outcome if treated.

Spear and colleagues [1] have analysed the efficacy
of major drugs for a number of therapeutic areas,
based on published data. They found that the per-
centage of responding patients is between 80% for
Cox-2 inhibitors and 25% for cancer chemotherapy,
with many of the drugs falling within the 50 to 75%
response range. The safety of treatment options also
varies between drugs and diseases. Exploring this het-
erogeneity could result in a better understanding of
the underlying factors.
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Most clinical trials assemble an extensive collection of
baseline information on the study participants. This in-
cludes all kinds of patient characteristics, clinical find-
ings, laboratory test and imaging results. We believe that
these features, markers and test results can be used to
explore the variability in the magnitude and direction of
treatment benefit. Consequently, an algorithm could be
developed for predicting which of the investigated treat-
ment options is better given a specific profile. If vali-
dated, such algorithms would be able to guide treatment
decisions for individual patients.

Subgroup analyses are a common strategy for investigat-
ing the heterogeneity of treatment effect, and 40 to 65% of
randomised clinical trials report such analyses [2]. In con-
ventional subgroup analysis patients are assigned to cat-
egories based on potentially influential characteristics [3].
This classification is typically performed for each charac-
teristic separately, one at a time, and associations between
the marker and the effect of treatment are evaluated by
testing for marker-treatment interactions. As such, typical
subgroup analyses do not account for the fact that patients
have multiple characteristics, each potentially affecting the
expected magnitude of a treatment benefit.

Below we propose a systematic approach to combine
marker information to form combinations of markers
for predicting the benefit for treatment and guiding de-
cisions. We illustrate our approach with a model for pre-
dicting the benefits from pessary insertion in women
with multiple gestation. Our framework applies tech-
niques from multivariable prediction modelling, but we
not focus on predicting outcome, but on the benefit
from treatment, defined as the predicted difference in
outcomes, between the two forms of treatment.

Empirical example data

We will introduce our framework with an example. The
most serious risk of multiple pregnancy (twin or triplet)
is spontaneous preterm delivery, which is associated
with increased perinatal mortality and short-term and
long-term morbidity [4, 5]. Several measures have been
considered and evaluated for minimizing this risk, in-
cluding the prophylactic insertion of a cervical pessary.
In the ProTwin trial, 813 consenting women with mul-
tiple gestations were randomly allocated to either pes-
sary insertion in the first trimester or not using a
pessary [6, 7]. The primary outcome measure in the trial
was the occurrence of one or more adverse perinatal
outcomes. Our rational to choose ProTwin trial was it’s
simplicity of concept and that it was rich in terms of
marker information.

Methods
In our description, we focus on a binary primary outcome
measure to simplify the exposition, but the method can
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also be extended to accommodate other types of
outcomes.

Step 1: Defining the treatment decision

The initial step is to carefully consider the treatment se-
lection problem: the treatment, the comparator, the eli-
gible patients for whom the treatment should be chosen,
and the relevant outcomes. Typically, one would only
consider treatment if there is a benefit (a difference in
outcome after treatment) and, in most cases, the benefit
must be large enough to outweigh the harms, burden or
costs of treatment.

In some trials, the primary outcome measure captures
all of the main consequences of treatment decision, both
positive and negative, and a difference in the primary
outcome measure between the trial arms would indicate
a benefit from treatment. An example are trials with
mortality as the primary outcome measure, where mor-
tality could be reduced by effective treatment but also
increased because of the morbidity from that very same
treatment.

If the primary outcome measure does not capture the
full range of benefits and harms, but only a benefit, a
treatment threshold can be defined. This treatment
threshold is the extent of treatment benefit at which
treatment would outweigh the negative consequences
that are not captured in the primary outcome measure,
such as harms and treatment burden. In this context,
initiation of treatment is only justified when the treat-
ment effect, as expressed in the difference in the primary
outcome, is larger than the treatment threshold.

In scenarios where the treatment under investigation
has adverse effects, one would set a treatment threshold
above zero: the treatment effect should be large enough
to justify the negative consequences. A zero treatment
threshold would imply that any benefit from treatment
justifies administration.

Step 2: Preparing the list of candidate markers

The next step is developing a list of markers that are be-
lieved to have potential for predicting the benefit for pa-
tients from treatment. The benefit of treatment is
defined as a difference in outcome, comparing treatment
versus no treatment, this comes down to a prediction of
(differential) treatment outcomes.

Knowledge of the treatment’s underlying mechanism
of action can help in defining relevant markers. Another
source for identifying markers is reviewing literature
which have reported on markers as risk factors of the
outcome, as factors prognostic of response to treatment,
as factors for subgroup analysis, or as factors that inter-
act with treatment. Such markers have potential to be
useful for predicting the benefit from treatment.
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Step 3: Data sources

The data would ideally come from a randomised clinical
trial. In randomised trials associations between marker
with treatment outcome and treatment benefit can be
studied without bias, since randomisation in sufficiently
large trials guarantees exchangeability. The quality of
data collection in randomised trials is usually good as
well, even though data collection is not typically done
for studying associations with treatment benefit. In a
pragmatic trial, the trial study group is typically repre-
sentative of the population who could qualify for treat-
ment, with minimal exclusion criteria.

The methods described in this study may also be gen-
eralised to data from observational studies, however,
treatment allocation in observational studies is not inde-
pendent of the baseline characteristics. In this setting
the investigator would be well-advised to stratify on vari-
ables that are potentially associated with treatment
provision and outcome [8].

Step 4: Developing a prediction model including marker-
by-treatment interaction terms

A reasonably sized list of markers should be selected for
consideration. The number of markers that can be reli-
ably investigated in a dataset depends on the size of the
dataset, and whether the dataset includes enough num-
ber of outcomes. This needs a cautious selection of
markers for modelling treatment benefit, where a com-
mon rule of thumb is to require at least 5 to 10 events
per predictor under investigation [9, 10].

The next step is selecting a modelling type. Several
statistical methods are proposed for combining
markers for treatment selection including using gener-
alised linear regression modelling [11-20], classifica-
tion trees [14, 21] or directly maximizing the mean
outcome under marker-based treatment [12]. For a
binary outcome we propose logistic regression to
model the outcome of treatment as a function of the
specified markers and treatment, including an inter-
action between each marker and treatment. We base
this recommendation on simulation studies done by
Kang and colleagues [14]. They showed that other,
more sophisticated methods did not result in a
marker combination that performed better than the
selection identified with logistic regression. Pepe and
colleagues [22] also found logistic regression to be re-
markably robust in the classification context.

The investigator may choose to include all the
pre-specified markers in the model. In other cases, a
variable selection procedure can be considered to reduce
the number of markers in the model. Several techniques
are available for variable selection and model building in
usual prediction modelling setting [9, 10, 23-28]. Some
of these have been specifically designed for the context
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of treatment selection [13, 15, 16]. An exhaustive discus-
sion of the pros and cons is beyond the scope of this
paper.

There is extensive literature showing that predictions
from multivariable models can be improved for future
subjects if such predictions are shrunk towards the aver-
age using a shrinkage factor. Several techniques are
available for obtaining a shrinkage factor, including
split-sample, cross-validation or bootstrapping [9, 10].

Bootstrapping is the preferred method, certainly when
the development sample is relatively small and /or a
high number of candidate predictors is studied [26].
Some penalised regression methods such as the least ab-
solute shrinkage and selection operator (LASSO) might
also be attractive, since they perform both variable selec-
tion and shrinkage [29]. One can use penalty terms for
main effects and interactions or set LASSO on inter-
action terms [30].

Step 5: Evaluating benefit

Next, we want to evaluate how well the model per-
forms in improving treatment selection. The starting
point for this process is an estimation of the treat-
ment benefit for each participant in the trial, which is
the difference between the counterfactual outcomes
with and without treatment. As is well known, we
can never observe a treatment benefit in individual
patients, but under the usual assumptions, such as
exchangeability, we can evaluate the average treat-
ment benefit in identifiable subgroups, based on the
identified markers. In this context, the treatment
benefit for an individual patient can be calculated as
the difference between the estimated risk of an ad-
verse outcome without treatment and the estimated
risk with treatment. If the treatment threshold, de-
fined in step one, has a value above zero, one should
subtract the treatment threshold from the calculated
difference in probabilities to estimate the treatment
benefit. We then can visualize the estimated treat-
ment benefits by two approaches. One is depicting
the distribution of estimated treatment benefit in a
histogram. This plot visualizes the range and variabil-
ity of the estimated benefit [8, 31].

Calibration assessment

Calibration refers to the agreement between observed
outcomes and predictions. Calibration of a treatment
selection model can be specifically investigated by plot-
ting the average observed treatment benefit against the
average expected treatment benefit in evenly sized
groups defined by ranges of predicted treatment bene-
fits, based on deciles, for example. Ideally, if the ob-
served effects and predicted effects agree over the whole
range of probability differences, the plot will show a
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diagonal line. Calibration around the decision point of zero
is particularly important because miscalibration at this
point could result in change of treatment decision. Since
the calibration of the model for treatment benefit is related
to the calibration of the logistic regression model itself, one
can also plot calibration plots for the calculated risk of out-
come itself, with and without treatment.

Step 6: Model performance and population impact

The next step is measuring to what extent the developed
model can affect the choice of treatment, and how many
adverse events could be prevented if the model was used
for treatment selection. The following summary mea-
sures are proposed for this purpose.

Multimarker positivity rate

The first key summary measure is the proportion of
patients identified by the model as benefiting from
treatment (treatment benefit above treatment thresh-
old). We call this the multimarker positivity rate, to
make it comparable with single marker investigation
literature [8, 32]. This identifies the proportion of the
patients in whom the treatment would be recom-
mended. In contexts where the standard strategy is
treating everyone and model is developed to identify
those who do not benefit (enough) from the treat-
ment, the marker negativity rate identifies the propor-
tion of patients for whom the treatment
recommendation would change.

Average benefit of treatment in multimarker positives

This measure evaluates the treatment effect in the sub-
group of patients who are multimarker positive. It is the
difference in adverse event rate in the multimarker posi-
tive patients who were not treated versus multimarker
positives actually treated in the trial.

Average benefit of no treatment in multimarker negatives
In the same way, we can calculate the effect of avoiding
treatment in the subgroup of patients who are multimar-
ker negative. This measure is the difference in adverse
event rate in the multimarker negatives who were
treated versus negatives who were not treated.

Change in outcome with a model-based strategy

Based on the previous measures, we can calculate the
estimated change in the outcome in the target popu-
lation, if treatment decisions are guided by the multi-
marker model. It is an estimate of the population
impact of using the model to select treatment or the
reduction in the risk of outcome in population by ap-
plication of the model-based strategy. This measure,
or a variation, has been advocated by many as the
global measure of marker performance [8, 12, 15, 16,
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20, 32-34]. We assume that under a model-based
strategy, all multimarker positives are treated and all
multimarker negatives avoid treatment. In scenarios
where the default strategy is treating everybody, this
measure of population impact is calculated by multi-
plying the multimarker negativity rate with the aver-
age benefit of no treatment in multimarker negatives

[8].

Step 7: External validation

It is not enough to demonstrate a reasonable or good
performance of a model on the development sample
only. In those circumstances most models show optimis-
tic results, even after optimism corrections [9, 23, 24,
27]. It is essential to confirm that a developed model
predicts well in similar but different individuals, outside
the development sample.

One option is using datasets of other existing trials,
wherein patients sampled from the target population
have been randomly allocated to treatment strategies
comparable to those in the development trial. Valid-
ation is only possible if the validation dataset includes
data on model markers and on the outcome of inter-
est. One can use the markers and assigned weights
(regression coefficients) of the original model, predict
the treatment benefit for each patient included in the
validation trial, and study the distribution of benefit,
calibration, and estimate the population impact of
using the treatment selection model.

Validation of the performance of the model can also
be done in a new trial, wherein patients are randomly
assigned to a control group, which undergoes the default
treatment strategy, and an intervention group, where
predictions are made available to individuals and/or
healthcare professionals to guide decision-making. This
would result in a real-world estimate of the population
impact of the model.

Results

Using the ProTwin trial data, we illustrate here the
proposed step-by-step strategy for analysing data from
an existing randomised trial with the aim of identify-
ing a multi-marker model for guiding decisions about
treatment.

Step 1: Defining the treatment decision

In our example, there is no intervention that can prevent
preterm delivery and its consequences in women with
multiple gestation, so the comparator is no treatment
[35-39]. The side effects associated with pessary are not
serious and include vaginal discharge and pain. The de-
vice itself is not expensive (€38 per pessary) and inser-
tion can be done in an outpatient clinic by a
gynaecologist. So, the associated harms and costs are
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rather low in comparison with the adverse outcomes
it might be able to reduce. This allows us to define a
treatment threshold of zero, which means that one
would opt for pessary insertion with any chance of
benefit. The ProTwin trial showed that cervical pes-
sary insertion could not significantly reduce the risk
in the study group [6]. The question then is whether
there is an identifiable subgroup of women who
would benefit from pessary insertion.

Step 2: Preparing the list of candidate markers

The exact mechanism of action of cervical pessary inser-
tion is unknown. Pessaries surround the cervix and there-
fore might prevent preterm birth through mechanically
supporting the cervix. Based on this hypothesis, cervical
length could be a relevant marker, since it can measure
the extent of cervical strength and, as such, the need for
external support with a pessary. Other possible markers
are those previously reported as risk factors of preterm
birth in multiple gestation: obstetric history [40], previous
history of preterm delivery [41], whether the twins share
the placenta [42], and number of foetuses (twins versus
triplet) [43].

Step 3: Data sources

The ProTwin trial was a population based study with a
relatively broad set of inclusion criteria, which allowed
us to study all relevant marker treatment associations;
only women whose fetus(es) had major fetal abnormal-
ities or placenta previa were excluded.
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Step 4: Developing a prediction model including
marker-by-treatment interaction terms

We used logistic regression with the full model ap-
proach, and included all a priori selected candidate
markers in the multivariable analyses, without any fur-
ther predictor selection. This avoids the so-called pre-
dictor selection bias and overfitting [26]. We chose to
make a full model because we had a rather small num-
ber of markers to investigate, and all of these markers
were relatively easy to obtain, without further costs. The
shrinkage factor we calculated for our model by ran-
domly drawing 200 bootstrap samples of the ProTwin
data was 0.76. Table 1 presents the estimated regression
coefficients of the model, after multiplication by the
shrinkage factor. Among the specified markers mono-
chorionicity (interaction odds ratio; ORj,,=0.30) and
short cervix (OR;,; = 0.36) were associated with a differ-
ential benefit from pessary insertion, while history of
previous preterm birth (ORy, = 14.01) and triplet preg-
nancy (ORy, =3.67) were associated with an increased
risk of adverse outcomes after pessary insertion.

Step 5: Evaluating benefit

For each of the ProTwin trial participants we used the
final model in Table 1 two times. First, we calculated the
probability of adverse outcome with pessary and again
estimated the probability of adverse outcome without
pessary. We then subtracted the probability with pessary
from the probability without pessary. In our example,
the treatment threshold was set at zero, therefore there
was no need to modify the estimated treatment benefit.

Table 1 Estimated regression coefficients and corresponding odds ratios (95% confidence interval) of the treatment selection model

Predictor Shrunken Beta® OR (95% CI)

Intercept -2.21

Main terms
Pessary 0.22 1.25 (0.62-2.52)
Short cervix 1.07 292 (1.36-6.26)
Monochorionic 1.21 335 (1.79-6.28)
Parous with no previous preterm birth -0.83 044 (0.22-0.87)
Parous with at least one previous preterm birth —146 0.23 (0.03-1.82)
Triplet 0.57 1.77 (0.33-9.36)

Interaction terms
Pessary x Short cervix -1.01 036 (0.13-1.03)
Pessary x Monochorionic -1.22 0.30 (0.12-0.76)
Pessary x Parous with no previous preterm birth 0.54 1.72 (0.66-4.48)
Pessary x Parous with at least one previous preterm birth 264 14.01 (1.50-130.9)
Pessary x Triplet 1.30 3.67 (042-32.32)

aShrunken with an average shrinkage factor of 0.76
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Figure 1 shows the distribution of the estimated bene-
fit from pessary in participants of ProTwin trial. The
wide range of estimated treatment benefit in the study
participants shows the extent of heterogeneity in treat-
ment effect, predicted by the model. It also illustrates
how large the subpopulations are that would benefit
from pessary, or be harmed by it.

Calibration assessment

Figure 2 displays the calibration of the model we devel-
oped in ProTwin participants. Predictions are on the
x-axis and observations are on the y-axis. In each group,
predictions are simply the average of estimated treat-
ment benefits of the individuals in that group; observa-
tions are the result of subtracting the proportion of
patients allocated to control with an adverse outcome in
that group from the comparable proportion from those
allocated to pessary insertion in the same group.

Step 6: Model performance and population impact

We used the following summary measures to show to
what extent the developed model can affect the choice
of treatment, and how many adverse events could be
prevented if the model was used for treatment selection.

Multimarker positivity rate

Our example model identified 35% of women in the
ProTwin trial as benefitting from pessary insertion. Con-
sidering that the default management in women with
multiple gestation is no treatment, this measure also in-
dicates that for 35% of the patient population the recom-
mended treatment would change, if guided by the
model.

Average benefit of treatment in multimarker positives

In the subgroup of women identified by our model as
those benefiting from pessary, the average benefit was a
15% reduction in the risk of adverse outcome (95% CI: 6
to 24%).

Average benefit of no treatment in multimarker negatives
In ProTwin trial among the subgroup of women identi-
fied by our model as those not benefitting from pessary,
the average reduction in the risk of adverse outcome
was 8.2% (95% CI: 2 to 12%). This means that by avoid-
ing unnecessary pessary insertion, we could reduce the
risk of adverse events in the subgroup of multimarker
negatives with 8.2%.

Change in outcome with a model-based strategy

In our example the standard strategy is no intervention
in all women, thus the improvement from implementing
the model-based strategy equals the risk reduction in
multimarker positives who would receive treatment.
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This is estimated by multiplying the multimarker posi-
tivity rate with the average benefit of treatment in multi-
marker positives (35% x 15.4% =5.4%; 95% CI 2.1 to
8.6%). As the risk of adverse outcome with the default
strategy is 13.5% (obtained from the control arm of the
ProTwin trial) then the risk can be reduced to 8.1%
(13,5% minus 5.4%) through selective pessary insertion.

Step 7: External validation

ProTwin trial was the first trial evaluating the use of a
pessary in women with multiple gestations. There does
not yet exist another trial dataset allowing validation.
Some recently initiated trials could offer suitable valid-
ation options for our model.

Discussion

We have presented here a framework for developing and
evaluating multimarker models for guiding treatment
decisions. The methods combine classical techniques for
multivariable modelling with a decision-making perspec-
tive, focusing on benefit, the difference in counterfactual
outcomes, related to a choice between interventions, not
just on the outcome after treatment. Although several
elements of the approach are well studied, there are still
areas in need of further development.

The literature on statistical methods for combining
markers is quite extensive [9, 10, 22-24, 26, 27], but the
vast majority of articles have focused on combining
markers for predicting outcome without treatment, or
under a single treatment [14]. Yet the risk of an outcome
does not translate immediately into a benefit; benefit is
defined as the difference in outcome. Patients at high
risk of an adverse outcome are not necessarily able to re-
duce that risk by undergoing treatment, while those at
low risk may still benefit, further reducing their risk.

Others have also argued that modelling benefit, rather
than outcome, can be a superior approach for identifying
variables that can guide treatment decisions. Claggett
and colleagues [44] have shown that the best performing
risk models, based on associations between markers and
outcome in each treatment group, do not necessarily
produce the best performing model of a treatment effect.
Such a strategy may miss markers that are strongly asso-
ciated with the treatment effect but have modest main
effects, and risks including markers that have strong
main effects but modest interactions with treatment. In
the study by Kang and colleagues [14, 45], fitting a risk
model to each treatment group separately tended to pro-
duce marker combinations with inferior performance,
compared to those that simultaneously considered both
treatment groups. This study showed that applying logis-
tic regression with including marker treatment interac-
tions tend to produce marker combinations with a
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superior performance to a few other
techniques.

Other approaches for guiding treatment decisions based
on multivariable modelling have also been proposed. Dor-
resteijn and colleagues predicted the effect of rosuvastatin
on cardiovascular events for individual patients using data
from a randomised trial [46]. They developed a multivari-
able model including covariate-treatment interactions.
Using the resulting model, they predicted each patient’s
cardiovascular outcome, with and without rosuvastatin.
The estimated absolute risk reduction achieved by rosu-
vastatin treatment was then calculated as the difference
between the two risk predictions, aggregated over all trial
participants. For evaluation of the performance of the
model they calculated the net benefit described by Vickers
and colleagues [47]. They also proposed plotting the net
benefit for various strategies at different treatment thresh-
olds in a decision curve [47-49].

Other strategies for evaluating differences in treat-
ment effect have been proposed. Cai and colleagues
[19], for example, have considered a systematic
two-stage estimation procedure for individual-level
treatment differences for treatment selection in future
patients. Their method can be applied to randomised
trials for comparing two treatments. In the first stage,
parametric or semiparametric models are fitted 3sep-
arately to each treatment group to estimate
individual-level differences. An index score system is
then calculated from these differences for grouping
individuals. The average treatment difference is con-
sistently estimated within each stratum of the index
using a nonparametric function estimation method.
There is an optimal treatment for individuals belong-
ing to strata in which the average treatment differ-
ence is significantly different from zero.

Foster and colleagues [17] proposed a two-stage
method as well, called Virtual Twins. In the first stage,
regression forest techniques are used to estimate the
patient-specific event probabilities with and without
treatment (twins). In the second stage, the subpopula-
tion of patients who experienced enhanced treatment
benefit are defined by regression trees. The authors
quantify the enhanced treatment effect in the subgroup
as the difference between the absolute risk reduction by
treatment in the subgroup and the average treatment ef-
fect in the overall population.

Kovalchik and colleagues [50] proposed a framework
based on a proportional interactions model, where all
treatment-marker interaction terms were assumed to be
proportional to the main effects. Dusseldorp and Van
Mechelen [21] derived partitioning algorithms, called
qualitative interaction trees, resulting in a binary tree to
identify qualitative treatment-by-marker interactions. At
each partitioning step, the treatment effect difference

compared
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between subgroups, as well as the subgroup sizes, were
considered to refine the subpopulations.

Overall, a broad range of methods have now been in-
vestigated for combining the marker information to
identify subset of patients who would benefit from treat-
ments. It is quite challenging to compare the methods,
since the aims of the procedures vary from one class of
methods to the other and there is still no consensus on
the measure of evaluation of performance.

As a final step, treatment selection models can be
transformed into instruments for clinical use, wherein
model-based predictions are presented as a web-based
app, or applications for smart phones and tablets. They
could also be embedded in electronic patient records as
decision aid tools.

Conclusion

We believe that the framework, as presented here, is a
simple roadmap, which could offer valuable perspectives
for developing individualised decision support tools, and
for generating new hypotheses. As such, it fits nicely in
the well-received suggestions for developing and
strengthening stratified and personalised medicine. The
benefits of a more refined approach for making treat-
ment recommendations will not only materialize from
novel predictive markers and companion diagnostics,
but also from the careful combination of existing
markers and patient characteristics, as advocated here.

Note

All summary measures presented in this section and
their corresponding confidence intervals can be esti-
mated using the R package TreatmentSelection [8],
which is publicly available (https://cran.r-project.org/
web/packages/TreatmentSelection/index.html).
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