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Abstract

molecules.

increased the expression of ICAM-1 in ischemic brains.

Background: In this study, we investigated the neuroprotective effect of the hairy root extract of Angelica gigas
NAKAI (Angelica Gigantis Radix) on transient focal cerebral ischemia in rats through the regulation of angiogenesis

Methods: Male Sprague-Dawley rats were induced focal cerebral ischemia by a transient middle cerebral artery
occlusion (tMCAQ) for 90 min, and then orally administrated with the water extract of A. gigas hairy roots (AG). After
24 h reperfusion, infarction volume and the changes of BBB permeability were measured by TTC and Evans Blue
(EB) staining. The neuronal cell damage and the activation of glial cells were assessed by immunohistochemistry in
the ischemic brain. The expression of angiogenesis-induced proteins such as angiopoietin-1 (Ang-1), and vascular
endothelial growth factor (VEGF), inflammatory protein such as intercellular adhesion molecule-1 (CAM-1), tight
junction proteins such as ZO-1, and Occludin and the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT
were determined in the ischemic brains by Western blot, respectively.

Results: The treatment of AG extract significantly decreased the volumes of brain infarction, and edema in
MACO-induced ischemic rats. AG extract decreased the increase of BBB permeability, and neuronal death and
inhibited the activation of astrocytes and microglia in ischemic brains. AG extract also significantly increased the
expression of Ang-1, Tie-2, VEGF, ZO-1 and Occludin through activation of the PI3K/Akt pathway. AG extract significantly

Conclusions: Our results indicate that the hairy root of AG has a neuroprotective effect in ischemic stroke.
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Background

Brain stroke is an important cause of extensive health
problems throughout the world. Stroke causes a localized
process of ischemic cell death in the brain, but triggers a
regenerative response in brain tissue adjacent to the ische-
mic area of cell death [1-4]. Re-establishment of functional
microvasculature through angiogenesis promotes stroke
recovery [5]. During cerebral angiogenesis, the initial
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vascular plexus forms mature vessels by sprouting,
branching, pruning and differential growth of endothelial
cells, and recruitment of supporting cells such as pericytes
and smooth muscle cells [6]. Angiogenesis and vascular
maturation/remodeling are regulated by vascular endo-
thelial growth factor (VEGF), angiopoietin (Ang)-1 and
Ang-2, and the receptor tyrosine kinases, Tie-1 and -2
[7-10]. Cerebral endothelial cells perform essential
functions including maintenance of the blood brain
barrier (BBB) and regulation of vascular tone by release
of vasoactive factors. Generally, the permeability of the
blood vessels is caused after cerebral ischemia within 1-2
hours, and will increase with time, which is maintained up
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to 24 hours. Cerebral injury affects both of the BBB and
autoregulation because the extent of flow during reperfu-
sion and is these are correlated with neurological injury.
Cerebral inflammation can eventually disrupt the BBB
further by more extensive activation of resident cells
like astrocytes and microglia, and infiltration of inflam-
matory cells, macrophages and leukocytes. As brain injury
triggers the inflammatory response and aggravates the
injury, the decreased expression of TNF-a and ICAM-1
indicate a diminished progression of injury. Inflammatory
cytokine such as TNF-a will stimulates the expression of
ICAM-1, leading to leukocyte adhesion and extravasation.
Recent experimental studies show that systemic inflamma-
tion exacerbates neutrophil infiltration in the brain, alter-
ing the kinetics of the BBB tight junction disruption after
experimental stroke in mice [11]. A transformation from
transient to sustained BBB disruption caused by enhanced
neutrophil-derived neurovascular MMP-9 is a critical
mechanism underlying the exacerbation of ischemic brain
injury by systemic inflammation, mediated through con-
version of a transient to a sustained disruption of the tight
junction protein [12].

VEGEF is a pleiotropic angiogenic growth factor that is
crucial in neovascular remodeling in the ischemic stroke.
VEGF promotes angiogenesis, protects ischemic neurons
from injury, has potent anti-inflammatory actions, and
promotes brain plasticity, in addition to enhancing the re-
cruitment and proliferation of neuronal precursors [13].
Angiopoietins (Ang-1 and Ang-2) are ligands for the
endothelial-specific receptor tyrosine kinase, Tie-2 [14].
Acute alternation of VEGF and Ang-1 in the ischemic core
may mediate BBB leakage, whereas up-regulation of
VEGEF/VEGF receptors and Ang/Tie-2 at the boundary
zone may regulate angiogenesis with neovascularization in
ischemic brain.

Ang-1 and VEGF in combination induce a synergistic
angiogenic effect, and promote the formation of mature
neovessels without the side effects on BBB permeability.
Therefore, stroke promotes vascular stabilization and de-
creases BBB leakage, by increasing Angl/Tie2 and VEGEF/
FIk1 expression, and both together promote angiogenesis
and vascular maturation after stroke.

The root of Angelica gigas NAKAI (Umbelliferae;
Angelica Gigantis Radix), known as Korean angelica,
A. gigas (AG) root is a herbal medicine for the treatment
of various circulatory disorders with female afflictions
such as dysmenorrhea, amenorrhea, menopause, abdom-
inal pain, migraine and arthritis [15]. AG has biological
activities such as anti-cancer [15-18], anti-platelet aggrega-
tion [16], neuroprotection [17], anti-inflammatory, anti-
oxidant [18] and anti-osteoclastogenesis [19] with several
coumarin derivates including decursin decursinol, decursi-
nol angelate, nodakenin, nodakenetin and umbelliferone
[20,21]. In Oriental medicine, the root of AG is able to
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divide two parts, root body and hairy root according to
their efficacy on tonify blood and promote blood circula-
tion. For example, the body root has been used for blood
deficiency syndrome, and the hairy root has been used for
blood stasis. However, the effect of AG extract on the BBB
permeability and angiogenesis with vascular stabilization
has not been investigated. Stroke is an inflammatory dis-
ease caused by the extravasation of blood in the brain.
Therefore, in this study, we evaluate the effect of the hairy
root of AG on blood stasis and inflammation in ischemic
brain through improving the blood disability. For this, we
investigated the expression of angiogenesis-induced pro-
teins, such as VEGF and Ang-1/Tie-2, and tight junction
molecules such as Occludin and ZO-1 with the BBB per-
meability in transient middle artery cerebral occlusion
(tMCAOQ)-induced ischemic stroke in rats, and investi-
gated its action mechanism on the PI3K/Akt signaling
pathway.

Methods

Preparation of AG extract

A. gigas (AG) roots were purchased from a medicinal ma-
terials company (Kwangmyungdang Medicinal Herbs,
Ulsan, Republic of Korea) and authenticated by Y. K. Park,
a botanist in the Department of Herbology, College of
Oriental Medicine, Dongguk University (DUCOM),
Republic of Korea. AG extract was prepared by the fol-
lowing procedure. The roots were boiled in distilled
water for 3 h, filtered through a two-layer mesh and
Whatman No. 1 paper, and concentrated under vac-
uum. The final yield of concentrated extract was 29.1%
of the dried powder. AG extract was stored at 4°C, and
dissolved in saline prior to use.

Animals

Male Sprague-Dawley (SD) rats weighing an average of
280 + 10 g (Orient Bio Inc., Gyeonggi-do, Rep. of Korea)
were used in the experiments. The animals were housed
under controlled environmental conditions at an ambi-
ent temperature of 23 + 1°C, relative humidity of 50 +
10% and 12 h light/dark cycle with free access to food
and water. All animals were handled according to the
animal welfare guidelines issued by the Korean National
Institute of Health and the Korean Academy of Medical
Sciences for the care and use of laboratory animals and
approved by the Institutional Animal Care and Use
Committee of Dongguk University.

Preparation of ischemic stroke rat model

The ischemic stroke rat model was prepared by transient
middle cerebral artery occlusion (tMCAQO) and reperfu-
sion following a standard procedure [22]. Rats were
anesthetized with 4% isoflurane and maintained using
1% isoflurane in a mixture of 30% oxygen and 70%
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nitrous oxide, during the surgical procedure. Rectal
temperature was measured with a rectal probe and was
kept at 37°C using a heating pad (FHC Inc., ME, USA).
The left common carotid artery (CCA) was exposed and
separated carefully from the vagus nerve and ligated at
the more proximal side through a right paramedian inci-
sion. The external carotid artery (ECA) was ligated. The
occipital artery and the pterygopalatine artery were coagu-
lated. Ischemia was produced by advancing the tip of a
rounded 3-0 nylon suture into the ICA through the ECA.
After placement, the intraluminal suture was secured with
suture tied around the ECA. Reperfusion was produced by
withdrawal of the intraluminal suture. In sham group, the
ECA was surgically prepared for the insertion of the fila-
ment, but the filament was not inserted.

All animals were randomly divided into six groups
(n=18 per a group): group I, sham-operation (Sham);
group II, tMCAO/reperfusion-induced ischemic group
with saline treatment (vehicle); group III, vehicle with
AG-treated group at dose of 10 mg/kg; group IV, vehicle
with AG-treated group at dose of 25 mg/kg; group V, ve-
hicle with AG-treated group at dose of 50 mg/kg; and
group VI, vehicle with AG-treated group at dose of 100
mg/kg. AG extract was administrated orally once 90 min
after tMCAO, and then all animals were reperfused for 24
hr. All animals were euthanized by decapitation after 24 h
of reperfusion. The brain tissues were harvested for next
experiments, and were used for the measurement of brain
infarction (n =6 per a group), edema (n=3 per a group),
morphological changes of neuronal cells (n = 3 per group),
Western blot (n=3 per group), and BBB permeability
(n =3 per group).

Measurement of infarct volume

All animals were euthanized by decapitation after 24 h of
reperfusion. The brain tissues were harvested and cut into
2-mm coronal slices starting 2mm from the frontal pole.
Each slice was stained with 2,3,5,-triphenyltetrazolium
chloride (TTC) for measurement of the infarction volumes.
In TTC stain, the infarction was observed in the unstained
part, whereas the normal part was stained red. The infarc-
tion volume was calculated as the infarct volume (mm?®)
per brain by a computerized imaging analyzing system
(Adobe Systems Incorporated, San Jose, CA). Therefore,
infarction volumes were expressed as a percentage of the
contralateral hemisphere volume using the formula: (the
area of the intact contralateral hemisphere—the area of the
intact region of the ipsilateral hemisphere) to compensate
for edema formation in the ipsilateral hemisphere.

Measurement of the water content in brain

After 24 h of reperfusion, all animals were killed and
brains were collected. The pons and olfactory bulb were
removed and the brain wet weight (ww) measured. All
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brains were dried at 110°C for 24 h, and the brain dry
weight (dw) measured. Whole water content in brains was
calculated using following formula: (ww-dw)/ww x 100 as
an index for brain edema [23].

Nissl staining

The brain sections were de-paraffinized in xylene, sequen-
tially rehydrated in graded ethanol and then immersed in
0.01 M PBS (pH 7.4). The sections were microwaved for 5
min in 0.01 M sodium citrate buffer (pH 6.0), cooled to
room temperature, and then washed three times for 3 min
in PBS. The sections were incubated in 3% hydrogen per-
oxide for 20 min to eliminate endogenous peroxidase ac-
tivity, and then washed in PBS. The sections were stained
with 0.2% thionine treated with Nissl stain for histological
assessment of ischemic damage. The number of neuronal
cells in the border of the infarct area was counted.

Immunohistochemistry

Twenty-four h after reperfusion, anaesthetized rats were
perfused with 100 mL of 4% paraformaldehyde in 0.1 M
phosphate buffer (pH 7.4). Brains were removed rapidly
and post-fixed for 24 h in the same fixative. The
paraffin-embedded brain tissues were cut on a cryo-
ultramicrotome (Leica, Wetzlar, Germany) into serial
10-pum coronal sections. For histological assessment of
ischemic damage, paraffin-embedded brain sections were
stained with hematoxylin-eosin (H&E) staining. The
brain sections were deparaffinized and non-specific en-
dogenous peroxidase activity blocked with 3.0% H,O,
for 5-min at room temperature (RT). After washing with
PBS, the sections were reacted with rat anti-neuronal
nuclei (NeuN) mAb (1:100, Millipore, Bedford, MA,
USA) as a neuronal marker, rat anti-glial fibrillary acidic
protein (GFAP) mAb (1:50, Abcam, Cambridge, MA,
USA) as an astrocyte marker, and mouse anti-rat CD11b
mAD (1:50, BD Pharmingen, San Diego, CA, USA) as a
microglia marker for 24 h at 4°C, then incubated with
biotinylated anti-mouse, -goat, and -rabbit immunoglobu-
lins for 30 min at RT. After again washing with PBS, the
sections were incubated with streptoavidin-conjugated
horseradish peroxidase (HRP) for 30 min at RT. Finally,
the sections were reacted with a solution containing di-
aminobenzidine (DAB) and hydrogen peroxide (0.001%).
The sections were counterstained with toluidine blue or
hematoxylin, dehydrated and embedded with Permount.
Histopathological changes of ischemic brains were ob-
served under microscope with 400x magnification.

Western blot

Twenty-four h after reperfusion, brain tissues were col-
lected from all animals, homogenized with a RIPA buffer
[50 mM Tris—HCI (pH 7.4), 150 mM NaCl, ImM PMSE,
1mM EDTA, 1% Triton X-100, 0.5% sodium deoxycholate,



Oh et al. BMC Complementary and Alternative Medicine (2015) 15:101

and 0.1% SDS)] for the isolation of protein. Protein
samples were electrophoresed on 10% gradient sodium
dodecyl sulfate (SDS)-polyacrylamide gel (Bio-Rad,
Hercules, CA, USA) and electro-transferred to nitrocellu-
lose (NC) membranes. The membranes were incubated
with blocking buffer (5% skimmed milk in 25mm Tris-
HCI, pH 8.0, 125mm NaCl, 0.1% Tween 20) for 1 h at RT,
followed by incubation with primary antibodies for anti-
Ang-1 mAb (1:500 Santa Cruz Biotechnology, Santa Cruz,
CA, USA), and anti-Tie-2 mAb (1:500 Santa Cruz Bio-
technology), anti-VEGF mAb (1:1000 Santa Cruz Biotech-
nology), anti-ICAM-1 mAb (1:500, Sigma, St Louis, MO,
USA), anti-ZO-1 mAb (1:500, Invitrogen, Carlsbad, CA,
USA), anti-Occludin mAb (1:500, Abcam, Cambridge,
MA, USA), and anti-f-actin mAb (1:2000; Sigma)
overnight at 4°C. The membranes were washed with
blocking buffer without milk, and then incubated with
horseradish peroxidase-conjugated secondary antibody.
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Immunoreactive proteins were detected by the en-
hanced chemiluminescence system (ECL, Sigma) and
serial exposures were made on X-ray film (Hyperfilm
ECL, Amersham International). The target proteins
were analyzed and quantified by a computer-associated
densitometry.

Evans Blue staining

Evans blue (EB, 2%) as a BBB permeability tracer was
injected intravenously 4 h in femoral vein before euthan-
asia. The brains were removed and coronal sections
from bregma-1 to 1 mm were divided into the right and
left hemispheres. The sections were homogenized with
50% trichloroacetic acid and then centrifuged at 15,000
rpm for 20 min. The intensity of EB was determined by
a spectrophotometer at 620 nm (excitation) and 680 nm
(emission). Calculations were based on the external stan-
dards dissolved in the same solvent, and the amount of EB
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Figure 1 Effects of AG extract on the brain infarction in MCAO-induced ischemic rats. After MCAO for 90 min and reperfusion for 24 h,
brain tissues were coronary sectioned (2 mm thick) and then stained with TTC. (A) Representative photographs of TTC staining of coronal brain
sections. (B) The histogram of brain infarction volumes (n =6 per a group). (C) The histogram of brain edema (n =3 per a group). Values are
expressed as mean + SD of each group. P <001 vs. sham, and *P <001, and P < 0.01 vs. vehicle.
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Figure 2 Effect of AG extract on neuronal damage in MCAO-induced ischemic rats. After MCAO/reperfusion, brain tissues were stained by
H&E (A) and Nissl (B). The morphological changes of neuronal cells in a boundary between cortex and penumbra (square box) were observed by
a microscope (original magnification x400). a, sham group; b, vehicle: MCAO-induced ischemic group; ¢, AG extract at 50 mg/kg-treated group in
vehicle; and d, AG extract at 100 mg/kg-treated group in vehicle. The photograph is a representative image of three different tissues.

AG (mg/kg)

Figure 3 Effects of AG extract on the activation of glial cells in the brain of MCAO-induced ischemic rats. After MCAO/reperfusion,

brain tissues were immune-stained by anti-NeuN (A), anti-GFAP (B) and anti-OX-42 (C) antibodies. The morphological changes of neuronal

cells (A), astrocytes (B), and microglia (C) were observed in the penumbra of ischemic rats by microscope (original magnification x400). The
photograph is a representative image of three different tissues.
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Figure 4 Effect of AG extract on the expression of angiogenesis-regulated molecules in the brain of MCAO-induced ischemic rats.

After MCAO/reperfusion, the protein was isolated from brain tissues, and detected the expression of Ang-1, Tie-2 (A) and VEGF (B) by western
blot. B-actin was used as a control. Relative folds of Ang-1 (C), Tie2 (D) and VEGF (E) were calculated by normalization to (3-actin. Data in the
histogram are expressed as means + SD of three independent experiments (n =3 per group). P <0.01 vs. sham; and *P < 0.05, P < 0.01, and
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extravasation was quantified as micrograms per ischemic
hemisphere [24,25].

Statistical analysis

All data are represented as means + standard deviation
(SD), and statistical analysis was performed by GraphPad
program 5.0 software. The significance level of each group
was performed by the Duncan's Multiple Comparison
Test after Kruskal-Wallis non-parametric ANOVA. Prob-
ability level less than 0.05 was considered as statistically
significant from vehicle.

Results

Effect of AG extract on brain infarction

To evaluate the neuroprotective effect of AG extract on is-
chemic damages, we measured the infarction volumes in

MCAO-induced ischemic rats by TTC staining. MCAO in
rats was induced brain infarction in the vehicle group
(29.7 £5.2%). AG extract at doses of 10, 25, 50 and 100
mg/kg decreased the infarction volumes with 31.1 + 5.6%,
24.0 £3.9%, 18.5+5.8%, and 15.8+3.7%, respectively
(Figure 1A, B). AG extract at 50 and 100 mg/kg
significantly decreased the infarction volume (P < 0.01 and
P < 0.001, respectievly) compared with that of vehicle group.

Next, we measured the water content in the ipsilateral
hemisphere of brains in MCAO-induced ischemic rats by
wet-dry method. The brain water content significantly in-
creased (P <0.01) in the vehicle group with 81.7 + 1.2%,
compared with the saline-treated sham group (Figure 1C).
AG extract at doses of 25, 50, and 100 mg/kg significantly
decreased water content by 80.4 +2.2%, 79.8 £ 3.2%, and
78.1% + 0.9%, respectively, compared with that of the
vehicle group.
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Figure 5 Effect of AG extract on the expression of Akt, PI3K and ICAM in the brain of MCAO-induced ischemic rats. After MCAO/reperfusion,
the protein was isolated from brain tissues, and assayed for expression of phosphorylated- or whole forms of Akt (A), PI3K (B) and ICAM (C) by western
blot. -actin was used as a control. Relative folds of p-Akt and PI3K and ICAM were calculated by normalization to Akt and B-actin, respectively. Data in
the histogram are expressed as means + SD of three independent experiments (n= 3 per group). P <001, and " P < 0001 vs. sham; and *P < 0.05,
P <001, and "P <0001 vs. vehicle.

Effect of AG extract on ischemic damages in neuronal cells
To evaluate the neuroprotective effect of AG extract on
ischemic neuronal damages, we investigated the mor-
phological changes of neuronal cells in the ischemic
hemisphere of MCAO-induced ischemic rats. In the
saline-treated sham group, neuronal cells were observed
to be normally intact and well-arranged morphologically
with abundant cytoplasm and clear nucleus in the cortex
of rats (Figure 2A). MCAO in rats induced morpho-
logical changes in neuronal cells with marked shrinking,
vacuolation, eosinophilic cytoplasm and triangulated
pyknotic nuclei in the ischemic penumbra of rats. AG
extract at doses of 50 and 100 mg/kg inhibited the mor-
phological changes of neuronal cells.

We also investigated neuronal apoptosis in the cortex of
MCAO-induced ischemic rats by Nissl staining. In the
saline-treated sham group, most of the neuronal cells were
Nissl-negative normal morphology (Figure 2B). After
MCAO in rats, the numbers of Nissl-stained apoptotic
neuronal cells with aberrant morphology increased in the
vehicle group. AG extract at doses of 50 and 100 mg/kg
inhibited neuronal apoptosis similar to the sham group.

Effect of AG extract on the activation of astrocytes and
microglia in ischemic brain

To investigate the effect of AG extract on the activation of
inflammatory cells in ischemic brain, we observed the mor-
phological changes of astrocytes and microglia, and
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neuronal death by immunohistochemistry. MCAO demar-  ischemic brains compared with sham group (P < 0.01,

cated an infarction range from vital areas and induced loss  respectively). The treatment of AG extract at doses of

of NeuN-positive neuronal cells (Figure 3A) and activation 25, 50 and 100 mg/kg in MCAO rats significantly
of inflammatory cells such as GFAP-positive astrocytes increased the expression of Ang-1, and Tie-2 (Figure 4A,
(Figure 3B), and OX-42-positive microglia (Figure 3C)  C,D) and decreased the expression of VEGF (Figure 4B,E)
in the ischemic penumbra. AG extract at doses of 25, compared with the vehicle group. In addition, AG extract
50 and 100 mg/kg in MCAO-induced ischemic rats at dose of 100 mg/kg significantly induced phosphoryl-
increased NeuN-neuronal cells, while decreasing in- ation of Akt (Figure 5A), and expression of PI3K

flammatory cells such as GFAP-positive astrocytes and  (Figure 5B). ICAM-1 expression was strongly inhibited by

OX-42-positive microglia in a dose-dependent manner. = AG extract treatment at all doses in MCAO rats
These inflammatory cells were maintained at resting (Figure 5C).
morphology by treatment with AG extract at 200 mg/kg As shown in Figure 6A, the expression of tight junction

similar to the sham group. molecules such as ZO-1 and Occludin was significantly de-

creased in ischemic brains compared with sham group (P <
Effect of AG extract on the expression of angiogenesis- 0.01 and P < 0.01, respectively). The treatment of AG extract
regulated molecules in ischemic brain in MCAO rats increased the expression of ZO-1 (Figure 6B)

Ang-1 and Tie-2 receptor tyrosine kinase have wide- and Occludin (Figure 6C) in a dose-dependent manner.
ranging effects on angiogenesis, inflammation and vascular

extravasation [26]. Tie-2 activation by Ang-1 stimulation Effect of AG extract on the BBB Leakage

may down-regulate inflammatory responses in angiogen-  To investigate the effect of AG extract on the BBB damage

esis, and up-regulate the expression of adhesion molecules  in ischemic brain, we measured BBB permeability by

such as ICAM-1, VCAM-1 and E-selectin on brain endo-  Evans blue staining. As shown in Figure 7, Evans blue
thelial cells during inflammation. Therefore, we investigated ~ (EB) stain indicates BBB leakage in MCAO-induced is-
the expression of Ang-1, Tie-2, VEGE, ICAM-1 and tight chemic rats. AG extract at doses of 25, 50 and 100 mg/kg
junction molecules such as ZO-1 and Occludin in ischemic  significantly reduced BBB leakage (P < 0.001, respectively)
brains of MCAO rats. compared with that of the vehicle group. AG extract at

As shown in Figure 4, the expression of Ang-1, Tie-2 dose of 100 mg/kg strongly inhibited, by 48%, the BBB
and VEGF was significantly decreased in MCAO-induced  disruption.
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Figure 6 Effect of AG extract on the expression of ZO-1 and Occludin in the brain of MCAO-induced ischemic rats. The expression of
Z0-1 and Occludin was detected in MCAO-induced ischemic brain by western blot (A). 3-actin was used as a control. Relative folds of ZO-1
(B) and Occludin (C) were calculated by normalization to 3-actin. Data in the histogram are expressed as means + SD of three independent
experiments (n =3 per group). P < 0.01 vs. sham; and *P <0.01, and P < 0,001 vs. vehicle.
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Figure 7 Effect of AG extract on the changes of water content in the brain of MCAO-induced ischemic rats. After MCAO/reperfusion, Evans
blue was refused into the brains through i.p. injection. The brains were isolated, and measured the blue-positive area (A) by photo and the blue density
in brain extract by spectrophotometry (B). Data in the histogram are expressed as means + SD of three independent experiments (n =3 per group).

100
AG (mg/kg)
B
H#H
HH##
10 25 50 100
AG (mg/kg)

Discussion

Cerebral ischemia induces a complex cascade of bio-
chemical and molecular changes [27]. In this study, we
investigated the neuroprotective effect of AG water ex-
tract in MCAO-induced ischemic rats and the working
mechanism linked in the BBB destruction. Our results
show that the treatment with AG extract in MCAO rats
effectively reduced the brain infarction by inhibiting the
activation of glial cells such as astrocytes and microglia
that are crucial in neuroinflammation of cerebral ischemia
[25]. Astrocytes and microglia are potent regulators of
brain capillary endothelial cell function and profoundly
influence the morphogenetic events underlying the
organization of the vessel wall [28,29]. Therefore, our
results indicate that AG extract has a neuroprotective
effect in ischemic conditions like a cerebral stroke by
regulating the glial cell activation.

VEGEF is a key regulator of vasculogenesis and embryo-
genic angiogenesis. In the central nervous system (CNS),
VEGEF is essential in wound healing for vascular endo-
thelial proliferation and survival, and in the proliferation

of astrocytes and the maintenance during the repair of
brain injury [30,31]. The upregulation of VEGF is re-
ported in neurons, astrocytes, microglia, and blood ves-
sels of animal models of stroke including MCAO
[32-34]. Recently, the expression of Ang-1 and Ang-2 is
also known in focal cerebral ischemia [35-37], and their
cell type-specific expression is closely related with glio-
blastoma angiogenesis [38]. In particular, Ang-1 protects
the adult vasculature against plasma leakage [39], and
has been found to have a strong anti-inflammatory effect
in angiogenesis, through the activation of Tie-2 receptor
[40]. Ang-1may also be considered a switch that controls
the transition from the inflammatory in vascular endo-
thelial cells [41]. Signaling transduction by the Tie-2 is
activated by cell survival pathway such as PI3K/Akt,
leading to vascular stabilization [42]. Angiogenic regula-
tors including VEGF/Ang-1 do not stimulate the growth
of endothelial cells, but regulate their survival through
the PI3BK/Akt pathway [43]. Following cerebral ischemia,
these angiogenic regulators could participate in survival
and repair in the ischemic brain.
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Unlike VEGF, Ang-1 and -2, their receptor Tie-2, and
the associated receptor Tie-1 exert their functions at
larger stages of vascular development e.g. during vascular
remodeling and maturation with blood vessel formation,
depending on the availability of VEGF. In this study, the
treatment of AG extract in MCAO rats increased the
expression of VEGF, Angl and Tie-2 in ischemic brain.
In addition, AG extract promotes the expression of
tight junction molecules such as ZO-1 and occluding in
ischemic brain. Hyper-stimulation both of VEGF and
Angl expression in mouse brain increases microvessel
density with the maintenance of ZO-1 protein expres-
sion [26], and the combination of submaximal doses of
Angl and VEGF enhances blood vessel formation in is-
chemic condition [44,45]. Our result indicates that AG
extract induces angiogenesis after ischemic damage in
the brain by increasing Ang-land Tie-2 expression.

The BBB is a highly complex structure, separating the
extracellular fluid of the CNS from the blood of CNS ves-
sels. A wide range of neurological conditions, including
stroke, epilepsy, Alzheimer’s disease, and brain tumors, is
associated with dysfunction of the BBB [46,47]. In addition,
BBB impairment is involved in secondary inflammation
and neuronal damage, thus contributing to disease patho-
genesis. In this study, treatment with AG extract reduced
the BBB destruction after MCAO/reperfusion in rats.

Tight junction is an effective barrier between the endo-
thelial cells in the BBB [48,49]. Several tight junction-
associated molecules such as Claudins, occludin, junctional
adhesion molecule, accessory proteins, and cytoskeletal
proteins (actin etc.) interact to maintain the tight junctions
[48-50]. Therefore, tight junction proteins are subject
to changes in expression, subcellular localization, post-
translational modification and protein—protein interac-
tions under both physiological and pathophysiological
conditions [50]. Focal cerebral ischemia induces BBB
disruption, and the loss of BBB integrity allows intra-
vascular proteins and fluid to penetrate into the cere-
bral parenchymal extracellular space, thereby incurring
vasogenic edema formation and further brain damage
[51,52]. In this study, the expression of ZO-1 and Occludin
protein was increased in ischemic brain by AG extract
treatment in a dose-dependent manner. These results
indicate that AG extract can effectively prevent neuronal
damage from BBB leakage in ischemic rats.

Conclusion

In this study, the hairy root extract of AG inhibits the
brain infarction, edema, and BBB leakage in MCAO-
induced ischemic rats through the inhibition of glial acti-
vation, and the increase of Ang-1, Tie-2, VEGF and tight
junction proteins, ZO-1 and Occludin and the activation
of PI3K/Akt. Our results indicate that the hairy root of
AG has a neuroprotective effect in ischemic stroke.
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