Prasser et al. BMC Medical Informatics and Decision Making (2016) 16:49 . .
DOI 10.1186/512911.016-0287-2 BMC Medica l[l)réfc?srirgﬁtl{ﬁg % ?f;

@ CrossMark

Efficient and effective pruning strategies
for health data de-identification

Fabian Prasser’, Florian Kohlmayer and Klaus A. Kuhn

Abstract

Background: Privacy must be protected when sensitive biomedical data is shared, e.g. for research purposes. Data
de-identification is an important safeguard, where datasets are transformed to meet two conflicting objectives:
minimizing re-identification risks while maximizing data quality. Typically, de-identification methods search a solution
space of possible data transformations to find a good solution to a given de-identification problem. In this process,
parts of the search space must be excluded to maintain scalability.

Objectives: The set of transformations which are solution candidates is typically narrowed down by storing the
results obtained during the search process and then using them to predict properties of the output of other
transformations in terms of privacy (first objective) and data quality (second objective). However, due to the
exponential growth of the size of the search space, previous implementations of this method are not well-suited
when datasets contain many attributes which need to be protected. As this is often the case with biomedical research
data, e.g. as a result of longitudinal collection, we have developed a novel method.

Methods: Our approach combines the mathematical concept of antichains with a data structure inspired by prefix
trees to represent properties of a large number of data transformations while requiring only a minimal amount of
information to be stored. To analyze the improvements which can be achieved by adopting our method, we have
integrated it into an existing algorithm and we have also implemented a simple best-first branch and bound search
(BFS) algorithm as a first step towards methods which fully exploit our approach. We have evaluated these
implementations with several real-world datasets and the k-anonymity privacy model.

Results: When integrated into existing de-identification algorithms for low-dimensional data, our approach reduced
memory requirements by up to one order of magnitude and execution times by up to 25 %. This allowed us to
increase the size of solution spaces which could be processed by almost a factor of 10. When using the simple BFS
method, we were able to further increase the size of the solution space by a factor of three. When used as a heuristic
strategy for high-dimensional data, the BFS approach outperformed a state-of-the-art algorithm by up to 12 % in
terms of the quality of output data.

Conclusions: This work shows that implementing methods of data de-identification for real-world applications is a
challenging task. Our approach solves a problem often faced by data custodians: a lack of scalability of
de-identification software when used with datasets having realistic schemas and volumes. The method described in
this article has been implemented into ARX, an open source de-identification software for biomedical data.

Keywords: Security, Privacy, De-identification, Statistical disclosure control, k-Anonymity, Optimization

*Correspondence: fabian.prasser@tum.de
Chair of Biomedical Informatics, Department of Medicine, Technical University
of Munich (TUM), 81675 Munich, Germany

- © 2016 Prasser et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
(B.oMed Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-016-0287-2-x&domain=pdf
mailto: fabian.prasser@tum.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Prasser et al. BMC Medical Informatics and Decision Making (2016) 16:49

Introduction
Privacy must be protected when sensitive biomedical
data is shared, e.g. for research purposes. This requires
implementing several safeguards [1]. Important organiza-
tional and legal measures include data use agreements and
data access committees. Moreover, risks of data aggre-
gation and sharing should already be covered in the
informed consent. On a technical level, multiple layers of
access can be used to create controlled environments in
which it becomes possible to reason about privacy risks.
These risks can then be mitigated with methods of data
de-identification, which means to transform a dataset in
such a way that it becomes extremely difficult for an
attacker to link its records to identified individuals.
Several methods of de-identification are covered by
national and international laws and regulations, such as
the US Health Insurance Portability and Accountability
Act (HIPAA) [2], and the European Directive on Data Pro-
tection [3]. The HIPAA Privacy Rule defines two basic
methods [4]. The first approach requires the removal
or the modification of a predefined set of 18 types of
attributes. The second approach, which is called "expert
determination” requires that a professional "determines
that the risk is very small that the information could
be used [...] to identify an individual” [4]. This can be
achieved with methods of statistical disclosure control,
where privacy risks are measured with mathematical or
statistical models [5]. As data transformation inevitably
leads to loss of information and thus a decrease in data
quality, a balance has to be sought between privacy risks
on one side and suitability for a specific use case on
the other. This means that data de-identification is a
non-trivial optimization problem with two conflicting
objectives.

Background

Transformation models

Different transformation models can be used to de-
identify data. In the remainder of this article, we will
focus on a model which has been recommended for the
biomedical domain: full-domain generalization followed
by record suppression [6, 7].

Generalization is performed with user-defined hierar-
chies, which are transformation rules that reduce the pre-
cision of attribute values in a step-wise manner. As can be
seen in Fig. 1, each hierarchy consists of a set of increasing
levels, which specify values with increasing coverage of an
attribute’s domain. Full-domain generalization means that
the values of an attribute in all records are generalized to
the same level of the associated hierarchy.

Generalization makes the records of a dataset less dis-
tinguishable, which reduces privacy risks. However, there
may be records which cannot easily be generalized in
such a way that they become indistinguishable from other

Page 2 of 14
/ ; \ Level 2
1-29 30-59 >60 * Level 1
7N /! 7N
1 =29 30 59 60 - 99 male female Level 0
Age Sex

Fig. 1 Examples for generalization hierarchies. The figure shows
generalization hierarchies for two typical high-risk attributes: age and
sex

records. To prevent that a large amount of generalization
must be applied to the overall dataset, such outliers can be
suppressed. This increases the quality of output data sig-
nificantly [8]. Typically, the fraction of records that can be
suppressed by a de-identification algorithm is restricted
by specifying a so-called suppression limit.

Solution space

Based on full-domain generalization, the solution space
of potentially privacy-preserving transformations for a
dataset is given by the set of all possible combinations of
generalization levels for each attribute. Each such combi-
nation is also called a de-identification policy. The struc-
ture containing all policies for a given dataset is called a
generalization lattice.

Figure 2 shows an example, which relates the concept
of de-identification policies to an example dataset with
attributes sex and age. The original dataset is at the bot-
tom (0, 0), whereas the policy specifying maximal gener-
alization (2, 1) is at the top. The figure further shows the
output of applying the policies (1,0) and (0, 1).

Privacy models

The first objective in data de-identification is to minimize
privacy risks. Typically, it is assumed that the attacker
tries to link the disclosed dataset with some form of back-
ground knowledge. The attributes which can be used for
linkage are called quasi-identifiers. Without loss of gen-
erality, we will in the remainder of this article focus on
quasi-identifiers only.

Re-identification risks are typically modeled as some
form of measure for the accuracy with which records
from the background knowledge can be linked to
records in the dataset. The most prominent model is
k-anonymity, which enforces an upper bound of % on
the re-identification risk of all records [9—11]. A dataset
is k-anonymous if each of its record cannot be distin-
guished from at least k — 1 other records. Each set of
indistinguishable records is called an equivalence class.

An example is shown in Fig. 2. The result of applying
the de-identification policy (1, 0) to the original dataset
and then suppressing the unique record is shown on the
left side. The dataset fulfills the 2-anonymity model, which

Prasser et al. BMC Medical Informatics and Decision Making (2016) 16:49

Page 3 of 14

Age Sex Age Sex
30-59 Male 30-59 Male
30-59 Male 30-59 Male
30-59 Male | 30-59 Male
* * -~ 30-59 Female
>60 Female >60 Female
>60 Female >60 Female

,»Age* generalized to
first level of its hierarchy

Quality: 90%

Unique record suppressed

Quality: 75%

53
55
@M o

Fig. 2 Example showing de-identification policies represented as a generalization lattice. The figure shows a generalization lattice constructed with
the example hierarchies. It also shows the results of two de-identification policies and the resulting data quality

7]

* % % % % *%|&
>

Age
53

Level 3

65

,.Sex* generalized to
first level of its hierarchy

@y

Level 0 .
Quality: 50%

guarantees a maximal re-identification risk of 50 % for
each record.

Quality models

The second objective in data de-identification is to max-
imize data quality (or utility), which means that it must
be measured. In the remainder of this article, we will use
the model by Iyengar, which measures the extent to which
the domains of the attributes are covered by a dataset
[12]. For categorical variables, the basic idea is to use the
generalization hierarchy for each attribute to determine
the relative number of values from an attribute’s domain
which is covered by the given (potentially transformed)
value. These fractions are then summarized for all values
in the dataset and normalized. The model is defined for
continuous attributes as well. In this case, it is required
that each node in the hierarchy defines an interval over
the attribute’s domain. A value which has been suppressed
covers the complete domain of the attribute, analogously
to full generalization, and the fraction thus becomes one.
For ungeneralized values the fraction is zero. The mea-
sure returns values in the range [0, 1], where the original
dataset has a quality of 100 %, while a transformed dataset
in which all attribute values have been removed (either by
generalization or suppression) has a quality of 0 %. In the
examples shown in Fig. 2, quality according to the model
by Iyengar is also indicated (75 %, 90 % and 50 % from left
to right).

Search strategies

Both objectives, i.e. minimizing re-identification risks
while maximizing data quality, are conflicting. When
using data de-identification algorithms this contradic-
tion is typically resolved by letting a human decision
maker define a preference on one of the optimization
goals by specifying disclosure risk thresholds. An example
is a parameterization for the k-anonymity model. What
remains is a simpler optimization problem in which the
objective is to make sure that risk thresholds are met while
data quality is maximized. This is also called a priori dis-
closure risk control. With full-domain generalization this
is implemented by searching the set of all de-identification

policies, i.e. the generalization lattice, to find a solution
which meets the privacy requirements and which is of
high quality. As checking a de-identification policy for
resulting privacy risks and data quality is an expensive
operation, parts of the search space must be excluded
to maintain scalability. This is typically implemented by
using results obtained during the search process to pre-
dict properties of the output of de-identification policies
in terms of privacy (first objective) or data quality (sec-
ond objective). We can distinguish between three different
types of algorithms.

Type 1: Prediction using complete information.
These types of algorithms try to maximize the number
of policies which can be excluded by using all informa-
tion which has already been obtained during the search
process. For this purpose, they maintain an in-memory
graph structure which represents the generalization lat-
tice. When a property can be predicted to other poli-
cies based on information obtained about the currently
evaluated policy, the graph is traversed and the prop-
erty is assigned to the according policies (this process is
called predictive tagging). Typical examples are globally-
optimal algorithms, such as Optimal Lattice Anonymiza-
tion (OLA) [6] and Flash [13].

Type 2: Prediction using partial information. Algo-
rithms from this category use prediction to exclude parts
of the search space. However, the knowledge about prop-
erties of policies which have not yet been processed is
only maintained temporarily. For example, properties of
an evaluated policy are used while processing a related
subset of the solution space. No explicit representation of
the generalization lattice is required. Typically, such algo-
rithms do not classify the complete search space and they
cannot guarantee to find an optimal solution. The Lattice-
Based Search (LBS) algorithm proposed in [14] is a good
example.

Type 3: No prediction. Algorithms of this type are
usually heuristics which have been proposed for process-
ing high-dimensional or high-volume data. Examples are
DataFly [15] and IGreedy [16]. They do not maintain a
representation of the solution space. Large parts of this
space are excluded from the search process. However,

Prasser et al. BMC Medical Informatics and Decision Making (2016) 16:49

exclusion is not based on prediction and they cannot make
any guarantees about the quality of the solution returned.

Objective

In recent years, we have put extensive efforts into devel-
oping ARX, an open source de-identification tool for
biomedical data [17]. As a search strategy, we have imple-
mented an algorithm which uses prediction based on
complete information [13], because with such methods
it is possible to provide users with guarantees about the
quality of output data. ARX is built around a highly scal-
able runtime environment which can handle very large
datasets [8]. However, when using the tool in real-world
setups, for example with longitudinal data from research
registries [18], we quickly ran into scalability issues. Typ-
ically, the number of attributes in biomedical datasets
which need to be protected is rather high. For example,
the HIPAA Privacy Rule lists 18 different such attributes.
Scalability becomes a problem because the size of general-
ization lattices is exponential in the number of attributes
which need to be generalized (see Section “Results”). In
addition to impractical memory requirements, the worst-
case time complexity of predictively applying a property
to de-identification policies is also proportional to the
size of the lattice. Therefore this process often induced
a significant overhead, even for data with only a few
attributes.

The aim of the work presented in this article, was to
push lattice-based data de-identification algorithms to
their limits. The basic idea is to employ a highly opti-
mized representation of the solution space. Our approach
combines the mathematical concept of antichains with
a data structure inspired by prefix trees to represent
properties of a large number of de-identification policies
while requiring only a minimal amount of information
to be stored. To analyze the improvements which can
be achieved by adopting our method, we have integrated
it into ARX, where it serves as the basis of an existing
algorithm of type 1. We have also implemented a simple
search algorithm, which combines the ability to handle
large search spaces typically provided by algorithms of
type 2 and type 3 with the pruning capabilities of type
1 algorithms. This is a first step towards methods which
fully exploit our approach.

Methods

Preliminaries and formalism

We denote the attributes A of the dataset that is to be
de-identified as an m-tuple (aj,ay,...,a,;), where m is
the number of attributes. We denote the generalization
lattice with G and call every x € G a de-identification
policy or transformation. Matching the m-tuple speci-
fying the dataset’s attributes, each policy x € G is an
m-tuple of numbers (x1,%9,...,%,), where each number

Page 4 of 14

x; represents a specific generalization level for the
attribute a;, 1 < i < m. We denote the height of the
hierarchy for an attribute a; with %;, which means that it
consists of the generalization levels 0 to /1; — 1. Any policy
(x1,%9,...,%y) € G specifies generalization levels that are
within these limits, i.e.,,0 <x; < i; forall1 <i < m.

Together with the relation x < y for x,y € G the solu-
tion space G forms a partially ordered set (or poset). The
relation x < y is defined so that for x = (xy,%,...,%)
and y = (y1,%2,..,Ym), ¥ < y if and only if x; < y;
for all 1 < i < m. This means that x only defines gen-
eralization levels that are less than or equal to the levels
defined by y. This poset is a bounded lattice in which
top = (hp — L,hy — 1,...,hy — 1) is the greatest ele-
ment and bottom = (0,0, .. .,0) is the least element [19]. If
x < y we call x a specialization of y and y a generalization
of x. The rank of an element x is the sum of its compo-
nents, i.e. rank(x) = Y ;_;,, %> and the structure thus
forms a ranked poset [19]. In the example from Fig. 2 the
search space is illustrated with a Hasse diagram, which is
a directed graph where each node represents a single pol-
icy that is connected to all of its direct specializations and
generalizations [19]. Each level of the graph contains a set
of policies with equal rank.

While a policy x € G defines a vector of generaliza-
tion levels, this information can also be used to repre-
sent transformation models that go beyond full-domain
generalization. In this work, we focus on full-domain
generalization followed by record suppression where a
transformation x is applied to the dataset in the following
manner:

e Step 1: Generalize the dataset according to the
generalization levels defined by x.

e Step 2: Suppress all entries in all equivalence classes
that do not fulfill the given privacy model.

e Step 3: If the number of suppressed entries is within
the given limit, the policy is a solution candidate.

As a consequence, a policy x uniquely identifies a spe-
cific combination of generalization and suppression that
is applied to the input dataset.

Predictive properties

The basic idea of predictive properties is that some prop-
erties of the output of data transformations in terms of
privacy and quality can be predicted from the results
obtained for other transformations. We will distinguish
between two types of predictive properties: 1) a property
P14 of the output of a transformation x € G is inherited to
the outputs of all generalizations of x. More specifically,
this means that if the output of applying the transforma-
tion x results in a dataset with property P4, the outputs of
all transformations y € G with x < y will also have prop-
erty Pt. Analogously, 2) a property P, of the output of a

Prasser et al. BMC Medical Informatics and Decision Making (2016) 16:49

transformation x € G is inherited to the outputs of all spe-
cializations of x. This means that if the output of applying
the transformation x results in a dataset with property P,
the outputs of all transformations y € G with y < x will
also have property P .

Predictive properties can be used to exclude parts of
the solution space from the search process. For exam-
ple, if it is determined that the output of a given policy x
does not fulfill the privacy model and it is known that this
property is predictive to specializations, all specializations
of x can not be a solution to the given de-identification
problem either. We note that this concept is not new. We
have already presented an overview of algorithms which
make use of them in Section “Search strategies” They
have also been investigated in the context of several pri-
vacy models, e.g. in [9, 20-22] and [23], as well as for
data quality models, e.g. in [12] and [24]. However, our
experiences with ARX showed that only very few predic-
tive properties are relevant in real-world setups and that
they have to be used carefully. The reason is that pre-
diction is tightly coupled to the generalization lattice but
additional methods of data transformation, in our case
record suppression, are also performed to improve output
quality [8].

Insufficient protection against re-identification

The distinguishability of records will always decrease
monotonically when the amount of generalization is
increased, even when additional record suppression is
performed [9, 20]. This means that the property of meet-
ing re-identification risk thresholds is predictive within
the solution spaces investigated in this article. The conse-
quence is that both the property of fulfilling k-anonymity
and the property of not fulfilling k-anonymity can be pre-
dicted, to generalizations and specializations, respectively.
We note however that in contrast to previous work, e.g.
globally-optimal type 1 algorithms such as OLA [6] and
Flash [13], the predictability of the property of fulfilling
k-anonymity cannot be used to exclude transformations
from the search process. The reason is that, within the
transformation model investigated in this article, data
quality is not monotonic, which will be explained in more
detail in the following section.

Insufficient data quality

The basic idea of this predictive property is to make use
of the fact that data quality decreases monotonically with
increasing degrees of generalization. In a generalization
lattice this means that if a policy x € G results in a
dataset with quality 4, all generalizations of x will result in
datasets with quality less than or equal to u [6, 8]. How-
ever, within the transformation model investigated in this
article, this is not the case. The reason is that increas-
ing the amount of generalization may reduce the required

Page 5 of 14

amount of suppression, which may lead to an increase in
data quality [8].

However, an upper bound for the quality of the out-
put of a policy x can be derived by realizing that data is
transformed in a two-step process. First, it is generalized
according to the levels specified by x, resulting in a dataset
with quality #’. Next some records may be suppressed,
resulting in a dataset with quality # < u'. Hence, ' is
an upper bound for u. The value of #’ solely depends on
the application of generalization and all common models
for data quality decrease monotonically with increasing
full-domain generalization [8].

By adopting a method originally proposed by Bayardo
et al. [24], the fact that these upper bounds are mono-
tonic can be used to construct a property that is predictive
to generalizations. During the search process, the upper
bounds of the qualities of all policies which are processed
are compared with the quality of the best output that is
currently known. If the value of the bound #' for a policy
x is already lower than the quality of the current opti-
mum, which is the result of applying generalization and
suppression, all generalizations of x can be excluded.

As an example, we consider the datasets from Fig. 2 and
assume that the dataset at the outer left side of the figure
is the result of the best de-identification policy discov-
ered so far. As we have illustrated previously, it has a data
quality of 75 %. When we evaluate the policy (0, 1) we real-
ize that when only using generalization it already results
in a dataset with a quality of only 50 %: one attribute
remains unchanged (age) while one attribute is completely
removed from the dataset (sex). As a consequence, the
policies (1,1) and (2,1) can be excluded from the search
process. They all specify that the attribute sex needs to
be completely generalized and they will thus result in
datasets with a quality of not more than 50 % as well.

Efficient management of predictive properties

Basic idea

The size of a generalization lattice grows exponentially
with the number of attributes which are to be general-
ized (see Section “Results”). To avoid the need to represent
it, we suggest to maintain information about predictive
properties only implicitly. We will describe our method
for a property P4 that is predictive to generalizations. The
concept analogously applies to properties that are inher-
ited to specializations. The basic idea is to keep a list
L(P1) of all transformations for which a given predic-
tive property P4 has been discovered. When determining
whether a transformation x € G is associated with the
property we compare it with all transformations in the
list and check whether any of the stored transformations
y € L(P?) is a specialization of x, i.e., y < x. If this is the
case, the transformation is associated with the property
as well.

Prasser et al. BMC Medical Informatics and Decision Making (2016) 16:49

Antichain invariant

Two elements x € G and y € G are comparable if x < y
or y < x. An antichain is a subset of the elements of any
X € G which are pairwise incomparable [19]. Any list of
transformations L(P1) for a property P1 specifies that this
property is associated to a certain subset of the transfor-
mations in the search space. It is easy to see, that it is not
necessary to have two transformations in the list which
are comparable, as one of these two transformations will
associate the property to the other transformation (and
thus also to its generalizations) anyway. To enforce this
invariant, we simply do not add a transformation to the list
L(P1) if it is already associated with P1. Moreover, when
an element x is added to the list we remove all of its gener-
alizations, i.e., all y € L(P1) with x < y. As a consequence,
our approach guarantees that any list of transformations
forms an antichain.

Implementation

Our implementation uses prefix trees to maintain an
antichain of a given set of elements. In contrast to scan-
ning a simple list and comparing a transformation with
all of its entries, this structure enables us to exclude ele-
ments from this search process. The root node of a tree
represents the predictive property, which is linked to a
set of nodes that define generalization levels for the first
attribute in the dataset a;. Their children represent gener-
alization levels for the second attribute a5 and so on. Each
path from the root node to a leaf node represents exactly
one transformation x € G. Our data structure supports
inserts and queries. Each node n has several attributes:

1. n.level: Represents a specific generalization level for
the attribute.

2. n.children: A set of child nodes, which define
generalization levels for the next attribute.

3. n.min: The minimum of the total generalization
levels (ranks) of all transformations defined by its
direct or indirect children.

Analogously to the previous section, we will use a prop-
erty that is predictive to generalizations to explain our
approach. All concepts apply to properties that are inher-
ited to specializations as well, by replacing the "<"” oper-
ator with ">", the "<" operator with ">" and "min” with
"max". We will first describe the querying process and
then explain how data is inserted.

Queries: When querying a tree for an element x =
(%1, . . . %) we perform a range query by following all chil-
dren c(n,x,i) = {m € n.children | m.level < xi41 N
m.min < rank(x)} of a node # at dimension i. This means
that, because we only need to consider specializations of
x, we follow all children that define generalization levels
that are less than or equal to the ones of the element x.
When we reach a leaf node, i.e. n.children = {}, we have

Page 6 of 14

found a predecessor of the element x and conclude that x
is associated with the property. Note that we follow only
nodes that represent transformations with a rank lower
than rank(x), as only such elements can be specializations
of x. As a consequence, we cannot find the element x itself.
However, in our context this is not a problem, because we
will never query for a transformation that we have inserted
into the structure. If this type of operation needs to be
supported, an additional exact query for x needs to be per-
formed if the range query did not return a positive result.
This can be implemented by traversing one path of nodes
m with m.level = x; at dimension i.

As an example, we associate a predictive property P4 to
the elements (1,1, 1), (1,3,0) and (3,2,0). The resulting
tree is shown in Fig. 3. We note that the three elements
form an antichain, i.e. they are pairwise incomparable.

When checking whether x = (1, 2,2) is associated with
property P4, we will first enumerate all children of the
root node. We can exclude the second child, because
n.min = 5 > rank(x) = 5. Next, we will enumerate all
children of the element for the first attribute. Here, we can
exclude the first child, because n.level = 3 > 2 = x,.
When further traversing the path, we reach a leaf node
and thus conclude that x is indeed associated with P4.

Inserts: The basic insert operation is not different from
insertions into prefix trees. However, for each node we
maintain z.min, which is the minimum of the total gener-
alization levels of all of its child nodes, and we make sure
that our invariant holds, i.e. that the tree does only contain
an antichain.

To enforce the invariant, as described previously, we
first need to make sure that we only insert elements that
are not already associated with the attribute. This can be
implemented by querying the tree for an element before
inserting it. However, in our context this is not neces-
sary, because being associated with a predictive property
means that a transformation is excluded from the search

n.min n.level

. . NS
E 5 a0]
TJ: 1 \2\
= <2\ e
& 3] 1 FH3[1] Yes!
&
o
= 5] 3 5[2 5[o0 |

Attribute 1 Attribute 2 Attribute 3

Fig. 3 Example prefix tree for a property P4. This figure displays an
example of the data structure proposed in our work. It shows a tree
after three elements have been inserted and it illustrates a querying
process for the element (1,2,2)

Prasser et al. BMC Medical Informatics and Decision Making (2016) 16:49

process and thus it will never be inserted. Secondly, after
inserting an element x we need to remove all elements y
with x < . This is implemented by performing a range
query for x using the ">" operator (instead of "<") before
inserting the element. When reaching a leaf node, we
remove it. While tracking back, we remove all inner nodes
that do not have any child nodes anymore. We note that
there is no need to update n.min for any node # that
remains, because any child element 7 of # that is removed
can only have m.min > n.min.

Effective pruning in large search spaces

Globally-optimal algorithms using complete information
about predictive properties (type 1) typically implement
in-memory materialization of the lattice. Their scalability
can be improved by using our method to represent infor-
mation about predictive properties only implicitly. How-
ever, they will still run into scalability issues when used
with very large search spaces, as they usually iterate over
all policies in the lattice [6, 13]. State-of-the-art heuris-
tic search algorithms do not have this problem. However,
they only use partial information (type 2) about predic-
tive properties [14] or no predictive properties (type 3)
at all [15, 16].

As is indicated in Fig. 4, this means that algorithms for
very large search spaces do not fully exploit the potential
to narrow down the search space with predictive prop-
erties. In the figure, we consider a de-identification algo-
rithm which traverses the solution space with a bottom-up
best-first search. When a policy resulting in insufficient
data quality is discovered (step 3), the algorithm can prune
all generalizations from the search process. However, in
subsequent steps (5 and 6) it may again reach the same
part of the search space in which all output data will have
insufficient quality. At this point, if the property is not
predicted, some policies must be evaluated again.

Page 7 of 14

To show that our approach enables us to use complete
information about predictive properties even in very large
search spaces, we have developed a very simple method,
closely resembling the algorithm from the example. The
basic idea is to perform a best-first branch and bound
(BFS) bottom-up search trough the lattice. When a pol-
icy is evaluated, all generalizations which have not already
been processed are evaluated and added to a priority
queue. In the queue, all elements are ordered by data
quality, from highest to lowest. At each step, the head is
removed from the queue and evaluated. Policies result-
ing in data with insufficient quality are excluded from
the search process. Complete information about all poli-
cies with this predictive property is managed using the
method proposed in this article. We note that this algo-
rithm combines characteristics of type 1 algorithms with
the ability to handle very large search spaces as provided
by algorithms of type 2 and 3.

Experimental setup
In this section, we describe the setup of the experimen-
tal evaluation of our approach, which is based on an open
source benchmarking environment [25]. We focused on
measures against re-identification, because it is widely
accepted that these are important in practice [26]. We
used the k-anonymity privacy model with k = 5, which
is a typical parameter in the biomedical domain [27]. We
used a suppression limit of 5 %, which is also common [6].
For measuring data quality, we used the model by Iyen-
gar [12]. All experiments were performed on a desktop
machine with a quad-core 3.1 GHz Intel Core i5 CPU and
8 GB of RAM running a 64-bit Linux 3.2.0 kernel and a
64-bit Oracle JVM (1.7.0).

We used six different real-world datasets, many of
which have already been utilized for evaluating pre-
vious work on data de-identification. Low-dimensional

= o
: g
g :
g 2

\

Bottom
Predictive property Predictive property
. Checked discovered O inherited

Fig. 4 Example search process in a large solution space. The figure shows a generalization lattice, parts of which have been associated with a
predictive property. It further describes a simple bottom-up search process, that leverages this information. Arrows and numbers denote the order
with which the search algorithm traverses the solution space

Prasser et al. BMC Medical Informatics and Decision Making (2016) 16:49

datasets included 1) an excerpt of 30,162 records
(9 attributes) from the 1994 US census database (Adult), 2)
a dataset with 63,441 records (8 attributes) from the 1998
KDD competition (Cup), 3) 100,937 records (8 attributes)
about fatal traffic accidents from the NHTSA Fatality
Analysis Reporting System (Fars), 4) 539,253 records
(9 attributes) from the American Time Use Survey (Atus),
and, 5) 1,193,504 records (9 attributes) from the Inte-
grated Health Interview Series (Ihis). The sizes of the
corresponding generalization lattices ranged from 12,960
policies for the Adult dataset to 45,000 policies for the
Cup dataset. For experiments with high-dimensional data,
we used 68,725 records from the American Commu-
nity Survey (SS13ACS) [28]. Each record consisted of 15
attributes which are typically associated with a high risk
of re-identification, such as demographics (e.g. age, mar-
ital status, sex), information about insurance coverage,
social parameters (e.g. education) and health parame-
ters (e.g. weight, health problems). With 15 attributes,
the search space consisted of more than 113 million
transformations.

Results

Complexity analysis

For a dataset in which m attributes are to be general-
ized with hierarchies of heights 4, ..., h,,, the solution
space consists of s = Hf’;l h; elements, which means
that the number of transformations is exponential (with
linear exponent) in the number of attributes (2°0™). As
a consequence, a large amount of memory is required
to represent the search space and constructing the data
structure in main memory and predictively applying prop-
erties to de-identification policies may induce a noticeable
computational overhead.

Compared to using an in-memory graph structure,
our implementation shifts the complexity of maintain-
ing information about predictive properties from being
dependent on the size of the search space s to being
dependent on the number of transformations for which a
property has been encountered. At any point during the
search process, this number cannot be larger than the
total number of transformations c that have been checked
so far. In a theoretical worst-case, ¢ may be equal to s,
because all transformations may have been checked and
found to have a predictive property. However, for large
search spaces c can only be a tiny fraction of s.

When the generalization lattice is explicitly material-
ized, assigning a predictive property to a transformation
(and its generalizations or specializations) is of worst-case
complexity O(s). The reason is that the property may be
inherited to all transformations in the space. On the other
hand, determining whether a given transformation is asso-
ciated with a predictive property is an O(1) operation, as
it is simply a lookup into the structure.

Page 8 of 14

Next, we analyze the complexity of maintaining a list of
all transformations that have a certain property. Here, the
worst-case complexity of storing a predictive property is
O(1), as the transformation is simply added to the list. At
a specific point during the search process, the worst-case
complexity of checking whether a given transformation is
associated with a property is O(c). We have thus replaced
a data structure optimized for read-access with a data
structure optimized for write-access. Moreover, we have
reduced the worst-case complexity of the most complex
operation of the structure from an impractical O(s) to
O(o).

Finally, we consider the invariant enforced on the struc-
ture. Making sure that the list of transformations always
contains an antichain, requires an additional scan of the
list on every insert operation. As a consequence, the
worst-case complexity of inserting an element increases
from O(1) to O(c). While the general idea of the invari-
ant is to reduce the complexity of the querying operation
(as it reduces the number of elements stored in the struc-
ture), it is ineffective in the worst case, which is given
if all elements that have been inserted already form an
antichain.

The implementation proposed in this article does not
use a list but a prefix tree. Moreover, the tree is further
optimized by maintaining information about the stored
elements’ ranks. As a consequence, potentially large parts
of the elements stored in the structure can be ignored dur-
ing inserts or queries. However, in terms of worst-case
complexity this approach does not provide any benefits, as
the tree may degenerate to a list.

Experimental analysis

Evaluation of implementation options

In this section, we compare different options for imple-
menting our approach to clearly show that each design
decision presented previously improves performance in
real-world settings. Table 1 shows a comparison of exe-
cution times obtained by de-identifying the different
datasets with the globally-optimal Flash algorithm [13].
The reported performance numbers only include the time
required to manage information about predictive proper-
ties (inserts and queries). Option 1 is a simple list, option
2 is a list that implements the invariant, option 3 is the
described tree structure, but without the optimization of
storing minimal generalization levels, and, option 4 is the
method described in this article.

It can be seen that each more sophisticated imple-
mentation significantly reduced the time required for
maintaining information about the solution space. The
largest improvement was achieved by replacing the list
with a prefix tree. In total, execution times were reduced
by up to more than one order of magnitude (SS13ACS
dataset).

Prasser et al. BMC Medical Informatics and Decision Making (2016) 16:49

Page 9 of 14

Table 1 Comparison of different implementations and optimizations. The table shows actual times spent with updating and querying
the generalization lattice with different implementations as well as improvements in performance compared to closest less

sophisticated implementation option

Option 1 Option 2 Option 3 Option 4

Dataset Simple list List with antichain Prefix tree with antichain Optimized tree with antichain
Adult 0.247s 0.230s (6.88 %) 0.061s (73.48 %) 0.055s (9.84 %)

Cup 0.658s 0.5255 (20.21 %) 0.2325 (55.81 %) 0.218s (6.03 %)

Fars 0.364s 0.240s (34.07 %) 0.074s (69.17 %) 0.071s (4.05 %)

Atus 0.300s 55 (38.33 %) 0.095s (48.65 %) 0.081s (14.74 %)

IHIS 0.437s 0.2515 (42.56 %) .124s (50.60 %) 0.093s (25.00 %)

SS13ACS 21.730s 15.0325 (30.82 %) 1.861s (87.62 %) 1.797s (3.44 %)

The SACS13 dataset contained 10 attributes.

Evaluation with a globally-optimal algorithm

In this section, we analyze how globally-optimal algo-
rithms which use complete information about predictive
properties can benefit from adopting our approach. In the
experiments we compared our existing implementation
of the Flash algorithm, which uses an explicit in-memory
graph structure representing the generalization lattice,
with a revised implementation which uses the implicit
approach proposed in this article.

Using the five low-dimensional datasets, the implicit
implementation consistently outperformed the explicit
implementation. We measures speed-ups between 5 %
and 23 % combined with a reduction of memory required
to represent the search space between 7 % and 50 %.
The improvement in memory consumption roughly cor-
responded with the improvement in execution times.

Table 2 summarizes statistics collected about predictive
properties during the execution of the experiments. It can
be seen that, in each experiment, less than 10 % of the poli-
cies in the solution space needed to be evaluated by the
algorithm to find the optimal solution. This was achieved
by utilizing the two predictive properties described in
Section “Predictive properties” As can be seen, most out-
put datasets were found to have insufficient quality. For
this property the hit rate, which is the relative number of
policies for which a query to the prefix tree returned a
positive result, was also relatively high. In contrast, only
few policies provided insufficient protection against re-
identification. Here, the sizes of the antichains were also
significantly higher than for the other property.

We used the high-dimensional datasets to further ana-
lyze effects on memory consumption. Figure 5 shows the
memory required when using the explicit and the implicit
representation of the generalization lattice. As can be
seen, the memory consumption of the explicit implemen-
tation correlated with the number of de-identification
policies in the search space. In contrast, the implicit repre-
sentation consumed significantly less memory, by almost
one order of magnitude (e.g. ~100 MiB instead of ~1 GiB

with 12 attributes). When using the explicit implementa-
tion, the Flash algorithm was not able to process datasets
with more than 12 attributes, as it ran out of memory.

Evaluation of the BFS algorithm

In this section, we analyze the performance of our sim-
ple best-first branch and bound bottom-up search algo-
rithm presented in Section “Effective pruning in large
search spaces” We start by evaluating its suitability as a
globally-optimal algorithm.

Figure 6 shows a comparison of BFS with the two vari-
ants described of Flash when processing the SS13ACS
dataset with increasing dimensionality. It can be seen
that the performance of all three approaches was roughly
equivalent. However, with an explicit representation of the
solution space, Flash was not able to handle more than
12 attributes. With an implicit implementation the Flash
algorithm was able to handle up to 14 attributes. The BFS
algorithm could handle up to 15 attributes for which it
returned an optimal solution after about 6850 seconds.

To show that the BFS method benefits from its use
of predictive properties, we performed the same exper-
iments without using prediction. The results are shown
in Table 3. As can be seen, using predictive properties
improved the execution times of the BFS strategy in
every experiment. The strength of the effect varied, as
using different attributes also resulted in very differ-
ent search problems. In general, the complexity of a
de-identification problem increases when increasing the
number of attributes. This effect is also reflected by our
results. The performance improvements varied between
3 % and almost 20 %. We note that larger improvements
have been achieved for data of higher dimensionality,
where execution times are generally longer and perfor-
mance optimization is thus more important.

Table 4 summarizes statistics collected about predictive
properties during the execution of the BFS algorithm. It
can be seen that the percentage of policies from the solu-
tion space which were evaluated by the method decreased

Prasser et al. BMC Medical Informatics and Decision Making (2016) 16:49

Page 10 of 14

Table 2 Statistics about predictive properties obtained for low-dimensional datasets

Data Trans. Checked Property Inserts Hits Antichain
Insufficient quality t 1,062 74.69 % 73.54 %
Adult 12,960 1,180 (9.10 %)
Insufficient protection A 887 1537 % 93.01 %
Insufficient quality 1 1,435 80.93 % 7631 %
Cup 45,000 1,524 (3.39 %)
Insufficient protection J 1,172 24.75 % 96.84 %
Insufficient quality 4 1,161 7544 % 61.84 %
Fars 20,736 1,342 (647 %)
Insufficient protection N 752 10.81 % 88.43 %
Insufficient quality 4 903 82.53% 59.25%
Atus 34,992 1,022 (2.92 %)
Insufficient protection 4 561 523 % 9537 %
) Insufficient quality 1 1,341 73.58 % 42.80 %
lhis 25,920 1,574 (6.07 %)
Insufficient protection A 679 791 % 90.28 %

We report the size of the solution space, the percentage of transformations checked as well as the number of inserts, the number of hits and the maximal size of the
antichain for each predictive property. The size of the antichain is expressed relatively to the number of inserts

when the number of attributes was increased. Although
the algorithm made use of only one predictive prop-
erty, its pruning strategy was highly effective. The hit
rate increased and the size of the antichain decreased
with increasing dimensionality. The numbers show that
our approach works well, even for high-dimensional data.
With 15 attributes, our simple BFS search strategy was
able to determine the optimal solution out of 113 million
transformations.

We emphasize that all algorithms studied in the pre-
vious paragraphs and sections are globally-optimal algo-
rithms of type 1, and that all of them returned the same
results. The results of the BFS algorithm demonstrate that
our approach allows implementing methods which are
able to exclude parts of very large search spaces using pre-
dictive properties and complete information. This means
that the BFS method combines properties of type 2 and
type 3 algorithms with properties of type 1 algorithms.

In the remainder of this section, we will analyze the suit-
ability of the BFS method as a heuristic search strategy.
Figure 7a shows the time required by the method to dis-
cover the global optimum relative to its total execution

1000 5 =
= 900 | Explicit implementation —#&— 45 =
s 800 - Implicit implementation —— a
= Number of transformations —»— // S
§ 700 // 35 &
2 600 £
£ Y/ S
500 / 25 %
g 400 2 g
3 S
> 300 15 %
g 200 1 _;é
3
s 100 05 §

0 — 1, =
3 4 5 6 7 8 9 10 11 12
Number of attributes from the SS13ACS dataset
Fig. 5 Memory consumption when de-identifying high-dimensional
data. The figure shows the memory consumed by an explicit and by
an implicit representation of the solution space when de-identifying
the SSACS13 dataset

time for all six datasets. It can be seen that, as a general
trend, the fraction of time required to find the optimum
dropped significantly when the number of attributes in
the datasets was increased. For example, the optimal solu-
tion for the SS13ACS dataset with 15 attributes was found
within the first 500 ms, which is only about 0.007 %
of the time required to search the complete solution
space (almost two hours, see above). In all cases, the BFS
method found the optimal transformation in less than 25
seconds. This is also reflected by the development of the
quality of the solution over time, which is shown in Fig. 7b.
Here, each dataset contained all available attributes.
Table 5 shows a comparison of the BFS method with the
Improved Greedy Heuristic (IGreedy), which is a state-
of-the-art heuristic de-identification algorithm [16]. We
converted BFS into a heuristic by simply terminating it
after the amount of time required by IGreedy. The table
shows the improvement in data quality provided by our
method. Analogously to the experiments shown in Fig. 7,
we have performed 45 experiments using all datasets and

Flash kexpficit) Q. S SUUENN SR SO O
Flash (implicit) —¢— i
BFS (implicit) —v— iy

Execution time [s]

Number of attributes from the SSI3ACS dataset

Fig. 6 Execution times when de-identifying high-dimensional data.
The figure shows the performance achieved with the Flash algorithm
using an explicit and an implicit representation of the solution space.
Moreover, it shows numbers obtained with the BFS algorithm using
an implicit representation of the solution space

Prasser et al. BMC Medical Informatics and Decision Making (2016) 16:49

Page 11 of 14

Table 3 Impact of predictive properties on execution times when de-identifying high-dimensional data. The figure shows the
performance achieved with the BFS algorithm when using or not using predictive properties

Attributes 4 5 6 7 8 9
Without prediction [s] 0.021 0.035 0.071 0.229 0.545 447
With prediction [s] 0.019 0.033 0.067 0.223 0.533 4.3
Improvement 9.52 % 571 % 563 % 262 % 2.20% 7.68 %

Attributes 10 1 12 13 14 15
Without prediction [s] 24.02 70.19 215.55 1032.19 2811.32 8259.83
With prediction [s] 21.69 61.24 185.51 85841 224837 6843.33
Improvement 9.72 % 12.75 % 13.93 % 16.83 % 20.02 % 17.15%

varying subsets of their attributes. In 9 experiments, BFS
and IGreedy returned the same result. In 34 experiments,
our approach returned a result with improved quality,
between 1.36 % and 4.58 % on average, and by more than
12 % in one experiment. In 2 experiments (Cup dataset
with 8 and 9 attributes), our approach did not find a
solution within the time required by IGreedy. This result
corresponds with the rather long time required to find the
optimum for Cup in Fig. 7. However, in both cases execut-
ing our method for only 14 seconds would have returned
an output dataset with higher quality than the result of
IGreedy.

Discussion

Principal results

In this article, we have presented an efficient method
for representing predictive properties of a large number
of de-identification policies while requiring only a min-
imal amount of information to be stored. We have also
developed a simple best-first branch and bound search

algorithm which is a first step towards methods which
fully exploit our approach by using complete information
about predictive properties in very large search spaces.

When integrated into an existing de-identification algo-
rithm, our approach reduced memory requirements by
up to one order of magnitude and execution times by up
to 25 %. This allowed us to increase the size of solution
spaces which could be processed by almost a factor of 10.
When using the BFS method as a globally-optimal algo-
rithm, we were able to further increase the size of the
solution space by a factor of three. When using BES as a
heuristic strategy, it outperformed a state-of-the-art algo-
rithm by up to 12 % in terms of the quality of output
data.

We emphasize that full-domain generalization is an
important transformation model for de-identifying
biomedical data, because it is truthful (i.e. non-
pertubative) [29], produces datasets that are suited for
being analyzed by epidemiologists [6] and it is inter-
pretable and easy to understand by non-experts [11]. The

Table 4 Statistics about predictive properties obtained for the high-dimensional datasets

Attributes Transformations Checked Inserts Hits Antichain
3 96 12 (12.50 %) 4 1739 % 75.00 %
4 480 50 (1042 %) 18 20.87 % 55.56 %
5 1,440 89 (6.18 %) 34 22.84 % 4412 %
6 4,320 177 (4.10 %) 61 2513 % 36.07 %
7 12,960 449 (3.46 %) 157 28.06 % 31.85%
8 38,880 820 (2.11 %) 284 29.99 % 24.65 %
9 116,640 3,872 (3.32 %) 1,187 34.26 % 2216 %
10 466,560 15,858 (3.40 %) 4,486 36.80 % 22.78 %
1 1,399,680 32,507 (2.32 %) 10,119 37.70 % 2043 %
12 4,199,040 76,679 (1.83 %) 25211 38.36 % 18.84 %
13 12,597,120 265,762 (2.11 %) 85,303 38.74 % 19.59 %
14 37,791,360 626,383 (1.66 %) 199,747 39.15% 20.75 %
15 113,374,080 1,634,751 (1.44 %) 514,863 3931 % 20.17 %

We report the size of the solution space, the percentage of transformations checked as well as the number of inserts, the number of hits and the maximal size of the
antichain for the predictive property insufficient quality. The size of the antichain is expressed relatively to the number of inserts

Prasser et al. BMC Medical Informatics and Decision Making (2016) 16:49

" SS13ACS - Adult Cup -+ Fars - Atus This

100

Iy

S T 100 -
25 o 75

= 500N Z 50

2 25 N z 2

g 0 p—— & o4 .

X 345678 9101112131415 0 2 4 10 12 14 16 18 20

Number of attributes Relative execution time [%)]

(a) Relative time to optimum (b) Development of utility (all attributes)

Fig. 7 Converting the BFS algorithm to a heuristic de-identification
method. Subfigure a shows that the relative time required to find the
optimal transformation decreases significantly when the number of
attributes is increased. Subfigure b shows that the quality of the
solution increases very fast during the search process. Both properties
of the BFS algorithm indicate that it delivers good results quickly,
which makes it well suited as a heuristic strategy that terminates after
a user-defined amount of time

scalability issues investigated in this article are of high
practical relevance as the number of attributes in biomed-
ical datasets which need to be protected is often high. All
methods described in this article have been implemented
into the open-source de-identification tool ARX [17].

Comparison with prior work

In the previous sections, we have already put our approach
into context with prior work on algorithms using
full-domain generalization. In this section, we will com-
pare the methods used in this article to other relevant
work on models for measuring data quality and privacy,
transformation methods and de-identification algorithms.

Our method for predicting that the output of
de-identification policies only provides insufficient data
quality requires monotonic lower bounds to be available
for the data quality model. We emphasize that we have
found such lower bounds for all common quality models,
including KL-Divergence [30] and Non-Uniform Entropy
[6], which have also been recommended for de-identifying
health data [5, 11]. In the ARX tool, we have implemented
this predictive property for eight different quality models,
including all methods mentioned in this article [17].

Our method for predicting that the output of
de-identification policies only provides insufficient
privacy protection requires that risks decrease monotoni-
cally with increasing generalization. We note that this is
the case for all metrics for re-identification risks which
are typically used in practice [31]. In this work, we have
used the k-anonymity model as a well-known example. In

Page 12 of 14

addition to privacy models focusing on re-identification,
similar predictive properties can be found for other mod-
els as well. For example, £-diversity implies £-anonymity
[30, 32] and the property can therefore also be used to
optimize protection methods against attribute disclosure.
In ARX, privacy requirements can be defined as arbitrary
combinations of different privacy models, and any pre-
dictive property provided by at least one of the models
will be exploited by the tool [17].

In this work we have focused on data de-identification
with full-domain generalization. Other works have inves-
tigated algorithms using different transformation models.
For example, Fung et al. [33] and Xia et al. [5] have devel-
oped approaches using subtree generalization, which is
more flexible than full-domain generalization. However,
the results are complicated to analyze [34]. Analogously
to the approach presented in this article, Fung et al. focus
on finding a single solution which maximizes data qual-
ity [33]. In contrast, Xia et al. aim to efficiently construct
a risk-utility frontier [5], which is a set of policies that
offer a good balance between privacy and data quality.
We note that risk-utility frontiers are not related to the
antichains used in this article. However, our approach can
be used as a building block for balancing risks and qual-
ity, for example by repeatedly executing the algorithm
with different risk thresholds to construct a risk-utility
frontier [35]. Several algorithms have also been devel-
oped which transform data with microaggregation, where
the values within an equivalence class are transformed
using aggregate functions, such as the arithmetic mean.
Examples include the approach by Domingo-Ferrer and
Torra [36] and the approach by Soria et al. [34]. Microag-
gregation is not truthful, however. An additional line of
research involves methods using local recoding with gen-
eralization, for example, the approach by Goldberger and
Tassa for k-anonymity and ¢-diversity [37]. With these
methods, quality can be improved but results are also
complicated to analyze [34]. The ARX tool supports full-
domain generalization, record suppression, local recoding
and microaggregation [17].

Limitations

Our experiments showed that our method performs far
better in real-world settings than the worst-case com-
plexities from Section “Complexity analysis” suggest.
However, analyzing average-case or amortized worst-case

Table 5 Improvement in quality provided by data returned from the BFS algorithm compared to results of the IGreedy method. The BFS
algorithm has been terminated after the time required by IGreedy. In two experiments with Cup, the BFS method did not return a result

Adult Cup Fars Atus Ihis SS13ACS
Minimal improvement 0.00 % 0.04 % 0.00 % 0.79 % 0.00 % 0.00 %
Maximal improvement 769 % 2.38% 6.70 % 546 % 12.44 % 6.04 %
Average improvement 192 % 142 % 1.36 % 1.99 % 4.58 % 1.74 %

Prasser et al. BMC Medical Informatics and Decision Making (2016) 16:49

complexities of our method is difficult. The main reason
is that the mathematical foundations of generalization lat-
tices are not well understood. The closest structure that
we could find in the literature is the so called chain prod-
uct poset studied by Carroll et al. [38]. It is a special case of
the structure considered here, withy = hy = ... = h,, =
h. Let a be the maximal size of an antichain of the chain
product poset constructed from a generalization lattice G
by choosing i = max(hi1, ha, ... hy). It follows that a is
an upper bound for the maximal number of elements that
may be contained in our data structure. In any chain prod-
uct poset the middle level, which contains all elements
with rank LL;D -m], is an antichain of maximal cardinal-
ity [38]. The paper cites an article by Mattner et al. which
shows that the size of the middle level, which equals 4, is

wn /m (14 0(1)) [39]. This is no improvement over

O(c). Also, the average size of an antichain in such lattices
is unknown. The most well studied lattice is the Boolean
lattice, which is given by 1 = 2. Even for this simple struc-
ture, the total number of antichains can only be estimated
to date [38].

Also, from an implementation perspective, we could not
find better bounds on the complexity of operations on
prefix trees. There are some works on the average-case
complexity of querying prefix trees, e.g. [40, 41], but their
results are not applicable to our context, most impor-
tantly because we perform range queries and not look-
ups. Although specialized prefix trees for range queries
have been studied in the literature as well, e.g. [42, 43],
results on their complexities are also not applicable to
our work. The reason is that these data structures have
been designed for managing totally ordered sets while the
focus of our work lies on elements that are only partially
ordered.

While the work presented in this article improves
the scalability of de-identification algorithms for high-
dimensional data, the method is not well suited for de-
identifying data with a very high number of attributes (e.g.
more than 50). The reason is that complex inter-attribute
relationships will often result in unacceptable reduction of
data quality [44]. One solution to this problem is to treat
the data as transactional, i.e. set-valued, which is a way
to remove inter-attribute relationships. Specific privacy
models have been proposed for such data, for exam-
ple kK”-anonymity [45] and (k, kK™)-anonymity [46]. In
future work, we plan to integrate these methods into ARX
as well.

Conclusions

The work described in this article shows that implement-
ing methods of data de-identification for real-world appli-
cations is a challenging task. We investigated a problem
often faced by data custodians: a lack of scalability of

Page 13 of 14

de-identification software when used with datasets hav-
ing realistic schemas and volumes. We have proposed
a solution with which the scalability of existing imple-
mentations and algorithms can be improved and which
enables the development of novel heuristic algorithms
with improved pruning capabilities.

Availability of data and materials

All datasets, generalization hierarchies and implemen-
tations of algorithms used in our evaluation are avail-
able online (https://github.com/arx-deidentifier/pruning-
benchmark). All methods have also been implemented
into the open source data anonymization tool ARX
(http://arx.deidentifier.org). Moreover, the data structure
for efficiently managing information about predictive
properties is available as a separate open source software
library (https://github.com/prasser/jhpl).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

FP designed and implemented the storage structure. FP, FK and KK wrote the
manuscript. FP and FK performed the experimental evaluation. All authors
discussed the methods and results at all stages. All authors have read and
approved the final manuscript.

Acknowledgements
This work was supported by the Technical University of Munich (TUM) within
the funding programme Open Access Publishing.

Received: 17 October 2015 Accepted: 21 April 2016
Published online: 30 April 2016

References

1. Malin B, Karp D, Scheuermann RH. Technical and policy approaches to
balancing patient privacy and data sharing in clinical and translational
research. J Investig Med. 2010;58(1):11-8.

2. Health Insurance Portability and Accountability Act of 1996, Public Law
No. 104-191, 110 Stat. 1936, codified in Titles 29, 42, 18, and 26 of the U.S.
Code, short title at 42 U.S.C. §201. https://www.gpo.gov/fdsys/pkg/
PLAW-104publ191/pdf/PLAW-104publ191.pdf.

3. Directive 95/46/EC of the European Parliament and of the Council of 24
October 1995 on the protection of individuals with regard to the
processing of personal data and on the free movement of such data.
Official Journal L 281, 23/11/1995 P. 0031 - 0050.

4. US. Department of Health and Human Services. Office for Civil Rights.
HIPAA Administrative Simplification Regulation Text. 45 C.F.R. Parts 160,
162, and 164 (2013). www.hhs.gov/sites/default/files/hipaa-
simplification-201303.pdf.

5. XiaW, Heatherly R, Ding X, LiJ, Malin BA. R-u policy frontiers for health
data de-identification. J Am Med Inform Assoc. 2015;22(5):1029-41.

6. Emam KE, Dankar FK, Issa R, Jonker E, Amyot D, Cogo E, et al. A globally
optimal k-anonymity method for the de-identification of health data. J
Am Med Inform Assoc. 2009;16(5):670-82.

7. Prasser F, Kohlmayer F, Kuhn KA. A benchmark of globally-optimal
anonymization methods for biomedical data. In: Proc Int Symp Comp
Med Sys; 2014. p.66-71.

8. Kohlmayer F, Prasser F, Kuhn K. The cost of quality: Implementing
generalization and suppression for anonymizing biomedical data with
minimal loss of information. J Biomed Inform (Epub ahead of print). 2015.
doi:10.1016/}.jbi.2015.09.007.

9. Samarati P, Sweeney L. Generalizing data to provide anonymity when
disclosing information. In: Proc Symp Principles Database Sys. New York:
ACM; 1998. p. 188.

https://github.com/arx-deidentifier/pruning-benchmark
https://github.com/arx-deidentifier/pruning-benchmark
http://arx.deidentifier.org
https://github.com/prasser/jhpl
https://www.gpo.gov/fdsys/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf
https://www.gpo.gov/fdsys/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf
www.hhs.gov/sites/default/files/hipaa-simplification-201303.pdf
www.hhs.gov/sites/default/files/hipaa-simplification-201303.pdf
http://dx.doi.org/10.1016/j.jbi.2015.09.007

Prasser et al. BMC Medical Informatics and Decision Making (2016) 16:49

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

Samarati P. Protecting respondents’ identities in microdata release. Trans
Knowl Data Eng. 2001;13(6):1010-27.

ElEmam K, Arbuckle L. Anonymizing health data: Case studies and
methods to get you started, 1st edn. Sebastopol: O'Reilly and Associates;
2014, pp. 1-225.

lyengar V. Transforming data to satisfy privacy constraints. In: Proc Int
Conf Knowl Disc Data Mining. Edmonton, Alberta, Canada: ACM; 2002. p.
279-88.

Kohlmayer F, Prasser F, Eckert C, Kemper A, Kuhn KA. Flash: Efficient,
stable and optimal k-anonymity. In: Proc Int Conf Priv Secur Risk Trust.
Amsterdam, The Netherlands: IEEE; 2012. p. 708-17.

Wan Z, Vorobeychik Y, Xia W, Clayton EW, Kantarcioglu M, Ganta R,
Heatherly R, Malin BA. A game theoretic framework for analyzing
re-identification risk. PloS one. 2015;10(3):0120592.

Sweeney L. Datafly: A system for providing anonymity in medical data. In:
Proc Int Conf Database Secur. London, United Kingdom: Chapman & Hall;
1997. p.356-81.

Babu K, Reddy N, Kumar N, Elliot M, Jena S. Achieving k-anonymity
using improved greedy heuristics for very large relational databases.
Trans Data Priv. 2013;6(1):1-17.

Prasser F, Kohlmayer F. Putting statistical disclosure control into practice:
The ARX data anonymization tool In: Gkoulalas-Divanis A, Loukides G,
editors. Medical Data Privacy Handbook. Switzerland: Springer
International Publishing; 2015.

Lautenschldger R, Kohlmayer F, Prasser F, Kuhn KA. A generic solution
for web-based management of pseudonymized data. BMC Med Inform
Decis Mak. 2015;15(1):1.

Davey B, Priestley H. Introduction to lattices and order, 2nd edn.
Cambridge: Cambridge University Press; 2002, pp. 1-298.

Sweeney L. Computational disclosure control — a primer on data privacy
protection. 2001. Ph.D. dissertation, Massachusetts Institute of
Technology, Cambridge.

LeFevre K, DeWitt DJ, Ramakrishnan R. Incognito: Efficient full-domain
k-anonymity. In: Proc Int Conf Manag Data. Chicago, USA: ACM; 2005. p.
49-60.

LiN, LiT, Venkatasubramanian S. t-Closeness: Privacy beyond
k-anonymity and €-diversity. In: Proc Int Conf Data Eng. Istanbul, Turkey:
|EEE; 2007. p. 106-15.

Nergiz M, Atzori M, Clifton C. Hiding the presence of individuals from
shared databases. In: Proc Int Conf Manag Data. Beijing, China: ACM; 2007.
p. 665-76.

Bayardo RJ, Agrawal R. Data privacy through optimal k-anonymization. In:
Proc Int Conf Data Eng. Tokyo, Japan: IEEE; 2005. p.217-28.

Prasser F, Kohlmayer F, Lautenschlaeger R, Eckert C, Kuhn KA. Arx - a
comprehensive tool for anonymizing biomedical data. In: AMIA Annu
Symp Proc. Washington (DC), USA: AMIA; 2014. p. 984-93.

El Emam K, Alvarez C. A critical appraisal of the article 29 working party
opinion 05/2014 on data anonymization techniques. Int Data Priv Law.
2015;5:73-87.

El Emam K, Dankar FK. Protecting privacy using k-anonymity. J Am Med
Inform Assoc. 2008;15(5):627-37.

American Community Survey Main - U.S. Census Bureau. http://www.
census.gov/acs/www/. Accessed 01 Oct 2015.

Dankar FK, Emam KE. Practicing differential privacy in health care: A
review. Trans Data Priv. 2013;6(1):35-67.

Machanavajjhala A, Kifer D, Gehrke J, Venkitasubramaniam M.
£-Diversity: Privacy beyond k-anonymity. Trans Know! Discov Data.
2007;1(1). Article 3 (March 2007), 52 pages.

El Emam K. Guide to the de-identification of personal health information,
1st edn. Boca Raton: CRC Press; 2013.

Fung B, Wang K, Fu A, Yu P.Introduction to privacy-preserving data
publishing: Concepts and techniques. Boca Raton: CRC Press; 2010, p. 376.
Fung BCM, Wang K, Yu PS. Top-down specialization for information and
privacy preservation. In: Proc Int Conf Data Eng. Tokyo, Japan: IEEE; 2005.
p. 205-16.

Soria-Comas J, Domingo-Ferrer J, Sanchez D, Martinez S. t-closeness
through microaggregation: Strict privacy with enhanced utility
preservation. Trans Knowl Data Eng. 2015;27(11):3098-110.

Cox LH, Karr AF, Kinney SK. Risk-utility paradigms for statistical disclosure
limitation: How to think, but not how to act. Int Stat Rev. 2011;79(2):
160-83.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Page 14 of 14

Domingo-Ferrer J, Torra V. Ordinal, continuous and heterogeneous
k-anonymity through microaggregation. Data Min Knowl Disc. 2005;11(2):
195-212.

Goldberger J, Tassa T. Efficient anonymizations with enhanced utility.
Trans Data Priv. 2010;3(2):149-75.

Carroll T, Cooper J, Tetali P. Counting antichains and linear extensions in
generalizations of the boolean lattice. 2013. http://people.math.gatech.
edu/~tetali/PUBLIS/CCT.pdf. Preprint.

Mattner L, Roos B. Maximal probabilities of convolution powers of
discrete uniform distributions. Statist Probab Lett. 2008;78(17):2992-996.
Maass M. Average-case analysis of approximate trie search. Algorithmica.
2006;46(3-4):469-91.

Eckhardt BS. Complexity analysis of tries and spanning tree problems.
2009. PhD thesis, Technical University of Munich.

Willard DE. Log-logarithmic worst-case range queries are possible in
space 6(n). Inform Process Lett. 1983;78(2):81-4.

Bose P, Douieb K, Dujmovic V, Howat J, Morin P. Fast local searches and
updates in bounded universes. Comput Geom. 2013;46(2):181-9.
Aggarwal CC. On k-anonymity and the curse of dimensionality. In: Proc Int
Conf Very Large Databases. Trondheim, Norway: ACM; 2005. p. 901-9.
Terrovitis M, Mamoulis N, Kalnis P. Privacy-preserving anonymization of
set-valued data. Proc VLDB Endowment. 2008 Aug 1;1(1):115-25.

Poulis G, Loukides G, Gkoulalas-Divanis A, Skiadopoulos S. Anonymizing
data with relational and transaction attributes. In: Proc Europ Conf Mach
Learn Princ Pract Knowl Disc Databases. Berlin/Heidelberg, Germany:
Springer; 2013. p. 353-69.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal
¢ We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central

http://www.census.gov/acs/www/
http://www.census.gov/acs/www/
http://people.math.gatech.edu/~tetali/PUBLIS/CCT.pdf
http://people.math.gatech.edu/~tetali/PUBLIS/CCT.pdf

	Abstract
	Background
	Objectives
	Methods
	Results
	Conclusions
	Keywords

	Introduction
	Background
	Transformation models
	Solution space
	Privacy models
	Quality models
	Search strategies

	Objective
	Methods
	Preliminaries and formalism
	Predictive properties
	Insufficient protection against re-identification
	Insufficient data quality

	Efficient management of predictive properties
	Basic idea
	Antichain invariant
	Implementation

	Effective pruning in large search spaces
	Experimental setup

	Results
	Complexity analysis
	Experimental analysis
	Evaluation of implementation options
	Evaluation with a globally-optimal algorithm
	Evaluation of the BFS algorithm

	Discussion
	Principal results
	Comparison with prior work
	Limitations

	Conclusions
	Availability of data and materials
	Competing interests
	Authors' contributions
	Acknowledgements
	References

