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Abstract

Background: Diabetes Mellitus is an increasingly prevalent chronic disease characterized by the body’s inability to
metabolize glucose. The objective of this study was to build an effective predictive model with high sensitivity and
selectivity to better identify Canadian patients at risk of having Diabetes Mellitus based on patient demographic data
and the laboratory results during their visits to medical facilities.

Methods: Using the most recent records of 13,309 Canadian patients aged between 18 and 90 years, along with their
laboratory information (age, sex, fasting blood glucose, body mass index, high-density lipoprotein, triglycerides, blood
pressure, and low-density lipoprotein), we built predictive models using Logistic Regression and Gradient Boosting
Machine (GBM) techniques. The area under the receiver operating characteristic curve (AROC) was used to evaluate
the discriminatory capability of these models. We used the adjusted threshold method and the class weight method to
improve sensitivity – the proportion of Diabetes Mellitus patients correctly predicted by the model. We also compared
these models to other learning machine techniques such as Decision Tree and Random Forest.

Results: The AROC for the proposed GBM model is 84.7% with a sensitivity of 71.6% and the AROC for the proposed
Logistic Regression model is 84.0% with a sensitivity of 73.4%. The GBM and Logistic Regression models perform better
than the Random Forest and Decision Tree models.

Conclusions: The ability of our model to predict patients with Diabetes using some commonly used lab results is high
with satisfactory sensitivity. These models can be built into an online computer program to help physicians in predicting
patients with future occurrence of diabetes and providing necessary preventive interventions. The model is developed
and validated on the Canadian population which is more specific and powerful to apply on Canadian patients
than existing models developed from US or other populations. Fasting blood glucose, body mass index, high-
density lipoprotein, and triglycerides were the most important predictors in these models.

Keywords: Diabetes mellitus, Machine learning, Gradient boosting machine, Predictive models, Misclassification
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Background
Diabetes Mellitus (DM) is an increasingly prevalent
chronic disease characterized by the body’s inability
to metabolize glucose. Finding the disease at the early
stage helps reduce medical costs and the risk of
patients having more complicated health problems.
Wilson et al. [18] developed the Framingham Diabetes

Risk Scoring Model (FDRSM) to predict the risk for
developing DM in middle-aged American adults (45
to 64 years of age) using Logistic Regression. The risk
factors considered in this simple clinical model are
parental history of DM, obesity, high blood pressure,
low levels of high-density lipoprotein cholesterol,
elevated triglyceride levels, and impaired fasting glu-
cose. The number of subjects in the sample was 3140
and the area under the receiver operating characteris-
tic curve (AROC) was reported to be 85.0%. The
performance of this algorithm was evaluated in a
Canadian population by Mashayekhi et al. [11] using
the same predictors as Wilson et al. [18] with the
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exception of parental history of DM. The number of
subjects in the sample was 4403 and the reported
AROC was 78.6%.
Data mining techniques have been widely used in

DM studies to explore the risk factors for DM [5, 6,
8, 12]. Machine learning methods, such as logistic re-
gression, artificial neural network, and decision tree
were used by Meng et al. [12] to predict DM and
pre-diabetes. The data included 735 patients who had
DM or pre-diabetes and 752 who are healthy from
Guangzhou, China. The accuracy was reported to be
77.87% using a decision tree model; 76.13% using a
logistic regression model; and 73.23% using the
Artificial Neural Network (ANN) procedure. Other
machine learning methods, such as Random Forest,
Support Vector Machines (SVM), k-nearest Neighbors
(KNN), and the naïve Bayes have also been used as in
[6–8, 10, 11, 21]. Sisodia, D. and Sisodia, D.S [17]. re-
cently used three classification algorithms: Naïve
Bayes, Decision Tree, and SVM, to detect DM. Their
results showed that Naïve Bayes algorithm works bet-
ter than the other two algorithms.
In this article, we present predictive models using

Gradient Boosting Machine and Logistic Regression
techniques to predict the probability of patients hav-
ing DM based on their demographic information and
laboratory results from their visits to medical facil-
ities. We also compare these methods with other
widely used machine learning techniques such as
Rpart and Random Forest. The MLR (Machine Learn-
ing in R) package in R [2] was used to develop all
the models.

Methods
The data used in this research were obtained from
CPCSSN (www.cpcssn.ca). The case definition for
diabetes is described in [19]. “Diabetes includes dia-
betes mellitus type 1 and type 2, controlled or uncon-
trolled, and excludes gestational diabetes, chemically
induced (secondary) diabetes, neonatal diabetes, poly-
cystic ovarian syndrome, hyperglycemia, prediabetes,
or similar states or conditions” (page 4 in [19]). The
dataset was generated as follows: 1) Every blood pres-
sure reading (over 6 million) were pulled into a table
for all patients over the age of 17 along with the pa-
tient ID, their age on the date of the exam and their
sex. 2) For each blood pressure reading, we joined
the following records that were closest in time, within
a specific time period, based on the type of measure-
ment: BMI ± 1 year, LDL ± 1 year, HDL ± 1 year, trigly-
ceride (TG) ± 1 year, Fasting blood sugar (FBS) ± 1
month, HbA1c ± 3 months. 3) We removed records
with missing data in any one of the columns. This
left approximately 880,000 records, of which

approximately 255,000 records were from patients
who have diabetes. 4) Patients on insulin, who might
have Type 1 diabetes, and patient on corticosteroids,
which can affect blood sugar levels, were removed
from the dataset, leaving 811,000 records with 235,
000 from patients with DM. 5) We then curated a
dataset for records of patients that preceded the onset
of DM and identified those patients for whom there
were at least 10 visits worth of data. For patients who
had not developed DM, we removed the last year of
records before the end of the database to minimize
the impact of patients who might be on the verge of
becoming diabetic.
There are 215,544 records pertaining to patient

visits in the dataset. The outcome variable is Diabetes
Mellitus which is encoded a binary variable, with cat-
egory 0 indicating patients with no DM and category
1 indicating patients with DM. The predictors of
interest are: Sex, Age (Age at examination date), BMI
(Body Mass Index), TG (Triglycerides), FBS (Fasting
Blood Sugar), sBP (Systolic Blood Pressure), HDL
(High Density Lipoprotein), and LDL (Low Density
Lipoprotein). Since a patient may have multiple
records representing their multiple visits to medical
facilities, we took each patient’s last visit to obtain a
dataset with 13,317 patients. In the exploratory data
analysis step, we found some extreme values in BMI
and TG, and thereafter, excluded these values to ob-
tain a final analysis dataset with 13,309 patients.
About 20.9% of the patients in this sample have

DM. 40% of the patients are male and about 60% are
female (Additional file 1: Table S1). The age of the
patients in this dataset ranges from 18 to 90 years
with a median of around 64 years. Age is also
encoded as a categorical variable represented by the
four categories: Young, Middle-Aged, Senior, and Eld-
erly. About 44.6% of patients are middle-aged, be-
tween 40 and 64 years old; 47.8% are senior, between
65 and 84; 4.8% are elderly who are older than 85;
and 2.9% are younger than 40 years old. Body mass
index was calculated by dividing the patient’s weight
(in kilograms) by the patient’s height (in meters)
squared. The body mass index ranges from 11.2 to 70
with a median of 28.9. The distributions of BMI, FBS,
HDL and TG are all right-skewed (Additional file 2:
Figure S1).
Table 1 shows that the medians of BMI, FBS, and TG

of the group of patients with DM are higher than those
of the group of patients with no DM; the median HDL is
higher for the group of patients with no DM meanwhile
the median LDL, median sBP, and the median Age are
similar.
The correlation matrix of the continuous variables

(Age, BMI, TG, FBS, sBP, HDL, LDL) shows no
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remarkable correlation among the variables, except for a
moderate negative correlation of − 0.39 between HDL
and TG.
Gradient Boosting Machine is a powerful machine-

learning technique that has shown considerable success
in a wide range of practical applications [14]. In this
research study, we used Logistic Regression and Gradi-
ent Boosting Machine techniques in the MLR package in
R to build predictive models. We then compared these
methods to two other modern machine-learning tech-
niques which are Decision Tree Rpart and Random
Forest.

Procedure
We first created a training dataset by randomly choosing
80% of all patients in the dataset and created a test data-
set with the remaining 20% of patients. The training
dataset has 10,647 patients and the test dataset has 2662
patients. We used the training dataset to train the model
and used the test dataset to evaluate how well the model
performs based on an unseen dataset. Using the training
dataset and the 10-fold cross-validation method, we
tuned the model hyperparameters to obtain the set of
optimal hyperparameters that yields the highest area
under the receiver operating characteristic curve
(AROC). (Please see Additional file 3 for our model tun-
ing process).
Since the dataset is imbalanced with only 20.9% of

the patients in the DM group, we used different
misclassification costs to find the optimal threshold
(or the cut off value) for the DM class (i.e., Diabetes
Mellitus =1). In the tuning threshold approach, we
set up a matrix of misclassification costs in which
the diagonal elements are zero and the ratio of the
cost of a false negative to the cost of a false positive
is 3 to 1. We validated the model with the optimal
hyperparameters using a 10-fold cross validation. In
this step, we measured both AROC values and the
misclassification costs. We tuned the threshold for
the positive class (Diabetes = 1) by choosing the
threshold that yields the lowest expected
misclassification cost. We obtained our final model
by fitting the model with the optimal set of hyper-
parameters on the entire training dataset. Finally,
using the optimal threshold we evaluated the
performance of the final model on the test dataset.

Sensitivity was calculated by dividing the model-
predicted number of DM patients by the observed
number of DM patients. Specificity was calculated by
dividing the model-predicted number of No DM
patients by the observed number of No DM patients.
The misclassification rate is the number of incor-
rectly classified patients divided by the total number
of patients.

Results
The optimal set of hyperparameters we obtained for this
GBM model is as follows: the number of iterations
(n.trees) is 257; the interaction depth (interaction.depth)
is 2; the minimum number of observations in the ter-
minal nodes (n.minobsinnode) is 75; the shrinkage rate
(shrinkage) is 0.126. Since the outcome variable is a
binary variable, we used the Bernoulli loss function and
tree-based learners in this GBM model. Using the cross-
validation method to validate this model, we obtained
AROC values ranging from 81.6 to 85.0% with an aver-
age AROC of 83.6%, indicating a high reliability of the
method. The optimal threshold for the DM class using
the misclassification cost matrix method is 0.24. We also
used the train/test split method to validate this model
and obtained similar results with average AROC of
83.3%.
When testing the model on the test dataset we ob-

tained the following results: the AROC is 84.7%; the
misclassification rate is 18.9%; the sensitivity is
71.6% and the specificity is 83.7%. We observed that
there is a trade off between the sensitivity and the
misclassification rate. Using a default threshold of
0.5, the misclassification rate for the GBM model
was 15%; the sensitivity was low at 48.3%; the speci-
ficity was 95.2%; and the AROC remained the same
at 84.7%.
For our Logistic Regression model, the AROC was

84.0%; the misclassification rate was 19.6%; the sensi-
tivity was 73.4% and the specificity was 82.3%. The
optimal threshold was estimated to be 0.24 and Age
was treated as a categorical variable in this model.
We validated this model using the cross-validation
method and obtained AROC values ranging from 80.6
to 85.7% with an average AROC of 83.2%. Fasting
blood glucose, high-density lipoprotein, body mass
index, and triglycerides were very significant predic-
tors in this model (P < 0.0001). Interestingly, based on
this sample data, we found that age was also a signifi-
cant factor (Table 2); elderly and senior patients
significantly have lower chance of having DM than
the middle-aged patients, given that all other factors
are kept the same. Checking the model assumptions,
we found no severe collinearity; all variables had a
variance inflation factor (VIF) values less than 1.5.

Table 1 Comparing the median of continuous variables
between DM and No DM groups

Group BMI FBS HDL TG LDL sBP Age

DM 31.16 6.10 1.20 1.56 2.71 130 64.00

No DM 28.32 5.20 1.40 1.24 2.74 130 66.00
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Variables FBS, SBP, TG, and BMI were all strongly
linearly associated with the DM outcome on the logit
scale. With respect to standardized residuals, there
were 9 outliers ranging from 3.1 to 3.4. Since the
number of potential influential observations was not
large, all patients were kept in the dataset.
Based on the information gain criterion which

measures the amount of information gained by each
predictor, we also found that fasting blood glucose is

the most important predictor, followed by high-
density lipoprotein, body mass index, and triglycer-
ides; then age, sex, blood pressure, and low-density
lipoprotein (Fig. 1).
To compare the performance of the obtained Logistic

Regression and GBM models with other machine-
learning techniques, we used the same training dataset,
test dataset, and procedure on the Rpart and Random
Forest techniques. The AROC values from the models
are presented in Table 3.
The results in Table 3 show that the GBM model per-

forms the best based on highest AROC value, followed
by the Logistic Regression model and the Random Forest
model. The Rpart model gives the lowest AROC value at
78.2%.
Figure 2 illustrates the Receiver Operating Curves

(ROC) curves of the four models.
The confusion matrices for these four models are pre-

sented in Additional file 1: Tables S2, S3, S4 and S5.
Our models can be implemented in practice. For the

Logistic Regression model, we outline an algorithm for
estimating the risk of DM. sBP and LDL were excluded
from this model as their contributions were not statisti-
cally significant.

Table 2 Predictors associated with the logistic regression model

Variables Estimated coefficient Odds ratio 95% CI for odds ratio P Value

Intercept −11.816 < 0.0001

Age

Middle-Aged (40–64) (Reference) 1.000

Elderly (85–90) −0.829 0.436 (0.31, 0.61) < 0.0001

Senior (65–84) −0.127 0.881 (0.78, 0.99) 0.036

Young (< 40) 0.238 1.269 (0.90, 1.79) 0.170

Male −0.250 0.779 (0.69, 0.88) < 0.0001

FBS 1.963 7.122 (6.45, 7.87) < 0.0001

BMI 0.023 1.024 (1.01, 1.03) < 0.0001

HDL −0.894 0.409 (0.34, 0.49) < 0.0001

TG 0.158 1.171 (1.09, 1.26) < 0.0001

sBP −0.001 0.999 (0.96, 1.00) 0.560

LDL −0.011 0.990 (0.93, 1.05) 0.740

Fig. 1 Information gain measure from predictors

Table 3 Comparing the AROC values with other machine-
learning techniques

Model Area under the
ROC curve, AROC

GBM 84.7%

LOGISTIC REGRESSION 84.0%

RANDOM FOREST 83.4%

RPART 78.2%
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For the GBM model, it is more difficult to display the
equations explicitly. However, it is feasible to set up an on-
line real-time DM risk predictor program so that a patients’
risk of developing DM can be reported when the
patient’s predictor values are entered. The trained GBM
model can be saved in the Predictive Model Markup
Language (PMML) format, which is an XML-based
format, using the package r2pmml in R. Thereafter, the
model can be deployed to make predictions using a Java
platform (Scoruby and Goscore packages) or the
Yellowfin platform.
To compare the performance of the four models, we

conducted 10-fold cross validation on the whole dataset
with the following steps:

1. Divide data set into 10 parts. Use 9 parts as training
data set and the last part as the testing data set.

2. Train the four 4 models on the training data set.
3. Measure AROC for each model based on the

testing data set

4. Repeat for all 10 folds

Shuffle the whole data set and repeat the above pro-
cedure 2 more times.
Based on 30 values of AROC obtained for each model

(with age is treated as a continuous variable), we estimated
the mean of their AROC values as shown in Table 4.
We also created a box plot to compare the AROC

values of the four models (Fig. 3).
The box plot shows that the medians of AROC values

for GBM, Logistic Regression and Random Forest are
quite close to each other and they are all greater than
that of the Rpart model.
Due to the independence and normality assumptions

of the t-test, it may not be safe to use the paired t-test
for testing equality between the mean AROC values for
any two models based on the AROC values we obtained.
Therefore, to estimate the consistency of the predictive
power for each model, we used the DeLong test [3] to
find the standard deviation and the 95% confidence
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interval for the AROC value of each model. We also
used the DeLong method to compare the AROC values
of two correlated ROC curves. For each pair, we wanted
to test the equality of AROCs of two ROC curves and
whether the AROC value of the first mode is signifi-
cantly greater than that of the second model. The
DeLong method is a nonparametric method that was
implemented in pROC package in R [20]. The obtained
results are presented in Tables 5 and 6.
The standard deviations are small and the confidence

intervals are not wide. This indicates that the values of
AROC of the four models are consistent.
These results show that the AROC value of the GBM

model is significantly greater than that of Random For-
est, and Rpart models (P < 0.001), but not significantly
greater than that of Logistic Regression model (P > 0.05).
The Logistic Regression model also has an AROC value
greater than that of Random Forest and of Rpart. The

AROC of Random Forest model is significantly greater
than that of Rpart model, as well. We also noted that
the comparison of the tests are statistically significant
but this relative performance may be restricted to the
specific population and data we are dealing with.
To see how our models work on a different data set,

we used Pima Indians Dataset which is a publicly avail-
able [15]. All patients in this data set are females at least
21 years old of Pima Indian heritage. There are 768 ob-
servations with 9 variables as followings: Pregnant, num-
ber of times pregnant; Glucose, plasma glucose
concentration (glucose tolerance test); BP, diastolic
blood pressure (mm/Hg); Thickness (triceps skin fold
thickness (mm)); Insulin (2-Hour serum insulin (mu U/
ml); BMI (body mass index (weight in kg/(height in m)
squared)); Pedigree (diabetes pedigree function); Age
(Age of the patients in years); Diabetes (binary variable
with 1 for Diabetes and 0 for No Diabetes).
When working on this data set, we noticed that there

are many rows with missing data and the missing values
in Glucose, BP, Thickness, and BMI are labeled as 0. For
example, about 48.7% of Insulin values are missing. For
purpose of validating our methods, we chose not to

Table 4 Mean of AROC for the four models from the cross-
validation results

Mean

GBM 83.9%

Logistic Regression 83.5%

Random Forest 83.0%

Rpart 77.1%

Fig. 3 Box plot: comparing the AROC of the four models in the
cross-validation results

Table 5 AROC, standard deviation, and 95% confidence interval
of AROC for the four models using the DeLong method

AROC Standard deviation 95% CI

GBM 84.5% 0.97% (82.6, 86.4)

Logistic Regression 84.1% 1.01% (82.1, 86.1)

Random Forest 83.2% 1.05% (81.1, 85.2)

Rpart 78.1% 1.10% (76.0, 80.3)

Fig. 2 Receiver operating curves for the Rpart, random forest,
logistic regression, and GBM models
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impute the data but excluded all rows with missing
values. There are 392 observations left in the working
data set in which 130 patients with diabetes and 262
without diabetes. We applied our methods on this data-
set to predict whether or not a patient has diabetes. We
also divided the PIMA data set into the training data set
(80% of the observations) and the testing data set (20%
of the observations). We trained the four models on the
training data set and validate the models on the testing
data set. On the testing data set, we obtained the AROC
of 84.7% for GBM model, 88.0% for Logistic Regression
Model, 87.1% for Random Forest Model, and 77.0% for
Rpart model (Additional file 1: Table S8).
We also conducted 10-fold cross-validation and re-

peated the procedure for two more times.
Here are our results based on the 30 AROC values

from the cross-validation results conducted on the
PIMA Indian data set.
The results we obtained for this data set are quite

consistent with what we observed in our main data set
(Table 7). Based on these results, GBM, Logistic Regres-
sion, and Random Forest are comparable and they all
give higher mean AROC than that of the Rpart model
on the testing data set. We also created a box plot to
compare the sampling distributions of the AROC values
for the four models.
The box plot (Fig. 4) shows that the variability in the

AROC values of GBM, Logistic Regression, and Random
Forest are quite the same and less than that of the Rpart
model.

Discussion
In this research study, we used the Logistic Regression
and GBM machine learning techniques to build a model

to predict the probability that a patient develops DM
based on their personal information and recent labora-
tory results. We also compared these models to other
machine learning models to see that the Logistic Regres-
sion and GBM models perform best and give highest
AROC values.
During the analysis, we also used the class weight

method for our imbalanced dataset. We first tuned the
class weight for the DM class to find the optimal class
weight that minimized the average classification cost.
We found that the optimal class weight for the GBM
model is 3 and the optimal class weight for the Logistic
Regression is 3.5. These optimal class weights are then
incorporated into the model during the training process.
We obtained similar results for GBM, Logistic Regres-
sion, and Random Forest model. However, the Decision
Tree Rpart model gives a higher AROC at 81.8% com-
pared to 78.2% when the threshold adjustment method
was used (Additional file 1: Table S6). We also applied a
natural logarithmic transformation on the continuous
variables, however, this did not improve AROC and
sensitivity.
Compared to the simple clinical model presented by

Wilson et al. [18], the AROC value from our GBM
model was very similar. The AROC value of our Logistic
Regression model was lower, given the fact that the
parental history of the disease was not available in our
sample data. We also note that the characteristics of the
sample data used in this study were not the same as the
ones used by Wilson et al. [18]. For example, the age of
the patients in our dataset ranges from 18 to 90, while
the patients studied by Wilson et al. [18] ranges from 45
to 64. Schmid et al. [16] conducted a study on Swiss
patients to compare different score systems used to

Table 6 Paired one-sided DeLong test to compare the AROC
values of the four models

Test name z-statistic p-value

GBM vs. Logistic Regression 1.392 0.081

GBM vs. Random Forest 3.885 5.13e-05

GBM vs. Rpart 8.914 2.20e-16

Logistic Regression vs. Random Forest 2.038 0.021

Logistic Regression vs. Rpart 8.006 5.95e-16

Random Forest vs. Rpart 7.028 1.05e-12

Table 7 Comparing the AROC values of the four models using
PIMA Indian data set

Mean

GBM 85.1%

Logistic Regression 84.6%

Random Forest 85.5%

Rpart 80.5%

Fig. 4 Box plot of AROC values for the Rpart, random forest, logistic
regression, and GBM models applied to PIMA Indian data set
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estimate the risk of developing type 2 diabetes such as
the 9-year risk score from Balkau et al. [1], the Finnish
Diabetes Risk Score (FINDRISC) [13], the prevalent
undiagnosed diabetes risk score from Griffin et al. [4],
10-year-risk scores from Kahn et al. [9], 8-year risk score
from Wilson et al. [18], and the risk score from the
Swiss Diabetes Association. Their results indicated that
the risk for developing type 2 diabetes varies consider-
ably among the scoring systems studied. They also
recommended that different risk-scoring systems should
be validated for each population considered to ad-
equately prevent type 2 diabetes. These scoring systems
all include the parental history of diabetes factor and the
AROC values reported in these scoring systems range
from 71 to 86%. Mashayekhi et al. [11] had previously
applied Wilson’s simple clinical model to the Canadian
population. Comparing our results to the results re-
ported by Mashayekhi et al., the AROC values suggest
that our GBM and Logistic Regression models perform
better with respect to predictive ability. Using the same
continuous predictors from the simple clinical model
with the exception of parental history of diabetes, we
also obtained an AROC of 83.8% for the Logistic Regres-
sion model on the test dataset.

Conclusion
The main contribution of our research study was pro-
posing two predictive models using machine-learning
techniques, Gradient Boosting Machine and Logistic Re-
gression, in order to identify patients with high risk of
developing DM. We applied both the classical statistical
model and modern learning-machine techniques to our
sample dataset. We dealt with the issue of imbalanced
data using the adjusted-threshold method and class
weight method. The ability to detect patients with DM
using our models is high with fair sensitivity. These pre-
dictive models are developed and validated on Canadian
population reflecting the risk patterns of DM among
Canadian patients. These models can be set up in a
computer program online to help physicians in assessing
Canadian patients’ risk of developing Diabetes Mellitus.
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