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Abstract

Background: Apical periodontitis includes periapical granulomas and radicular cysts, which are histologically
distinguished by the absence and the presence of an epithelial lining, respectively. The main cause of apical
periodontitis is the bacterial colonization of the root canal space. This research aimed at assessing whether and
how periapical granulomas and radicular cysts differ in terms of microbiota using high throughput amplicon target
sequencing (HTS) techniques.

Methods: This study included 5 cases of Periapical Granulomas (PGs) and 5 cases of Radicular Cysts (RCs) selected
on the base of histology out of 37 patients from January 2015 to February 2016. Complete medical history,
panoramic radiograms (OPTs) and histologic records of each patient were assessed. Only lesions greater than 1 cm
in diameter and developed in proximity to teeth with bad prognosis were included. The microbiota present in
periapical granulomas and radicular cysts thus retrieved was finely characterized by pyrosequencing of the 16S
rRNA genes.

Results: The core of OTUs shared between periapical granulomas and radicular cysts was dominated by the
presence of facultative anaerobes taxa such as: Lactococcus lactis, Propionibacterium acnes, Staphylococcus warneri,
Acinetobacter johnsonii and Gemellales. L. lactis, the main OTUs of the entire datasets, was associated with periapical
granuloma samples. Consistently with literature, the anaerobic taxa detected were most abundant in radicular cyst
samples. Indeed, a higher abundance of presumptive predicted metabolic pathways related to Lipopolysaccharide
biosynthesis was found in radicular cyst samples.

Conclusions: The present pilot study confirmed the different microbial characterization of the two main apical
periodontitis types and shade light on the possible role of L. lactis in periapical granulomas.

Keywords: Periapical granulomas (PGs), Radicular cysts (RCs), Apical periodontitis (AP), Microbiota, High throughput
amplicon target sequencing

Background
Apical periodontitis (AP) is associated with endodonti-
cally involved teeth [1, 2]. In most cases, it is impossible
to distinguish between periapical granulomas (PGs) and
radicular cysts (RCs), without recurring to biopsy [3].
The occurrence of periapical granulomas ranges between

9.3 and 87.1% [4]. Radicular cysts are believed to form
by proliferation of the epithelial cell rests of Malassez in
inflamed periradicular tissues [5]. Whether they be
pocket cysts (cavity open to the root canal) or true cysts
(completely enclosed by lining epithelium) [6], their re-
ported incidence among periapical lesions varies from
6% to 55% [7]. As radiography for determining APs has
been questioned for scientific investigations [8], differen-
tial diagnosis is possible only with histopathological
examination [9]. Whatever the diagnosis, root canal de-
bridement is the first choice treatment of APs [10, 11].
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Bacterial colonization of the root canal space has
been demonstrated as the main etiologic factor of
APs [12, 13]. In two paradigmatic studies by Ricucci
& Siqueira [13, 14], bacterial biofilm varied and no
unique pattern for endodontic infections was identi-
fied. Bacteria could modify the severity and prognoses
of APs and yet, surprisingly, little information is avail-
able in the scientific literature comparing the micro-
biota within PGs and RCs. The application of high
throughput amplicon target sequencing (HTS) to
study the microbial ecology has been witnessed over
the past couple of years aimed at estimating the
microbial diversity in different ecosystems using 16S
rRNA gene as the target. The HTS provides an
unprecedented greater sampling depth and allows the
detection not only of the dominant community mem-
bers but also of low-abundance taxa [15].
Flurry of research has been carried out in past decades

to assess the microbiota of the human oral cavity, as well
as the endodontic microbiome [14, 16, 17]. Hence, the
purpose of this study was to finely characterize the
microbiota present in histologically determined PGs and
RCs by pyrosequencing their 16S rRNA genes. An in
depth analysis of the PGs and RCs microbiota is re-
quired for a better understanding of the bacterial taxa
involved with the inflammation process.

Methods
Study design and patients
The study was planned and performed in accordance
with the Declaration of Helsinki and was approved by
the Ethics committee of the Dental School, University of
Turin. From January 2015 to February 2016, 121 patients
with apical periodontitis were referred to the Triage of
the Dental School of the University of Turin. Complete
medical history and panoramic radiograms (OPTs) of
each patient were assessed seeking large Apical period-
ontits (APs) that clearly had developed in proximity to
teeth with bad prognosis. In the Oral Surgery Depart-
ment, 37 patients were selected by applying the follow-
ing exclusion criteria: systemic or local disease or
condition (hematologic diseases, uncontrolled diabetes,
serious coagulopathies, history of intravenous therapy
with bisphosphonates, and/or diseases of the immune
system) possibly precluding oral surgical intervention;
immunosuppression; HIV+, HCV+, HBV+, TBC+, cor-
ticosteroid treatment, pregnancy, radiotherapy to the
head or neck region within 12 months before surgery. A
further restriction was achieved excluding teeth a) peri-
odontally compromised, b) with endodontic communi-
cation to the oral cavity and c) vertical tooth fractures.
Finally, after giving their informed consent, 10 patients
underwent surgery. By careful manipulation, the periapi-
cal lesions were harvested sterilely and fixed in 4%

formalin, while the hopeless teeth were extracted. Based
on histology and a dimensional cut-off (lesion greater
than 1 cm in diameter), among the apical periodontal le-
sions analyzed, 5 Radicular Cysts (RCs) and 5 Periapical
Granulomas (PGs) were retrieved, dependently on the
clear presence or absence of cavity lining epithelium,
respectively.

Histological analysis
The histological specimens retrieved were fixed in 4%
formalin for 24 h and subsequently embedded with par-
affin wax and cut into 3 μm thick sections, using a
motorized microtome. Polylysine coated slides were used
to enhance the adhesion of the tissue section during
staining procedures. The histological structure of the le-
sions was assessed by traditional hematoxylin and eosin
staining for optical microscopy.

DNA analysis by pyrosequencing
Two slices of formalin-fixed, paraffin-embedded (FFPE)
tissue samples (about 10 mg of tissue) were used for
total genomic DNA extraction. Samples were pre-treated
at 55 °C for a minimum of 1 h with the dissolving buffer
and Proteinase K (20 mg/ml) according to the manufac-
turer’s instructions (BiOstic® FFPE Tissue DNA Isolation
Kit Mobio, Carlsbad, CA, USA). DNA was used to study
the microbial diversity by pyrosequencing of the ampli-
fied V1–V3 region of the 16S rRNA gene, recurring to
the primers Gray28F (5’-TTTGATCNTGGCTCAG) and
Gray519r (5’-GTNTTACNGCGGCKGCTG) that amp-
lify a fragment of 520 bp, following PCR conditions pre-
viously reported [17]. PCR products were purified twice
with Agencourt AMPure purification kit (Beckman
Coulter, Milan, Italy), and quantified using the PlateRea-
der AF2200 (Eppendorf, Hamburg, Germany) with Pico-
Green assay and an equimolar pool was obtained prior
to further processing. Due to poor DNA quality, PG_8
sample was excluded. The amplicon pool was used for
pyrosequencing on a GS Junior platform (454 Life
Sciences, Roche, Monza, Italy) according to the manu-
facturer’s instructions by using Titanium chemistry.

Bioinformatics analysis and metagenomic prediction
QIIME 1.9.0 software was employed to analyze 16S
rRNA data [18]: OTUs (operational taxonomic units)
were picked at 99% of similarity by means of UCLUST
clustering methods [19]. Representative sequences from
each cluster were used to assign taxonomy through
matching against the Greengenes 16S rRNA gene data-
base version 2013 by the RDP classifier. R environment
(www.r-project.org) was adopted to elaborate statistics
as well as plotting. To calculate the microbiota alpha di-
versity the authors chose the “diversity” function of the
vegan package of R. Weighted UniFrac distance matrices
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as obtained through QIIME were imported in R to gen-
erate PCoA (Principal Coordinates Analysis) plots.
Weighted UniFrac distance matrices were also used to
perform ADONIS and ANOSIM statistical tests owing
to compare_categories.py script of QIIME. OTU tables,
which were filtered at 0.2% abundance in at least two
samples, were used to compare each OTU based on the
passed sample groupings (PGs and RCs) through the
group_significance.py script of QIIME. OTUs co-
occurrence co-exclusion was carried out by the psych
package of R (www.r-project.org) and it was further visu-
alized through the corrplot package of R [20]. In order to
predict the inferred metagenome, the authors used
PICRUSt [21] so as to predict abundances of gene fam-
ilies based on 16S rRNA sequences data [22]. Briefly, the
pick OTUs step was re-performed at 97% similarity
against the Greengenes database and the resulting
KEGG orthologs table was then collapsed at level 3 of
the KEGG annotations in order to display the inferred
metabolic pathways. The resulting table was imported in
the GAGE Bioconductor package [23] to identify bio-
logical pathways overrepresented or underrepresented
between PGs and RCs samples. To characterize the
accuracy of PICRUSt, the Nearest Sequenced Taxon
Indexes (NSTI) were calculated [21]. All the sequencing
data were deposited at the Sequence Read Archive of the
National Center for Biotechnology Information (acces-
sion numberSRP096711).

Results
APs were subdivided into PGs and RCs on the base of
the histological analysis performed on the biopsy sam-
ples. The relevant data concerning patients’ age and gen-
der are reported in Table 1, along with dimensions and
region of the lesion. Also any previous canal root ther-
apy was recorded. It is to be noted that all patients were

older than 18 years and were in good health conditions
as per inclusion criteria (Table 1).

Microbial diversity
A total of 163.832 raw reads were obtained after the se-
quencing. 65.070 reads passed the filters applied through
QIIME, with an average value of 7.230 reads/sample and
a sequence length of 486 bp. The rarefaction analysis
and the estimated sample coverage (Table 2) indicated
that there was a satisfactory coverage for all the samples
(ESC > 96%). The richness of the samples varied from a
minimum of 22 to a maximum of 202 OTUs. (Table 2)
Alpha-diversity indices (Table 2) showed no difference
on the level of complexity (P > 0.05) of RCs samples
compared to PGs.
In Fig. 1, the box plot shows the OTUs with a rela-

tive abundance of 0.2% in at least two samples (Fig.
1). The data showed a varied microbiota composition
characterized by the presence of 40% of facultative
microbes , 37% of anaerobes and 22% of aerobe mi-
crobes (Table 3). In details, the samples were charac-
terized by the predominance of Lactococcus lactis
(55% of the relative abundance), Propionibacterium
acnes (18%), Corynebacterium matruchotii (5.5%),
Staphylococcus warneri (5%), Gemellales (2%), Actino-
myces johnsonii (2%), and Lactobacillus zeae (2.5%).
Through principal coordinate analysis (PCoA) with a
weighted UniFrac distance matrix, it was possible to
show that samples from RCs grouped together and
that they were well separated from PGs on the basis
of their microbiota (Fig. 2); ADONIS and ANOSIM
statistical tests confirmed this difference (P < 0.001).
The differential abundance analysis showed a higher
abundance (Bonferroni corrected P value of < 0.001)
of several minor OTUs in RCs compared to PGs sam-
ples. In particular, it was possible to observe the most
abundant presence of several facultative anaerobes

Table 1 Salient data retrieved form the patient’s records

Sample_code gender age Histology Maximum diameter Regiona Root canal therapyb

RC_1 M 28 RC 21 mm 4.6 + 4.6

RC_2 F 30 RC 20 mm 3.6 –

RC_3 M 31 RC 24 mm 4.6 + 4.6

RC_4 M 29 RC 22 mm 1.1, 1.2, 1.3 + 1.1

RC_5 M 40 RC 13.5 mm 4.6 –

PG_6 F 23 PG 20 mm 1.6, 1.7 1.8 + 1.6, 1.7, 1.8

PG_7 F 39 PG 20 mm 3.6 –

PG_8 F 25 PG 15 mm 4.7 + 4.7

PG_9 M 36 PG 20 mm 2.6, 2.7 + 2.6, 2.7

PG_10 F 20 PG 11 mm 3.8 –
a “Region” refers to the tooth/teeth adjacent to the APs
b “Root canal therapy” indicates if tooth/teeth received endodontic treatment before the extraction
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or anaerobe OTUs such P. acnes, Gemellales, Capnocyto-
phaga ochracea, Paracoccus, Fusobacterium nucleatum,
Prevotella intermedia and Rothia dentocariosa. However
L. lactis was found significantly more abundant (P < 0.001)
in PGs samples than in RCs samples.

The OTU co-occurrence was investigated by consider-
ing the species-level taxonomic assignment and significant
correlations at false-discovery rate [FDR], < 0.05. (Fig. 3).
P. intermedia showed the highest number of positive cor-
relations including those with Streptococcus mitis and F.
nucleatum and a co-exclusion with Sphyngomonas sp.
Moreover the most significant OTUs in cyst samples such
as Gemellales, C. ochracea, showed the highest number of
positive correlation. The core OTUs L. lactis co-exclude
the presence of Acinetobacter lwoffii, while P. acnes co-
exclude the presence of S. mitis. (Fig. 3).
Regarding the predicted metagenomes, the weighted

nearest-sequenced-taxon index (NSTI) for the samples,
expressed as the mean SD, was 0.042 ± 0.004. Thus, a
NSTI score of 0.042 indicates a satisfactory accuracy for
all of the samples (96%). The pathway enrichment ana-
lysis (performed by GAGE) of the predicted metagen-
omes showed an enrichment of metabolic pathways such
as Biosynthesis of amino acids (ko01230), Pyruvate me-
tabolism (ko00620), Propanoate metabolism (ko00640)
in PGs samples compared to RCs samples (data not

Table 2 Number of observed diversity and estimated sample
coverage (ESC) for 16S rRNA amplicons analyzed

Samplea OTUs ESC chao1 Shannon Index

RC_1 202.00 1.00 209.46 4.48

RC _2 67.00 0.99 80.13 2.21

RC _3 164.00 1.00 171.16 2.24

RC _4 86.00 0.99 109.40 2.86

RC _5 143.00 1.00 155.83 2.34

PG_6 129.00 1.00 135.00 2.58

PG_7 49.00 0.99 56.33 1.90

PG_9 22.00 0.96 61.00 2.29

PG_10 49.00 0.97 76.60 2.34
aSamples are labeled according to type Periapical Granuloma (PG) and
Radicular Cyst (RC)

Fig. 1 Abundance (%) of the major taxonomic groups detected by pyrosequencing. Only OTUs with an incidence above 0.2% are shown. Boxes
represent the interquartile range (IQR) between the first and third quartiles, and the line inside represents the median (2nd quartile). Whiskers
denote the lowest and the highest values within 1.56 IQR from the first and third quartiles, respectively. Circles represent outliers beyond the
whiskers. Boxes are color coded according to the type Periapical Granulomas (PGs) blue and Radicular Cysts (RCs) red
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shown). In contrast, from RCs samples only pathways
involved in cellular processes, biosynthesis of secondary
metabolites, and genes involved in Lipopolysaccharide
biosynthesis (ko00540) were found.

Discussion
The oral cavity is exposed to the external environment
and is, therefore, one of the most important ways of mi-
crobial entry into the human body [17]. By invading the
adjacent tissues, bacteria may induce an immune re-
sponse resulting in inflammatory manifestations such as
apical periodontitis [24, 25]. The presence of bacteria in
PGs and RCs was previously confirmed [26]. Recently,
by culture dependent methods [27], RCs were clearly
demonstrated to possess a great variety of anaerobic and
facultative anaerobic microbial taxa. Our results showed
that the core of OTUs shared between PGs and RCs was
dominated by the presence of facultative anaerobes taxa

such as: L. lactis, P. acnes, S. warneri, A. johnsonii and
Gemellales. In particular, P. acnes, reported as the most
commonly detected bacterium, has been studied due to
its capacity to induce the differentiation of T lympho-
cytes into CD25 regulatory bright cells with a potentially
inhibitory effect on the immune response [24]. Actino-
myces species have been implicated frequently as a cause
of endodontic failure because of their ability to persist in
periapical tissues [27–30].
These species are all normal commensals of the hu-

man oral cavity and were isolated in radicular cyst [25].
Beta diversity calculation as well as ADONIS and ANO-
SIM statistical tests display a degree of separation of the
samples due to the relative abundance of the minor
OTUs. Of course, within the oral cavity, many initial in-
teractions between food microbes and human micro-
biota occur. Our results revealed the presence of taxa
clearly derived from food like L. lactis, a non pathogenic

Table 3 Incidence of the major taxonomic groups detected by 16S rRNA amplicon target sequencing sorted by OTUs valuea

OTUs RCs SD Type OTUs PGs SD Type

Lactococcus lactis 54.20 12.73 Facultative anaerobe Lactococcus lactis 59.63 9.97 Facultative anaerobe

Propionibacterium acnes 17.96 8.37 Facultative anaerobe Propionibacterium acnes 18.68 7.84 Facultative anaerobe

Corynebacterium matruchotii 5.51 4.76 Facultative anaerobe Corynebacterium matruchotii 5.83 4.96 Facultative anaerobe

Staphylococcus warneri 4.27 1.13 Facultative anaerobe Staphylococcus warneri 5.67 7.32 Facultative anaerobe

Gemellales 2.75 2.83 Anaerobe Lactobacillus zeae 2.59 3.52 Facultative anaerobe

Actinomyces johnsonii 2.31 4.52 Facultative anaerobe Gemellales 1.06 0.11 Anaerobe

Lactobacillus zeae 1.63 1.92 Facultative anaerobe Pseudomonas 0.40 0.23 Aerobic

Capnocytophaga ochracea 1.04 2.00 Facultative anaerobe Streptococcus mitis 0.35 0.22 Facultative anaerobe

Streptococcus mitis 0.81 0.68 Facultative anaerobe Paracoccus 0.31 0.26 Anaerobe

Paracoccus 0.68 0.61 Anaerobe Finegoldia 0.24 0.22 Anaerobe

Pseudomonas 0.51 0.17 Aerobic Sphingomonas 0.23 0.07 Aerobic

Fusobacterium nucleatum 0.50 0.43 Anaerobe Sediminibacterium 0.18 0.24 Facultative anaerobe

Leptotrichia 0.39 0.65 Anaerobe Anaerococcus 0.15 0.14 Anaerobe

Prevotella intermedia 0.26 0.28 Anaerobe Enhydrobacter 0.15 0.18 Anaerobe

Finegoldia 0.23 0.17 Anaerobe Streptococcus 0.14 0.13 Facultative anaerobe

Streptococcus 0.23 0.10 Facultative anaerobe Acinetobacter lwoffii 0.10 0.12 Aerobic

Bradyrhizobium 0.19 0.06 Aerobic Methylobacterium 0.10 0.13 Anaerobe

Micrococcus luteus 0.19 0.19 Aerobic Actinomyces johnsonii 0.09 0.11 Facultative anaerobe

Enhydrobacter 0.18 0.09 Anaerobe Micrococcus luteus 0.09 0.13 Aerobic

Rothia dentocariosa 0.18 0.38 Anaerobe Bradyrhizobium 0.08 0.07 Aerobic

Anaerococcus 0.17 0.22 Anaerobe Rothia dentocariosa 0.08 0.15 Anaerobe

Acinetobacter lwoffii 0.16 0.13 Aerobic Fusobacterium nucleatum 0.07 0.10 Anaerobe

Methylobacterium 0.15 0.08 Anaerobe Acinetobacter johnsonii 0.06 0.10 Aerobic

Campylobacter 0.12 0.16 Facultative anaerobe Leptotrichia 0.03 0.03 Anaerobe

Sediminibacterium 0.11 0.08 Facultative anaerobe Capnocytophaga ochracea 0.01 0.02 Facultative anaerobe

Acinetobacter johnsonii 0.10 0.08 Aerobic Prevotella intermedia 0.01 0.03 Anaerobe

Sphingomonas 0.08 0.08 Aerobic Campylobacter 0.00 0.00 Facultative anaerobe
aOnly OTUs with an incidence above 0.2% in at least 2 samples are shown. Abundances of OTUs for each dataset (PGs and RCs) are displayed as average and
standard deviations (SD)
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taxon, usually not associated with the oral microbiota.
Although the genus Lactococcus had already been iso-
lated by culture dependent methods from PGs [24], here
we show, for the first time, that L. lactis was the main
OTUs of the entire datasets and it was associated with
PGs samples.
It may be noteworthy that the anaerobic taxa detected

were most abundant in RCs samples. F. nucleatum, P.
intermedia and R. dentocariosa were observed to be sta-
tistically more abundant in those samples and, as previ-
ously reported, the presence of these taxa suggested the
onset of secondary infection [27]. In addition, Iatrou et
al. [31] determined in their study that the isolated bac-
teria were mostly anaerobic. Aerobe and facultative an-
aerobic bacteria growth was seen in 10.8% of the cases.
The OTU co-occurrence analysis displays the strong
correlation between the presence of F. nucleatum and P.
intermedia. Fusobacteria are present in apical abscesses
because they constitute an important part of the apical

Fig. 2 Principal Coordinate Analysis (PCoA) based on Weighted
Unifrac distance matrix. Samples are color coded according of the
type: Periapical Granulomas (PGs) red and Radicular Cysts (RCs) blue

Fig. 3 Significant co-occurrence and co-exclusion relationships between bacterial OTUs. Spearman’s rank correlation matrix of OTUs with > 0.2% abundance
in at least 2 samples. The colors of the scale bar denote the nature of the correlation, with 1 indicating a perfectly positive correlation (dark blue) and− 1
indicating a perfectly negative correlation (dark red) between two microbial OTU. Only significant correlations (FDR < 0.05) are shown
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biofilm [27, 32]. In particular F. nucleatum was fre-
quently isolated and cultured from teeth with apical
periodontitis and its virulence is greatly enhanced in
presence of P. intermedia [33].
Predicted metagenomes confirmed differences between

the two types of samples and indicated that the RCs sam-
ples displayed a higher abundance of presumptive pre-
dicted metabolic pathways related to Lipopolysaccharide
biosynthesis. This metabolic pathway is indicative of the
presence of Gram negative bacteria and it is widely ac-
cepted as a subclinical pro inflammation marker [34]. The
putative role of bacterial endotoxins in supporting epithe-
lial proliferation typical of RCs has already been reported
[35]. According to Meghji et al. [35], when epithelial cell
proliferation assays were performed, the Lipopolysaccha-
rides derived form three different bacteria displayed mito-
genic effects, which were even enhanced if cyst fibroblast
culture media were used.

Conclusions
The present research, albeit preliminary, may contribute
to the progress of the existing knowledge concerning the
microbiota within the two main apical periodontal le-
sions. The use of sophisticated and sensitive techniques
allowed unprecedented results and could help elucidat-
ing the possible etiopathologic role of a complex micro-
bial environment in either promoting or refraining the
epithelial proliferation.
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