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Computer face-matching technology using
two-dimensional photographs accurately
matches the facial gestalt of unrelated
individuals with the same syndromic form
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Abstract

Background: Massively parallel genetic sequencing allows rapid testing of known intellectual disability (ID) genes.
However, the discovery of novel syndromic ID genes requires molecular confirmation in at least a second or a
cluster of individuals with an overlapping phenotype or similar facial gestalt. Using computer face-matching
technology we report an automated approach to matching the faces of non-identical individuals with the same
genetic syndrome within a database of 3681 images [1600 images of one of 10 genetic syndrome subgroups
together with 2081 control images]. Using the leave-one-out method, two research questions were specified:

1) Using two-dimensional (2D) photographs of individuals with one of 10 genetic syndromes within a database of
images, did the technology correctly identify more than expected by chance: i) a top match? ii) at least one match
within the top five matches? or iii) at least one in the top 10 with an individual from the same syndrome subgroup?
2) Was there concordance between correct technology-based matches and whether two out of three clinical
geneticists would have considered the diagnosis based on the image alone?

Results: The computer face-matching technology correctly identifies a top match, at least one correct match in the
top five and at least one in the top 10 more than expected by chance (P < 0.00001). There was low agreement
between the technology and clinicians, with higher accuracy of the technology when results were discordant
(P < 0.01) for all syndromes except Kabuki syndrome.
(Continued on next page)

* Correspondence: Tracy.dudding@hnehealth.nsw.gov.au
†Equal contributors
1Hunter Genetics, Hunter New England Health Service, Newcastle, NSW,
Australia
2GrowUpWell, Priority of Research Excellence, The University of Newcastle,
Newcastle, NSW, Australia
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Dudding-Byth et al. BMC Biotechnology  (2017) 17:90 
DOI 10.1186/s12896-017-0410-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s12896-017-0410-1&domain=pdf
http://orcid.org/0000-0002-9551-1107
mailto:Tracy.dudding@hnehealth.nsw.gov.au
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


(Continued from previous page)

Conclusions: Although the accuracy of the computer face-matching technology was tested on images of individuals
with known syndromic forms of intellectual disability, the results of this pilot study illustrate the potential utility of
face-matching technology within deep phenotyping platforms to facilitate the interpretation of DNA sequencing data
for individuals who remain undiagnosed despite testing the known developmental disorder genes.

Keywords: 2D photography, Clinical genetics, Computer vision, Computational biology, Dysmorphology, Facial gestalt,
Intellectual disability, Syndromic, Phenotyping

Background
Intellectual disability (ID) poses a significant psycho-
logical and economic burden on families with 1.5–2% of
all children having an intellectual quotient (IQ) < 70 and
0.3–0.5% of children having moderate-severe ID with an
IQ < 50 [1, 2]. Although a pharmacological therapy is
only available for the minority of individuals with rare
metabolic diseases, a definitive diagnosis can inform
prognosis, guide management and restore reproductive
confidence for parents planning further children. Under-
standing the genetic basis of ID is the first step towards
understanding interacting biological pathways and pos-
sible targeted therapy.
A craniofacial anomaly is described in 30–50% of the

known genetic causes of ID [3], and the specialty of
clinical dysmorphology evolved as clinicians realised that
some individuals with ID had a recognisable gestalt.
Historically, the process of syndrome characterisation com-
menced with the publication of one or two individuals with
a unique pattern of features. This facilitated the identifica-
tion of other individuals with a similar constellation of fea-
tures or characteristic gestalt, and over time a recognisable
syndrome phenotype emerged [4]. The discovery of the
molecular or biochemical basis for a particular condition,
such as velocardiofacial syndrome and Smith-Lemli-Optiz
syndrome, allowed characterization of the wider phenotypic
spectrum. The overlapping facial gestalt of neurofibro-
matosis type 1, Costello, Noonan, cardiofaciocutaneous and
LEOPARD syndromes led to the identification of genes
within a common developmental RASopathy pathway [5].
A clinical dysmorphologist is trained to recognise the

typical gestalt of a well described condition, but a clin-
ical diagnosis is more difficult when clinical features are
outside the recognised spectrum or the characteristic
phenotype is altered by ethnicity or age. For many rare
conditions, a clinical dysmorphologist may have never
seen another child with the same condition.
Recent advances in high-throughput genetic sequen-

cing now allows rapid testing of all the known ID genes
in a single test. However, the question remains on how
best to proceed when a child with syndromic ID remains
undiagnosed despite testing all the known developmen-
tal disorder genes. The comparison of exome sequence
data from as few as two unrelated individuals with the

same clinical phenotype has revolutionised novel ID
gene discovery. However, characterising a novel syn-
dromic form of ID still requires clinicians to initially lo-
cate at minimum a second individual or a cluster of
individuals with a similar facial gestalt through a process
of presenting photographs at clinical dysmorphology
meetings internationally; or using databases linked to
Matchmaker Exchange [6] to identify individuals with
variants in the same candidate gene.
A number of researchers have explored the option of

automated facial analysis using three-dimensional (3D)
digital imaging and 2D computer systems for dysmorphol-
ogy and facial phenotyping [7–15]. While 3D imaging
overcomes variations in pose, distance and illumination, it
requires specialised 3D capturing equipment and is not
currently practical in the clinic setting. Boehringer et al.
subjected 2D photographs to graph based analysis [10, 13]
with 21% classification accuracy in the clinic setting [11].
Ferry et al. developed a computer based model to identify
the patterns of facial abnormalities on 2D photographs
[15]. The method published by Ferry et al. uses active ap-
pearance models (AAM) to label key-points on the face
which performs well on high quality images.
The face recognition algorithm used in this project

was initially developed to match the facial images of in-
dividuals for the primary purpose of recognising blurry
faces in CCTV for policing and counterterrorism. The
algorithm was trained on over 3 million faces and is
based on the latest state-of–the-art deep learning tech-
niques. Benchmark algorithm performance for facial
recognition is based on the Face Recognition Grand
Challenge (FRGC) dataset with 16,028 face images from
4007 subjects. FRGC was proposed by the National
Institute of Standards and Technology (NIST) to promote
and advance face recognition technology designed to sup-
port face recognition efforts in the U.S. Government [16].
This dataset contains images acquired from both con-
trolled and uncontrolled environments. A standard way to
compare biometric systems is to measure their False
Reject Rate (FRR) at the standard False Acceptance Rate
(FAR) of 0.001 or 0.1%. With CCTV or multiple image en-
rolment, the error rate of our algorithm on the FRGC
benchmark faces can be considered as negligible (0.01%).
(Additional file 1).
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Commercial versions of this software are deployed at
sites such as the Swinburne University of Technology,
Melbourne where it is currently used to detect persons
of interest from CCTV streams. The software is also be-
ing used to detect persons of interest in large crowd
gatherings through various police and other security
agencies. Since the software was developed for CCTV,
high quality professional photographs are not required
and even poor quality historical photographs can readily
be used. This technology is unique as it uses low-
resolution structural and frequency domain features ra-
ther than high resolution features. It is based on spatial
textures and statistical models and is simultaneously in-
sensitive to pose, illumination, expression, obscuration,
blurring, decoding artefacts, and low-resolution images
[17, 18]. Testing on the Labelled Faces in the Wild
dataset of celebrity photographs showed strong match-
ing between relatives, which led to the hypothesis that
high rank matches could be strongly indicative of close
DNA matching [19].
The aim of this pilot study was to explore the accuracy

of this robust computer face-matching technology
(FMT) for matching the faces of non-identical individ-
uals with the same genetic syndrome diagnosis.

Methods
Accuracy of the FMT was based on the software’s ability
to match facial images of unrelated individuals from
each of 10 different syndrome subgroups to a reference
bank of images; this reference bank contained 1600 im-
ages of children and adults with one of the 10 syndromic
forms of ID [653 from manuscripts, 698 from the inter-
net and 249 patients with Cornelia de Lange syndrome
provided from a cohort published by Ferry et al. 2014 to-
gether with 2081 controls [20] (Table 1).

A PubMed search was performed for each syndrome,
and images were downloaded from all peer reviewed pub-
lications containing facial images. Images from the inter-
net were curated by clinical geneticists [TD and AH].
Tinyurl links to sources for the database are available at
Open Science Framework (OSF) as FaceDx project. Links
are expected to decay with time. Applications for the full
dataset can be made to the corresponding author.
Images were captured as JPEG files, and labelled with

syndrome diagnosis and image number prior to being
uploaded into the database. Multiple images of the same
individual at the same age were not collected; however,
there were occasions where multiple images of the same
individual at different ages were included and numbered
accordingly (for example Coffin-Lowry patient 1.1, 1.2
and 1.3). No restrictions were placed on variations in
photograph quality, pose, face rotation, lighting, facial
expression, individual age, gender or ethnicity. The
stages of analysis are shown in Table 1. At Stage 1, the
database contained images for all controls and 6 syn-
dromes: Williams, Rubinstein-Taybi, Floating Harbor,
Coffin-Lowry, Kabuki and Smith Magenis. Each syndrome
was analysed individually. At this stage, the database also
contained 192 images for Cornelia de Lange syndrome;
however, analysis of this syndrome was delayed until Stage
3 (see below). After Stage 1 analyses, images for an add-
itional three syndromes were added to the database and
Stage 2 analyses were performed. Finally, images for an
additional 249 patients with Cornelia de Lange syndrome
provided from a cohort published by Ferry et al. [15] were
added to the database (which already contained images for
192 Cornelia de Lange patients) and analyses of this syn-
drome was performed (Stage 3). The accuracy of the FMT
was tested using the leave-one-out method, i.e., removing
an individual image from the database and letting the soft-
ware list the top 10 closest matches when the removed
image is used as the test case. We recorded whether an-
other non-identical individual with the same syndrome
diagnosis was the closest match, within the top five closest
matches or within the top 10 closest matches. In the situ-
ation where there were multiple photographs of the same
individual at different ages, all photographs were removed
from the database, to ensure that the test case didn’t
match with an image of them at a different age. Our sec-
ondary analysis aimed to compare the accuracy of the
software diagnosis with that of a clinical geneticist. Three
clinical geneticists were given the diagnosis for each of the
10 syndromes and asked to score the likelihood that they
would have made that particular syndrome diagnosis
based on the photograph alone (1 = definitely would have
considered this diagnosis based on the photograph alone;
2 = unlikely to have considered this diagnosis based on the
photograph alone and 3 = possibly would have considered
this diagnosis based on the photograph alone). As there

Table 1 Number of images in the database at different stages
of analysis

Syndrome Images added to
database before this
stage of analysis

Number of
images for
syndrome

Total images in
database at time
of analysis

1 Williams 1 183 3145

1 Rubinstein-Taybi 1 155 3145

1 Floating Harbor 1 61 3145

1 Coffin Lowry 1 154 3145

1 Kabuki 1 195 3145

1 Smith Magenis 1 124 3145

2 PACS1 2 39 3432

2 Kleefstra 2 128 3432

2 Koolen-de Vries 2 120 3432

3 Cornelia de
Lange

192 before Stage 1,
then an additional
249 before Stage 3

441 3681
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were only 10 syndromes, the clinical geneticists could not
be blinded to the actual diagnosis, but they were blinded
to the results of the FMT and the scores of each other. For
this pilot study, the clinicians were not asked to score the
control images as non-syndromic. Advice from the
Hunter New England Health Research Ethics Committee
concluded that the use of publicly available images did not
require special consent.

Statistical analysis
Two research questions were analysed separately for
each syndrome. Firstly, for each of the syndrome-
specific individuals, using all other facial images present
in the database, did the software correctly identify a
match from the same syndrome subgroup more often
than expected by chance? Three definitions of a “match”
were used: i) same syndrome as top match; ii) same syn-
drome within the top five matches; and iii) same syn-
drome within the top 10 matches. For each outcome,
observed and expected frequencies of matches were com-
pared by calculating a Chi-Square Goodness-of-t statistic,
applying Yates’ continuity correction. Expected counts
were estimated via simulation. Secondly, for each of the
syndrome-specific individuals, what was the concordance
between correct software-based matches (using each of
the three definitions of a match) and clinical based-
diagnosis? This analysis was performed in two parts,
corresponding to two alternate definitions of a clinician-
based diagnosis: 1) Whether at least two of the three
clinicians said they would have considered a diagnosis of
the syndrome based on the photograph alone; and 2)
Whether all three clinicians would have considered a diag-
nosis of the syndrome based on the photograph alone.
For each of the two alternate clinical definitions, the

three software-based outcomes (top 1, top 5 and top 10)
were individually assessed (corresponding to six distinct
analyses). For each of the six combinations of clinician
and software-based diagnoses, 2 × 2 contingency tables
were constructed showing frequencies for the paired
outcomes (diagnostic ratings). Table frequencies were
assessed for equality of row and column marginal frequen-
cies using McNemar’s test and its associated p-value. A
Kappa statistic for agreement was also calculated. For all
analyses, results with p < 0.05 were considered significant.
All statistical analyses were programmed using SAS v9.4
(SAS Institute, Cary, North Carolina, USA).

Results
Analysis 1: Comparing observed to expected frequencies
of correct software matches.
Tables 2, 3 and 4 show observed and expected frequen-
cies of syndromic patients for whom the top match, at
least one in the top five matches, and at least one in the
top 10 matches, were from the relevant syndrome

subgroup, respectively. In each case, observed and ex-
pected frequencies were compared by calculating a
Chi-square statistic and its associated p-value. For all
syndromes, and using all three definitions of a match,
the software matched syndromic patients significantly
more often than expected by chance. Chi-square
statistics were > 800, > 350 and > 150, respectively,
with P values < 0.00001.

Analysis 2: Comparing the accuracy of software-based
and clinician diagnoses
Table 5 shows frequencies from the 2 × 2 contingency
tables and results of McNemar’s test comparing
concordance between two alternate diagnostic ratings
for each patient: whether the software identified a top
match from the same syndrome and if at least two of
three clinicians would have considered a diagnosis of the
syndrome based on the photograph alone. Also shown
are kappa statistics representing the agreement between
software and clinician diagnoses. Kappa statistics were
low, reflecting poor agreement between software and
clinician diagnoses. Frequencies of the two discordant
cells were significantly different for five of the 10 disor-
ders. For four of these (Coffin-Lowry, Smith Magenis,
PACS1 and Kleefsta syndrome), the software correctly clas-
sified the syndrome more often than the clinicians did. The
striking exception was Kabuki syndrome, for which the
clinicians performed markedly better than the software.
Table 6 shows contingency table frequencies and

results of McNemar’s test comparing concordance be-
tween two alternate diagnostic ratings for each patient:
whether the software identified at least one patient with
the same syndrome within the top five matches and at
least two clinicians would have considered a diagnosis of
the syndrome. For statistical analysis, the software was
recorded as “making a diagnosis” if there was an individ-
ual within the same syndrome subgroup within the top 5
closest matches within a dataset of 3681 images. Kappa
statistics were low, reflecting poor agreement between
software and clinician diagnoses. Frequencies of the two
discordant cells were significantly different for all 10 dis-
orders. In all cases, the software correctly classified the
syndrome more often than the clinicians did.
Table 7 shows contingency table frequencies and results

of McNemar’s test comparing concordance between two
alternate diagnostic ratings for each patient: whether the
software identified at least one patient with the same syn-
drome within the top 10 matches and at least two clini-
cians would have considered a diagnosis of the syndrome.
Kappa statistics were low, reflecting poor agreement be-
tween software and clinician diagnoses. Frequencies of the
two discordant cells were significantly different for nine of
the 10 disorders. For RTS, McNemar’s chi-square statistic
could not be calculated due to 0 cell counts in the
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denominator. In all cases, the software again correctly
classified the syndrome more often than the clinicians did.
The analysis was repeated comparing the accuracy of

the software-based and clinician diagnosis where all
three clinical geneticists would have considered the
relevant diagnosis based on the photograph alone.
Additional file 2: Tables S8, S9 and S10 are included in
the supplementary data. Kappa statistics were low,
reflecting poor agreement between software and clinician
diagnoses. Frequencies of the two discordant cells were
significantly different for all 10 disorders. As was the case
in Tables 6 and 7, the software correctly classified the syn-
drome more often than the clinicians did.

Discussion
Prior to the availability of high-throughput massively par-
allel sequencing (MPS), the diagnostic rate for children
with ID and dysmorphic facial features was less than 20%
[21, 22]. The introduction of ID gene panels and exome
sequencing, whereby known ID genes within an individ-
ual’s exome can be rapidly and simultaneously sequenced,
has revolutionised clinical practice and increased the

molecular diagnostic rate by 25–30% [23–25]. Whole-
genome sequencing (WGS), which provides a complete
view of the human genome, has a reported diagnostic rate
for children with ID in one study of 42% [26]. However,
when a pathogenic variant is not identified within the
known developmental disorder genes [27], the enormous
amount of sequence data generated by whole exome se-
quencing (WES) or WGS poses considerable challenges
for analysis and interpretation. Standard pipelines with so-
phisticated filtering processes using public variant data-
bases can reduce the ~20,000 coding variants identified by
WES to <500 rare variants (≤ 1% in controls) per exome
[24]. WES generates ~ 3 million variants compared to the
reference genome. Considering that an estimated 75% of
known rare diseases have a prevalence of 0.1–10 per
100,000 [28] locating a second patient with a similar
phenotype is a rate-limiting step in ID gene discovery.
The need for detailed phenotyping in the era of MPS

has led to deep phenotyping projects based on the hu-
man phenotype ontology [29] and international collab-
orative initiatives such as Decipher [30], phenomecentral
[31], Genematcher [32], mygene2 [33] and Matchmaker

Table 2 Observed and expected counts of individuals with a syndrome diagnosis for whom the top match was another unrelated
individual within the same syndrome subgroup

Syndrome Number of images for syndrome Observed match/No match Expected match/No match Chi-square (1) P-value

Williams 183 110/73 11/172 938.43 <.00001

Rubinstein-Taybi 155 92/63 7/148 1068.28 <.00001

Floating Harbor 61 42/19 2/59 806.57 <.00001

Coffin Lowry 154 88/66 7/147 969.83 <.00001

Kabuki 195 106/89 12/183 776.29 <.00001

Smith Magenis 124 72/52 5/119 921.61 <.00001

PACS1 39 6/33 2/37 6.46 0.01106

Kleefstra 128 72/56 5/123 920.40 <.00001

Koolan-de Vries 120 66/54 4/116 978.17 <.00001

Cornelia de Lange 441 329/112 53/388 1627.70 <.00001

Table 3 Observed and expected counts of individuals with a syndrome diagnosis for whom at least one in the top five matches
was another unrelated individual within the same syndrome subgroup

Syndrome Number of images for syndrome Observed match/No match Expected match/No match Chi-square (1) P-value

Williams 183 176/7 47/136 472.74 <.00001

Rubinstein-Taybi 155 149/6 34/121 493.94 <.00001

Floating Harbor 61 58/3 5/56 600.47 <.00001

Coffin Lowry 154 133/21 34/120 366.21 <.00001

Kabuki 195 187/8 53/142 461.78 <.00001

Smith Magenis 124 122/2 23/101 517.90 <.00001

PACS1 39 19/20 3/36 86.76 <.00001

Kleefstra 128 108/20 22/106 401.25 <.00001

Koolen-de Vries 120 96/24 20/100 342.02 <.00001

Cornelia de Lange 441 418/23 208/233 399.38 <.00001
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Exchange [6]. In addition to a range of physical, cogni-
tive and behavioural characteristics, deep phenotyping
software requires the clinician to accurately observe, in-
terpret and record facial morphology data, the reprodu-
cibility of which is subjective and can be limited by
human variation and error.
The FMT used in this study is well suited to the

clinical genetic setting, as it already performs live video
recognition from mobile devices. Computer FMT can
rapidly compare the test case against thousands of facial
images within the database; whereas, a human is unable
to remember all the faces when required to compare a
facial image against a large number of images. The
scalability of this technology on an international basis
has the potential to enhance the efficacy of deep pheno-
typing platforms, used for the interpretation of sequen-
cing data, by combining facial images with human
phenome ontology terms. We acknowledge that a face-
base will need to be populated with a large number of
undiagnosed patients before a high-probability face-

match can be made. For this reason, the next phase of
our research will include clustering facial images,
combined with human phenome ontology terms, within
groups of genetically heterogeneous syndromic forms of
ID. This will include a group of individuals with a clin-
ical syndrome diagnosis who have tested negative for
pathogenic variants within the genes currently known to
cause the syndrome phenotype.
One limitation of this study is that we did not do a

direct comparison between software and clinician
accuracy at making a diagnosis and relied on retrospect-
ive diagnostic scoring of images by clinical geneticists
[TD, AH, SW] or [BD, DK, TK]. Although the clinicians
were aware of the diagnosis when scoring the likelihood
of making a diagnosis, we attempted to minimise this
bias by having three clinical geneticists independently
provide a diagnosis likelihood score. The fact that the
clinicians performed markedly better than the software
for Kabuki syndrome is not surprising as the characteris-
tic facial gestalt of Kabuki syndrome (resemblance to

Table 4 Observed and expected counts of individuals with a syndrome diagnosis for whom at least one in the top ten matches
was another unrelated individual within the same syndrome subgroup

Syndrome Number of images for syndrome Observed match/No match Expected match/No match Chi-square (1) P-value

Williams 183 179/4 82/101 205.76 <.00001

Rubinstein-Taybi 155 155/0 62/93 230.01 <.00001

Floating Harbor 61 58/3 11/50 239.81 <.00001

Coffin Lowry 154 146/8 61/93 193.83 <.00001

Kabuki 195 192/3 92/103 203.73 <.00001

Smith Magenis 124 123/1 41/83 242.03 <.00001

PACS1 39 28/11 4/35 153.84 <.00001

Kleefstra 128 119/9 40/88 224.08 <.00001

Koolan-de Vries 120 109/11 36/84 208.58 <.00001

Cornelia de Lange 441 432/9 317/124 147.09 <.00001

Table 5 Concordance between a software-identified top match and whether two of three clinical geneticists would definitely have
considered this diagnosis based on the image alone

Syndrome Frequency Correctly classified
by neither

Correctly classified
by both

Correctly classified
by software, but
not clinicians

Correctly classified
by clinicians, but
not software

McNemars
Chi-square

p-value Kappa

Williams 183 31 66 44 42 0.05 0.82925 0.02

Rubinstein-Taybi 155 28 61 31 35 0.24 0.62246 0.11

Floating Harbor 61 7 33 9 12 0.43 0.51269 0.16

Coffin Lowry 154 42 41 47 24 7.45 0.00634 0.10

Kabuki 195 23 88 18 66 27.43 <.00001 0.09

Smith Magenis 124 34 38 34 18 4.92 0.02650 0.17

PACS1 39 33 2 4 0 4.00 0.04550 0.46

Kleefstra 128 52 9 63 4 51.96 <.00001 0.05

Koolan-de Vries 120 30 37 29 24 0.47 0.49221 0.12

Cornelia de Lange 441 52 264 65 60 0.20 0.65472 0.26
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stage makeup used in traditional Japanese theatre called
Kabuki) is very familiar to clinicians trained in clinical
dysmorphology. Although the FMT performed better
than clinicians for Coffin-Lowry and Smith Magenis
syndrome based on the face alone, these diagnoses are
often informed clinically by family history and behav-
ioural phenotype. The majority of clinicians would have
limited experience diagnosing the recently characterised
Kleefstra syndrome and PACS1. All the images from
published journals and the internet were curated by two
authors (TD & AH). However, a confirmatory molecular
diagnosis was unavailable for the majority of images
within the database, and it is probable that the under-
lying molecular mechanism is variable in some individ-
uals with Cornelia de Lange, Kleefstra or Koolen-de
Vries syndromes. We did not make use of the number
of times a syndrome was within the top 10 matches. For
this current study, all images were loaded into the

matching software manually one by one; however, we do
plan to address this question using the automated
version 2 of the software. This new version will allow
images to be rapidly uploaded, generating a matching
score and rank list of closest matches against every exist-
ing image in the database. Automation will also facilitate
a large-scale project directly comparing the accuracy of
the software with that of a group of clinical geneticists.
We acknowledge the limited dataset used in this pilot
study and the possibility that the accuracy of the face-
matching technology may be influenced by the number
of images within the facebase. Linking facial images of
individuals within the database with their phenotypic
and genetic data will allow filtered searches based on
human phenome ontology terms and/or genetic testing.
We have been unable to do a direct comparison with
the facial dysmorphology novel analysis (FDNA) tech-
nology used by Face2Gene [34] as the images within our

Table 6 Concordance between a software-identified match within the top five closest matches and whether two of three clinical
geneticists would definitely have considered this diagnosis based on the image alone

Syndrome Frequency Correctly classified
by neither

Correctly classified
by both

Correctly classified
by software, but
not clinicians

Correctly classified
by clinicians, but
not software

McNemars
Chi-square

p-value Kappa

Williams 183 2 103 73 5 59.28 <.00001 −0.02

Rubinstein-Taybi 155 4 94 55 2 49.28 <.00001 0.06

Floating Harbor 61 1 43 15 2 9.94 0.00162 0.02

Coffin Lowry 154 15 59 74 6 57.80 <.00001 0.07

Kabuki 195 2 148 39 6 24.20 <.00001 0.01

Smith Magenis 124 2 56 66 0 66.00 <.00001 0.03

PACS1 39 20 2 17 0 17.00 0.00004 0.11

Kleefstra 128 18 11 97 2 91.16 <.00001 0.00

Koolan-de Vries 120 17 54 42 7 25.00 <.00001 0.18

Cornelia de Lange 441 10 311 107 13 73.63 <.00001 0.06

Table 7 Concordance between a software-identified match within the top ten closest matches and whether two of three clinical
geneticists would definitely have considered this diagnosis based on the image alone

Syndrome Frequency Correctly classified
by neither

Correctly classified
by both

Correctly classified
by software, but
not clinicians

Correctly classified
by clinicians, but
not software

McNemars
Chi-square

p-value Kappa

Williams 183 1 105 74 3 65.47 <.00001 −0.02

Rubinstein-Taybi 155 0 96 59 0 . . 0.00

Floating Harbor 61 1 43 15 2 9.94 0.00162 0.02

Coffin Lowry 153 5 63 83 2 77.19 <.00001 0.02

Kabuki 195 1 152 40 2 34.38 <.00001 0.02

Smith Magenis 124 1 56 67 0 67.00 <.00001 0.01

PACS1 39 11 2 26 0 26.00 <.00001 0.04

Kleefstra 128 9 13 106 0 106.00 <.00001 0.02

Koolan-de Vries 120 8 58 51 3 42.67 <.00001 0.09

Cornelia de Lange 441 6 321 111 3 102.32 <.00001 0.06
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cohort are very likely to have been used to develop
the FDNA diagnostic heat maps. Rather than develop-
ing a diagnostic tool based on a canonical face, our
software generates a matching score against all other
images within the database. This technology, there-
fore, complements the FDNA technology by providing
face-matching across a broad spectrum of age,
severity and ethnicity.

Conclusions
Although the accuracy of the computer FMT was tested
on images of individuals with known syndromic forms
of ID, the results of this pilot study warrant further
research into the utility of face-matching technology
combined with deep phenotyping (based on human
phenome ontology terms) in the interpretation of DNA
sequencing data for individuals who remain undiagnosed
despite testing the known developmental disorder genes.
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