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Abstract

Background: Zea mays L. (Z mays) has been used for human consumption in the various forms of meal, cooking
oil, thickener in sauces and puddings, sweetener in processed food and beverage products, bio-disel. However,
especially, in case of husk extract of Z. mays, little is known about its anti-inflammatory effects. Therefore, in this
study, the anti-inflammatory effects of Z. mays husk extract (ZMHE) and its mechanisms of action were investigated.

Methods: The husks of Z. Mays were harvested in kangwondo, Korea. To assess the anti-inflammatory activities of
ZMHE, we examined effects of ZMHE on nitric oxide (NO) production, and release of soluble intercellular adhesion
molecule-1 (sICAM-1) and eotaxin-1. The expression level of inducible nitric oxide synthase (iNOS) gene was also
determined by Western blot and luciferase reporter assays. To determine its mechanisms of action, a luciferase
reporter assay for nuclear factor kappa B (NF-kB) and activator protein-1 (AP-1) was introduced.

Results: ZMHE inhibited lipopolysaccharide (LPS)-induced production of NO in RAW264.7 cells. In addition,
expression of iINOS gene was reduced, as confirmed by Western blot and luciferase reporter assays. Effects of ZMHE
on the AP-1 and NF-kB promoters were examined to elucidate the mechanism of its anti-inflammatory activity.
Activation of AP-1 and NF-kB promoters induced by LPS was significantly reduced by ZMHE treatment. In addition,
LPS-induced production of sICAM-1 and IL-4-induced production of eotaxin-1 were all reduced by ZMHE.

Conclusions: Our results indicate that ZMHE has anti-inflammatory effects by downregulating the expression of
iNOS gene and its downregulation is mediated by inhibiting NF-kB and AP-1 signaling.
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Background

Inflammation is a biological reaction mediated by inflam-
matory cells in response to cellular injuries. Although vari-
ous types of cells are involved in the inflammatory reaction,
macrophages are well known to play a central role in regu-
lating the production of pro-inflammatory mediators. Indu-
cible nitric oxide synthase (iNOS), one of inflammatory
mediators, has been involved in the regulation of inflamma-
tory responses. iNOS is an inducible enzyme and mediates
similar pathological processes [1]. The production of nitric
oxide (NO) is mediated by three types of nitric oxide
synthase (NOS) such as endothelial NOS (eNOS), inducible
NOS (iNOS) and neural NOS (nNOS) [2]. Among them,
iNOS is involved in both regulatory and detrimental pro-
cesses [3]. During the inflammation response, overpro-
duced NO may exert cytotoxic effects [4].

NEF-kB, one of transcriptional mediators, plays a major
role in regulating the inflammatory responses by upregu-
lating the level of various inflammatory mediators [5].
The activation of NF-kB induces the expression of these
pro-inflammatory genes, including various inflammatory
cytokines and genes encoding cyclooxygenase-2 (COX-2)
and iNOS [6, 7]. Another transcription mediator, AP-1
also upregulates transcription of inflammatory genes [8].
Mitogen-activated protein kinases (MAPKSs) can activate
transcription mediators such as NF-kB and AP-1, conse-
quently inducing the expression of pro-inflammatory
mediators of extracellular stimuli [9].

Zea mays L. (Z. mays), corn or maize which is a
annual grass in the Poaceae (grass family) that originated
in Central America, is one of the main three cereal crops
grown in the world, along with rice (Oryza sativa) and
wheat (Triticum spp.). Corn is used for human consump-
tion such as meal, cooking oil, thickener in sauces and
puddings, inexpensive sweetener in processed food and
beverage products, bio-disel and so on. Despite its wide
spread use, there have been no reports which demonstrate
its biological activities. Recently, it has been reported that
corn possesses antiadhesive activity against uropathogenic
E. coli [10], as well as antioxidant and antimutagenic activ-
ities [11]. In addition, no studies have examined the effects
of Z. mays on inflammation-associated gene expression.

Therefore, we investigated the inhibitory effects and
mechanisms of Z. mays against inflammatory signals
and demonstrated that Z. mays inhibits LPS-induced
inflammatory reactions through inactivation of NF-kB
and AP-1 pathway in RAW?264.7 cells.

Methods

Preparation of Z. mays extract

Z. Mays was harvested in Gangwon-do, Korea, from
June to August and authenticated by Dr. Yong-Hwan
Jung, Jeju Biodiversity Research Institute, Jeju Techno
Park, Korea, where a voucher specimen (Voucher No.
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JBRI 140924-01). The dried powders from the whole
plant (150 g), flag leaf (150 g), husk (150 g), cob
(150 g), kernel (150 g), silk (150 g), tassel (150 g), and
stalk (150 g) of Z. Mays were extracted with 70 % etha-
nol for 24 h, and the extract was incrassated by a rotary
evaporator for 3 h. To remove the ethanol from the
extract, it was mixed with water and incrassated again.
Subsequently, the extract was filtered using filter paper
and frozen on a freezing tray for 48 h. Freeze-drying
powder of whole plant (21.3 g), flag leaf (21.0 g), husk
(31.2 g), cob (6.3 g), kernel (11.8 g), silk (27.9 g), tassel
(7.9 g), and stalk (20.7 g) were dissolved in DMSO for
the experiments.

Cell culture and reagents

Mouse macrophage cell line, RAW?264.7 was obtained
from the Korean Cell Line Bank (KCLB, Seoul, Korea).
The cells were maintained in RPMI 1640 (HyClone,
Logan, UT, USA), containing 10 % fetal bovine serum
(FBS, Gibco, Carlsbad, CA, USA) and 1 % penicillin/
streptomycin (Invitrogen, Carlsbad, CA, USA), at 37 °C,
under 5 % CO,. NIH/3 T3 mouse fibroblast cell line was
maintained in DMEM (HyClone, Logan, UT, USA), con-
taining 10 % FBS and 1 % penicillin/streptomycin at 37 °C,
under 5 % CO,. Lipopolysaccharides (LPS) and Griess
reagent were obtained from Sigma Aldrich (St. Louis,
MO, USA). Mouse IL-4 was purchased from eBioscience
(San Diego, CA, USA). Inducible nitric oxide synthase
(iNOS) antibody was purchased from Millipore Corpor-
ation (Beverly, MA, USA).

Cell viability assay

Cell viability was measured using the MTT (3-[4,5-di
methylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; USB
Corp., Cleveland, OH, USA) assay. Cells were plated in
triplicate wells of 24-well plates, and cultured for 24 h.
The cells were then treated with samples for 24 h, under a
serum-free condition. Then, MTT reagent (1 mg/ml) was
added to each well, and the cells were incubated for 3 h.
The medium was removed, and the cells were solubilized
with dimethyl sulfoxide (DMSO, Sigma, St. Louis, MO,
USA). The absorbance was measured by spectrophotom-
eter at a wavelength of 570 nm.

Nitric oxide determination

The concentration of nitric oxide (NO) in the culture
supernatants was determined as nitrite, a major stable
product of NO. The cells were plated in triplicate wells
of 24-well plates and incubated overnight. The cells were
then treated with samples for 24 h. The cell culture
supernatants were incubated with Griess reagent for
30 min. The absorbance was measured by a spectrom-
eter at a wavelength of 540 nm and calculated against a
sodium nitrite standard curve.
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Western blotting

iNOS protein levels were measured by western blotting.
The protein extracts were loaded on a NuPAGE Novex
10 % Bis-Tris Gel (Invitrogen, Carlsbad, CA, USA) and
transferred to a nitrocellulose membrane. The membranes
were blocked with 5 % bovine serum albumin (BSA,
Sigma, St. Louis, MO, USA) for 1 h and then incubated
with primary antibodies, followed by incubation with
horseradish peroxidase (HRP)-conjugated anti-mouse IgG
secondary antibody and detected using chemiluminescent
HRP substrate (SurModics, Eden Prairie, MN, USA).

Transient transfection and luciferase assay

RAW?264.7 cells were transfected with the iNOS, and
NE-kB luciferase reporters using SuperFect® Transfec-
tion Reagent (Qiagen, Hilden, Germany). After 24 h of
incubation, the cells were incubated in the presence or
absence of Z. mays husk extract (ZMHE) induced by
LPS for 24 h. The cells were then harvested and lysed,
and the supernatants were assayed for their luciferase
activity using a Dual Luciferase Assay System (Promega,
Madison, WI, USA), and an Infinite® 200 PRO lumin-
ometer (Tecan, AG, Minnedorf, Switzerland).

Enzyme-linked immunosorbent assay (ELISA)

Eotaxin-1 concentrations were quantified in culture
supernatants of NIH/3 T3 after treatment of ZMHE
induced by IL-4 using a commercially available ELISA
kit (eBioscience, USA). Cell culture supernatants were
collected 24 h after treatment with ZMHE, and assayed
for eotaxin-1. Soluble intercellular adhesion molecule-1
(SICAM-1) concentrations were quantified in culture
supernatants of RAW?264.7 after treatment of ZMHE
induced by LPS using a commercially available ELISA
kit (R&D systems, Inc., Minneapolis, MN, USA). Cell
culture supernatants were collected 24 h after treatment
with 50 ppm ZMHE, and assayed for sICAM-1. The
standard curve was linearized and subjected to regres-
sion analysis. The eotaxin-1 and sICAM-1 concentra-
tions were determined using a standard curve.

Determination of total phenolic contents

The content of total phenols was determined by spectro-
photometer, using gallic acid as standard, according to
the method described by the International Organization
for Standardization (ISO) 14502-1. Briefly, an aliquot of
the diluted extracts (1.0 ml) was transferred into a separ-
ate tubes containing a 5.0 ml of a 1/10 dilution of Folin-
Ciocalteu’s reagent in water. Then, a sodium carbonate
solution (4.9 ml, 7.5 % w/v) was added. The tubes were
then allowed to stand at room temperature for 60 min
and then measured absorbance against water at a
wavelength of 765 nm. Total phenolic contents was
expressed as gallic acid equivalents in mg/g extract. The
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concentration of polyphenols in extracts was derived
from a standard curve of gallic acid.

Determination of total flavonoids

Samples (0.25 ml of the extracts) was added containing
distilled water (1 ml) and then 5 % NaNO, (0.075 ml),
10 % AlCl; (0.075 ml), and 1 M NaOH (0.5 ml) were
added sequentially at 0.5, and 6 min. Finally, the volume
of the reacting solution was adjusted to 2.5 ml with
double-distilled water. The absorbance of the solution
was measured by spectrophotometers at a wavelength of
410 nm. Total flavonoids were expressed as quercetin
equivalents in mg/g extract.

Statistical analysis

All data are expressed as means + standard deviations. Stat-
istical significance of the data was determined using a
Student’s t-test. A P < 0.05 was considered to be significant.

Result

Z. mays husk extract suppresses NO production in LPS-
induced RAW264.7 cells

To determine anti-inflammatory effects of Z. mays, seven
different aerial parts (husk, flag leaf, cob, kernel, silk, tas-
sel, and stalk) of Z. Mays were analyzed for nitric oxide
inhibition activity. Among the different aerial parts of the
Z. Mays, the husk extract exhibited best nitric oxide inhib-
ition activity (56 %) followed by leaf extract (21 %), tassel
extract (19 %) and silk extract (13 %) respectively, com-
pared to control (Fig. 1a). Cytotoxicity was not observed
in seven parts of Z. Mays extracts at the concentration
range of 10 ~ 100 ppm, when the cells were incubated for
24 h (Fig. 1b). We also examined the nutritional compos-
ition of ZMHE. As shown in Table 1, the content of
carbohydrate was the highest (53.04 g/100 g). In addition,
the total phenol and flavonoid contents of ZMHE was
5.92+0.104 mg gallic acid equivalent (GAE) /100 g
extract and 35.40 + 1.41 mg quercetin equivalent (QUE)
/100 g extract, respectively (Table 2).

ZMHE inhibits iNOS expression in LPS-induced
RAW264.7 cells

iNOS which is primary responsible for the production
of NO in inflammatory processes, is not typically
expressed in resting cells but induced by certain cyto-
kines or microbial products [2]. Therefore, downregula-
tion of iNOS expression could be a chemotherapeutic
method to improve inflammatory symptoms. Among
seven different Z. Mays extracts, we selected ZMHE
which showed the best NO inhibitory activity and then
investigated its effect on LPS-induced iNOS expression
in RAW264.7 cells. A luciferase reporter assay and
Western blot were performed to measure iNOS expres-
sion. As shown in Fig. 2a, LPS-induced activation of
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Fig. 1 Effects of Z mays extracts on NO production in LPS-induced RAW264.7 cells. a The cells were pretreated with the indicated concentrations of
seven parts of Z mays extract for 1 h and then further incubated with LPS (200 ng/ml) for 24 h. The amount of NO production was then determined
using Griess assay. b Cell viability was measured by MTT assay. The results are mean + standard deviation (SD) (n = 3). P<0.01 vs. LPS-untreated control.
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iNOS promoter was significantly inhibited by ZMHE
(5.6 £ 0.47) compared to LPS-treated group (11.1 +0.5).
Consistent with this result, LPS-induced iNOS expres-
sion was also significantly inhibited by ZMHE at pro-
tein level (Fig. 2b). These results indicate that the
ZMHE-mediated inhibition of NO production is

Table 1 Nutrient composition of ZMHE

Nutrient composition g/ 100 g
Fat 1.16
Protein 598
Ash 18.21
Fibre 0.07
Carbohydrate Fructose 14.95
Glucose 13.95
Sucrose 24.14
Lactose 0.00
Maltose 0.00
Total 53.04

associated with the suppression of iNOS expression at
the transcriptional level.

ZMHE effects are mediated by inhibiting AP-1 and NF-kB
AP-1 and NF-kB regulate the expression of the target
genes that are involved in inflammation [12], and plays
an important role in the expression of iNOS [2] and
eotaxin-1 [13]. Thus, we investigated the effects of
ZMHE on activation of NF-kB and AP-1 using the lucif-
erase reporter assay. In this study, ZMHE suppressed
activation of NF-kB (2.58 +0.02) compared to LPS-
treated group (5.49 +0.43). AP-1 promoter activity was
also inhibited by ZMHE (52.67 + 6) compared to LPS-
treated group (123.62 + 6.45) (Fig. 3a, b). These results
suggest that the effect ZMHE effect is dependent on
NF-kB and AP-1 signalings.

Table 2 Total phenolic and flavonoid contents in ZMHE

Total flavonoid contents
(mg QUE/q)

3540+ 141

Total phenolic contents
(mg GAE/qg)

592 +0.104
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Fig. 2 Effects of ZMHE on iNOS expression in LPS-induced RAW264.7 cells. a The iNOS luciferase reporter vector was transfected into RAW264.7 cells
and cultured for 24 h. The cells were pretreated with ZMHE for 1 h and then stimulated with LPS (200 ng/ml). Luciferase activity was calculated against
an LPS-unstimulated control. b The cells were pretreated with the indicated concentrations of ZMHE for 1 h and then further incubated with LPS
(200 ng/ml). After 24 h incubation, the cell lysates were prepared and then subjected to Western blot analysis. The bands for iNOS were detected, and
normalized to that of 3-actin. Densitometric analysis was performed by using ImageJ program. The results are mean + standard deviation (SD) (n = 3).
P <001 vs. LPS-untreated control. *P <001 vs. LPS-treated control

ZMHE inhibits IL-4-induced eotaxin-1 expression

To investigate the effect of ZMHE on eotaxin-1 expres-
sion, we first investigated the effects of ZMHE on IL-4-
induced expression of eotaxin-1 gene in NIH/3 T3 cells.
In this study, we used IL-4 as a stimulator which is
reported to induce expression of eotaxin-1 gene in fibro-
blasts [14]. To measure eotaxin-1 expression, a luciferase
reporter assay and an ELISA were introduced. As shown
in Fig. 4a, activation of the eotaxin-1 promoter induced
by IL-4 was reduced by ZMHE (1.52 +0.24) compared

to LPS-treated group (4.18 + 0.25). In addition, eotaxin-1
protein level was also inhibited by ZMHE (Fig. 4b).
These results indicate that ZMHE downregulates expres-
sion of eotaxin-1 induced by IL-4.

LPS-induced expression of intercellular adhesion
molecule-1 is inhibited by ZMHE

Intercellular adhesion molecule-1 (ICAM-1) is an indu-
cible cell surface glycoprotein belonging to immunoglobu-
lin [15], participated in a wide range of inflammatory and
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transfected into RAW264.7 cells and cultured for 24 h. The cells were pretreated with ZMHE for 1 h and then stimulated with LPS (200 ng/ml).
Luciferase activity was calculated against an LPS-unstimulated control. The results are mean + standard deviation (SD) (n = 3). P<0.01 vs.
LPS-untreated control. *P < 0.05 vs. LPS-treated control. **P < 0.01 vs. LPS-treated control
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immune responses [16]. Since the expression of ICAM-1
plays key role in the recruitment and extravasation of
circulating leukocytes at sites of infection, it induces sub-
sequent activation of inflammation [17, 18]. Therefore,
ELISA for soluble ICAM-1 was performed to examine the
involvement of ZMHE in LPS-induced expression of
ICAM-1. As shown in Fig. 5, LPS-induced production of
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Fig. 5 Effects of ZMHE on the expression ICAM-1. RAW264.7 cells
were pretreated with ZMHE for 1 h before stimulation with LPS
(200 ng/ml). After 24 h of incubation, the concentrations of sICAM-1
in the culture medium were measured by ELISA. The results are
mean + standard deviation (SD) (n=3). P<0.01 vs. LPS-untreated
control. *P < 0.01 vs. LPS-treated control

soluble ICAM-1 was significantly reduced by ZMHE in a
concentration-dependent manner.

Discussion

Although Z. Mays has been used as various types of hu-
man consumption, no studies have systematically exam-
ined the effects of Z. Mays on inflammation. In this study,
the anti-inflammatory effects of Z. Mays extracts were
demonstrated and its mechanisms of action were charac-
terized. Specifically, among seven different aerial parts
(husk, flag leaf, cob, kernel, silk, tassel, and stalk) of Z.
Mays, ZMHE exerted the best anti-inflammatory activity
by reducing the expression of pro-inflammatory mediator
such as iNOS by inhibiting AP-1 and NF-kB signaling.

NO is the main macrophage-derived inflammatory me-
diators [19]. Aberrant control of NO production leads to
an inflammatory response that induces damage to the host
cells. NO is produced by a specific enzyme called nitric
oxide synthase (NOS) from L-arginine. Almost every cell
and many immunological parameters are modulated by
NO. But, NO can be both pro- and anti-inflammatory;,
depending on local concentrations [20]. Abnormal over-
production of NO by iNOS under unfavorable conditions
can exert harmful effects. Therefore, methods to inhibit
NO production induced by inflammatory stimuli could be
a useful therapeutic approach for the treatment of inflam-
matory diseases [21]. All together, these data indicate that
NO regulates various inflammatory processes such as
acute and chronic inflammation. For this reason, this
study was designed to examine the effects of Z. Mays
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extracts on production of NO. In this analysis, we found
that ZMHE inhibited LPS-induced production of NO in
RAW264.7 cells. In addition, expression of iNOS was
inhibited by ZMHE. These results indicate that ZMHE
has anti-inflammatory activities by downregulating ex-
pression of iNOS gene and suggests the possibility that
ZMHE can act as an anti-inflammatory agent.

In macrophages, LPS stimulation activates several
intracellular signaling pathways such as the NF-kB path-
way and three MAPK pathways. The MAPK family is
composed of ERK, JNK, and p38 MAPKs and their activ-
ity is modulated by upstream protein kinase molecules
and stress-related inducers [22]. The MAPK cascade also
posttranslationally regulates activation of NF-kB and
AP-1 [23, 24], which leads to the induction of many
inflammatory genes. The transcription factor NF-kB has
been implicated in the regulation of many immunomod-
ulatory genes [25, 26] as well as inflammatory genes
such as iNOS and COX-2. Transcription factor AP-1
also regulates expression pro-inflammatory genes and
protective antioxidant genes. [27]. In addition, NF-kB
and AP-1 are involved in the suppression of apoptosis
and induction of cellular transformation, proliferation,
invasion, metastasis, and chemo-resistance. In this study,
the inhibitory mechanisms of ZMHE on the expression
of iNOS gene was assessed and activation of NF-kB and
AP-1 promoters induced by LPS was shown to be
significantly reduced by ZMHE. These findings suggest
that ZMHE downregulates expression of iNOS gene by
inhibiting NF-kB and AP-1.

Taken together, the results of this study demonstrate
that ZMHE has anti-inflammatory activities by downregu-
lating the expression of iNOS gene through inhibiting NF-
kB and AP-1 signaling. Additionally, these results show
that ZMHE could be introduced as a potential therapeutic
approach for the treatment of inflammatory diseases.

Conclusion

ZMHE inhibited production of NO in RAW264.7 cells. In
addition, ZMHE reduced expression of iNOS gene by
inhibiting the NF-kB and AP-1 signaling pathway. These
findings suggest that ZMHE may be used as both a sooth-
ing agent and for the treatment of inflammatory diseases.
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