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Abstract

Background: Triple helical collagens are the most abundant structural protein in vertebrates and are widely used
as biomaterials for a variety of applications including drug delivery and cellular and tissue engineering. In these
applications, the mechanics of this hierarchically structured protein play a key role, as does its chemical
composition. To facilitate investigation into how gene mutations of collagen lead to disease as well as the rational
development of tunable mechanical and chemical properties of this full-length protein, production of recombinant
expressed protein is required.

Results: Here, we present a human type II procollagen expression system that produces full-length procollagen
utilizing a previously characterized human fibrosarcoma cell line for production. The system exploits a non-covalently
linked fluorescence readout for gene expression to facilitate screening of cell lines. Biochemical and biophysical
characterization of the secreted, purified protein are used to demonstrate the proper formation and function of the
protein. Assays to demonstrate fidelity include proteolytic digestion, mass spectrometric sequence and posttranslational
composition analysis, circular dichroism spectroscopy, single-molecule stretching with optical tweezers, atomic-force
microscopy imaging of fibril assembly, and transmission electron microscopy imaging of self-assembled fibrils.

Conclusions: Using a mammalian expression system, we produced full-length recombinant human type II procollagen.
The integrity of the collagen preparation was verified by various structural and degradation assays. This system provides
a platform from which to explore new directions in collagen manipulation.

Keywords: Collagen, Recombinant expression, HT1080 cells, Optical tweezers, Atomic force microscopy, Electron
microscopy, Circular dichroism, Cathepsin K, Internal ribosomal entry site (IRES)

Background
Collagens are the fundamental structural proteins in
vertebrates, where they fulfill a variety of critical roles in
connective tissue structure and mechanics. As such,
alterations in collagens’ composition, resulting from gen-
etic modifications, aging, and diabetes, have been identi-
fied with an extensive list of diseases [1, 2]. Additionally,
due to their natural role as the structural component in
the extracellular matrix, collagens have found wide-
spread use in biomaterials, used for cellular and tissue

engineering, drug delivery, and a wide range of other
applications [3–5].
Most studies on collagens use protein extracted from

animal tissues. While this provides a large-scale supply
of the protein, the lack of control over protein composition
has its drawbacks. For example, there is minimal ability to
select protein sequence, since generally type I collagen is
most easy to extract and its sequence varies little among
different animal species. Furthermore, because posttransla-
tional modifications play a role in collagen’s mechanics,
and can influence cellular phenotype, batch-to-batch vari-
ability in collagen composition can arise due to animal age
or diet [6–10]. To surmount issues arising from variability
of tissue-derived collagen, an alternative strategy employs
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harvesting collagen directly from cultured cells. A benefit
of this approach is the ability to gain insight into the eti-
ology of disease by using patient-derived cells. However,
because most collagenopathies are heterozygous, harvest-
ing collagen from these cell lines results in a mixture of
both wild-type and mutant proteins.
To overcome these challenges and exert control over

collagen’s sequence, recombinant expression systems have
been developed. These utilize a host cell line to express
the desired collagen gene of interest, permitting expres-
sion of mutated genes and also of completely novel pro-
tein sequences. Benefits of a recombinant expression
system include control over the expressed protein se-
quence, control over extent of posttranslational modi-
fications, and reproducibility of culturing conditions
and hence protein composition [11–16]. Because collagen
is harvested shortly after expression, it is also devoid of age-
related crosslinks inherent to tissue-derived samples, thus
having the potential to serve as an ideal source of “young”
collagen for studies on aging. The ability to alter protein
composition in a controlled manner suggests the opportun-
ity to engage in rational design of materials, by correlating
composition of the collagen building blocks with desired
mechanical properties of self-assembled structures, offering
the potential of tuning parameters such as fibril diameter
and pore size within a matrix via protein composition.
To date, collagen has been expressed in a variety of

host cell lines [4, 15, 17–26]. Because fibrillar collagens
require posttranslational modifications such as proline
hydroxylation for stable folding of the triple helix, this
constraint must be accommodated in any recombinant
expression system. Thus, while bacteria generally offer
easy access to protein expression, their lack of en-
dogenous posttranslational machinery makes the ex-
pression of stable triple helical collagen challenging,
requiring co-expression of enzymes such as prolyl hydroxy-
lase [15, 19, 21, 22]. More success has been obtained in
yeast lines, again by co-expressing prolyl hydroxylase,
which have produced full-length protein with a thermal
stability similar to that of wild-type and have been used as
a viable source of collagen at industrial levels [4, 19].
The successful use of this collagen in tissue implants
demonstrates the feasibility of using recombinant human
collagen for in vivo biomaterials applications [27–29].
However, this expression system does not encode for the
numerous other posttranslational modifications, such as
hydroxylation of lysines and glycosylation of the hydroxy-
lysines, that are part of collagen’s higher-order assembly
pathway and affect its stability and physiological function
[6, 13]. To encode each of these additional enzymatic
modifications would add yet more complexity to the ex-
pression system, requiring additional genetic manipulation
for each added post-translational modification. A more
direct route to fully modified collagen is preferred.

For applications seeking a more realistic model of
disease, cells possessing and expressing the full suite of
posttranslational modification machinery are required.
Mammalian cells possess all of the genetic instructions
to do so. Earlier work demonstrated that the HT1080
fibrosarcoma cell line endogenously expresses this suite
of enzymes, producing correctly modified collagen from
a recombinant expression system [17]. This system has
enabled studies of sequence-dependent structural changes
of triple helical type II collagen monomers and of mor-
phological changes of self-assembled fibrils [30–32]. We
wished to exploit the success of this work, and to develop
a similar system for collagen expression that would enable
more facile screening for stable protein expression. To
that end, we have developed a recombinant expression
system for type II procollagen in this previously validated
HT1080 cell line.
Type II collagen is the second-most abundant fibrillar

collagen and is found in cartilage, the vitreous humour
of the eye, the inner ear, and in intervertebral disks. It is
the predominant protein component of articular cartil-
age, whose enhanced digestion is associated with aging
and is particularly severe in osteo- and rheumatoid arth-
ritis [33, 34]. Mutations in the COL2A1 gene encoding
type II procollagen can lead to diseases including achon-
drogenesis, hypochondrogenesis and various skeletal dys-
plasias [35]. Type II collagen matrices have been used to
support cell growth and have proven particularly useful
for promoting proliferation of chondrocytes, which are
important for repair of damaged cartilage [28, 29, 36–38].
Here, we describe a human type II procollagen recom-

binant expression system that utilizes a fluorescent marker
to screen for selection of stably transfected human
fibrosarcoma cells that produce endogenously post-
translationally modified protein [39]. Though inspired
by a closely related system [17], ours differs in that it
expresses the complete sequence of wild-type procollagen
and utilizes a fluorescence-based reporter system for
monitoring expression, thereby facilitating confirmation of
stable expression. Notably, the fluorescence reporter
is co-expressed with the procollagen but is not fused
to it, differing from other expression systems [40].
This approach avoids possible disruption of folding,
assembly or secretion of the native form of the protein
and to our knowledge has not been applied previously to
collagen production. In our system, the procollagen is pro-
duced as an isolated full-length protein in its native form,
permitting facile comparison with procollagen purified
from patient-derived cell lines. Thorough biochemical and
biophysical characterization of the purified protein dem-
onstrates that this easy-to-screen recombinant expression
system produces properly structured and biochemically
recognized collagen at the molecular level, capable of self-
assembly into fibrils (Fig. 1). The demonstrated fidelity of
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the system opens the doors to the use of this recombi-
nantly produced protein in a wide variety of fundamental
and applied assays, offering tunable control over molecu-
lar parameters not accessible in tissue-derived samples.

Results and discussion
To produce post-translationally modified type II human
procollagen, HT1080 human fibrosarcoma cells were
used as the host cell line. This cell line was chosen for
the transfection and expression of the recombinant
protein because its endogenous expression of collagen
IV provides the requisite enzymes for correct post-
translational modification and secretion of the recom-
binant type II procollagen [17].
We sought an expression vector that produced an easy

screening mechanism for selection. The pYIC vector
(Addgene) was chosen, as it incorporates an aminoglyco-
sidase which allows for selection in both bacterial (kana-
mycin) and eukaryotic (G418) systems. In this vector, we
replaced the gene for enhanced yellow fluorescent pro-
tein (EYFP) with that of cDNA-derived human type II
procollagen (IMAGE Consortium, [41]). This resulted in
the plasmid shown in Fig. 2a. Following transfection into
HT1080 cells, this construct gave rise to simultaneous,
uncoupled translation of procollagen and a downstream
marker protein used to screen the cells, enhanced cyan
fluorescent protein (ECFP), from a single mRNA tran-
script using an internal ribosome entry site (IRES) lo-
cated between the two open reading frames. The blue
ECFP fluorescence from the transformed cells is an
indirect, but coupled, indicator of the expression of pro-
collagen and was used to screen the cells. By performing
serial dilution and subsequent expansion of transfected
cells, we obtained a uniform stably transfected popula-
tion expressing procollagen, as seen by the blue fluores-
cence signal from all cells in Fig. 2b.
Type II procollagen was purified from the cell media

by modifying a literature-based protocol [17] as de-
scribed in the methods section. The peak elution from

the Q-Sepharose anion-exchange column occurred at
low NaCl (Fig. 3a). Bands corresponding to the purified
protein are shown in the gel of Fig. 3b. Eluted fractions
displaying strong collagen signal were pooled and con-
centrations were assessed using the Sircol assay [42],
which has high sensitivity for triple helical collagen. Typ-
ical final concentrations were 80 μg/ml, though could
range up to 150 μg/ml. Each harvest yielded 10-12 ml of
this purified collagen, for a total yield of ~1 mg procolla-
gen per liter of medium. In order to boost this yield,
strategies to increase cellular density during culturing,
such as the use of suspended microcarriers or fixed-bed
reactors, could be considered.
Coomassie-stained gels show the predominant pres-

ence of high-molecular-weight species, demonstrating
the purity of our sample (Fig. 3b). We observe two
bands in the vicinity of the expected molecular weight
(142 kDa for full-length procollagen); this observation of
two bands in a purified sample has been seen previously
for type II procollagen [30]. Both high-molecular-weight
bands are recognized by an antibody specific to the N-
telopeptide sequence of type II collagen that does not
cross-react with other collagen types (Fig. 3a). As dis-
cussed below, the purified protein collapses to a single
band following chymotrypsin treatment to remove the
propeptides, i.e., these mobility differences do not reflect
differences within the triple helical collagen structure.
To provide further evidence of the identity of the puri-

fied protein, and to check for expected posttranslational
modifications, protein analysis (tandem mass spectrom-
etry (MS/MS) identification of tryptic fragments, UVic-
Genome BC Proteomics Centre) was performed. A
search of the identified peptides against the Uniprot-
Swissprot database found the highest match to be with
human type II procollagen, with a MOlecular Weight
SEarch (MOWSE) score of 3666 [43]. Sequence coverage
of identified tryptic peptides represented 62 % of this large
protein (Additional file 1: Figure S1). Peptide mass ana-
lysis showed expected post-translational modifications

Fig. 1 Schematic of procollagen and collagen structures. Procollagen is purified from the cell culture medium. Post-purification enzymatic processing
results in removal of the propeptides, creating a form of collagen (consisting of both triple helix and telopeptide regions) capable of self-assembly into
fibrils. A portion of a collagen fibril, illustrating highly ordered lateral packing (D-banding), is shown
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Fig. 2 Expression of recombinant human type II procollagen. a Expression vector transformed into HT1080 cells, showing location of the COL2A1
procollagen gene, the IRES sequence and the ECFP gene. b Confocal fluorescence microscopy image of HT1080 cells stably transfected with
COL2A1; the blue color results from co-expression of ECFP
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of hydroxyproline, hydroxylysine, galatosyl-hydroxylysine
and glucosyl-galactosyl-hydroxylysine (Additional file 1:
Figure S1). This provides evidence of the fidelity of
expression and purification of post-translationally modi-
fied human type II procollagen from our system.
We wished to confirm that the purified protein was

correctly assembled into a triple helical structure. To do
so, protease digestion was used as an initial assay, as the
triple helix of collagen is resistant to digestion by most
proteases [44]. The purified procollagen was incubated
with different concentrations of chymotrypsin for 30 min
at room temperature (Fig. 4). An increase in protease con-
centration resulted in a greater extent of digestion of pro-
collagen, but even at the highest concentrations used, a
single high molecular-weight (MW) band remained in the
gel, correlating with the presence of the intact collagen
triple helix. (Corresponding with collagen’s known anom-
alous mobility, its 95 kDa band runs more slowly than the
standards [45]). At the highest concentration of chymo-
trypsin the (non-triple-helical) N-terminal telopeptide of
collagen was removed, as indicated by the disappearance
of the high-MW band in the Western using an antibody
targeting this epitope, though the triple helix remained in-
tact. A similar shift from procollagen to collagen was ob-
served following treatment of the purified protein with
lysyl endopeptidase (Lys-C) (Fig. 5) [32]. The lack of deg-
radation of the α-chains of the core region of collagen
following treatment with either of these proteases is
evidence of the stability of its extended triple helix.
To assess the thermal stability of the triple helix, we

measured the melting temperature using circular dichro-
ism (CD) spectroscopy. Here, we used Lys-C-generated
collagen to eliminate any influence of propeptides on
the results. The CD spectra showed the expected shape
for triple helical collagen, displaying significant negative

ellipticity at 198 nm and a slight peak at 223 nm (Fig. 6a).
By measuring the change in CD as a function of
temperature, we showed that collagen thermally dena-
tured near the expected 37 °C (Fig. 6b) [31, 46, 47]. A fit
to the denaturation curve using equation (1) gave a melt-
ing temperature of Tm = 39.6 °C. As is well established for
collagen, its irreversible nature of unfolding results in an
overestimate of the true melting temperature for the scan
speeds used here, [47] and this value for Tm is similar to
values previously reported using this technique [31].
As a further assessment of the correspondence of our

recombinant type II collagen to the native version, we
examined its cleavage pattern when treated with the col-
lagenase cathepsin K [48]. We found that cathepsin K
cleaves recombinant type II collagen (Fig. 5c), giving a
banding pattern upon enzymatic digestion consistent
with previous findings on tissue-derived type II collagen
[48, 49]. Furthermore, the time-dependent appearance of
the discrete cleavage bands also agrees with results on
tissue-derived type II collagen [48, 49].
A final assay at the molecular level employed optical

tweezers to stretch single molecules of our recombinant
type II procollagen. The resulting force-extension curves
were analyzed, first to ensure that they corresponded to
a single molecule, and then to extract information on
molecular flexibility. Previous optical tweezers studies
investigated the force-extension behavior of types I and
II procollagen, freshly obtained from mammalian cells in
culture [50, 51]. There, collagen was described as posses-
sing entropic elasticity at forces F < 10 pN, i.e., that
stretching collagen at these low forces removes configur-
ational entropy but does not deform native structure.
This intrinsic flexibility of triple-helical collagen was
described by the persistence length, a parameter that
describes the length scale over which a polymer can

Fig. 3 FPLC purification of type II human recombinant procollagen from HT1080 cell line. a Western blot for type II collagen of samples eluting
from the Q-sepharose column. Samples were eluted in Q sepharose buffer plus a step gradient of NaCl as indicated. Numbers at the top the lanes
refer to the fraction collected, and samples are loaded in equal volumes into each lane of the gel. The earliest fractions contain the most procollagen; this
decreases with increasing ionic strength. b Coomassie-stained gel showing pooled fractions 1–4 (left lane) and a molecular weight marker
(right lane). The two bands of highest molecular weights are full-length type II procollagen pro-α chains, presumably with different internal
crosslinking in the propeptides (see text)
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be thought of as unbent (rigid). The force-extension
behavior we observed for our type II procollagen can simi-
larly be fit at low forces by the inextensible worm-like
chain model (equation (3)), as seen in Fig. 7.
Analysis of an example curve demonstrates the sensi-

tivity of the output persistence length to the range of
forces included in the fit. While fitting the data up to a
maximum force of ~10 pN returned a persistence length
comparable to values previously published in the

literature, limiting the data range to lower maximum
forces resulted in a systematic increase in the best-fit
persistence length (Fig. 7b). This result has not been ob-
served before for single collagen molecules. While per-
sistence length is sensitive to parameters such as slight
geometric offsets between the tethering and stretching
axes, [52] it is possible that the systematic trend ob-
served here reflects a force-dependent structural transi-
tion that could alter the stability of the triple helix as it

Fig. 4 Chymotrypsin digest of recombinant type II human procollagen. Alexa 647-labelled procollagen was incubated with different concentrations of
chymotrypsin for 30 min at 4 °C. Increasing concentrations led to successful removal of the propeptides, while leaving the triple helix intact, as evidenced
by the collapse of all signal into a unique, high-MW band following incubation with 31.2 μg/ml chymotrypsin. a Fluorescence scan of the gel, showing all
protein in the sample. b Western blot with a monoclonal antibody to the N-telopeptide. This Western shows that the high-MW signal is due to collagen,
and furthermore demonstrates that only at the highest concentration is the telopeptide epitope removed
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is stretched [53–55]. Characterization of the force de-
pendence of collagen’s structure is beyond the scope of
the current work; here the agreement in persistence
length within a similar force range used by previous
optical tweezers studies adds further evidence to the
proper assembly of collagen at the molecular level.
In its physiologically abundant form, collagen is found

not as isolated molecules but incorporated into fibrils.
Thus, we wished to verify that our recombinant collagen
was capable of fibril assembly and to characterize this
process and the properties of the assembled fibrils.
These experiments necessitate removal of propeptides to
enable fibril assembly (Fig. 1), and so, to generate a form

of collagen capable of fibril formation, we cleaved pro-
collagen II with Lys-C (Fig. 5) [32]. The cleavage sites of
Lys-C lie 9-10 residues internal to the cleavage sites of
the endogenous N- and C-terminal propeptidases, but
this slightly truncated collagen nonetheless has been
shown previously to produce fibrils morphologically in-
distinguishable from those prepared from the full-length
collagen [32].
Fibrillogensis of the Lys-C treated type II collagen

sample was characterized by atomic force microscopy
(AFM) imaging (Fig. 8) [56, 57]. After 10 min, filaments
grew to 1–3 μm long and around 8 nm high (Fig. 8a).
One can observe asymmetric morphologies in the shorter

Fig. 5 Proteolytic digestion by Lys-C or cathepsin K shows expected cleavage pattern. a Lys-C incubation with purified type II procollagen shows
a reduction in protein size, as seen by silver staining, consistent with removal of N- and C-propeptides. b Western blot with an antibody specific
to the N-telopeptide shows that shorter incubation times result in the removal of propeptide but not telopeptides, while longer incubations result
in cleavage of the N-telopeptide by Lys-C. c Western blot showing increasing time-dependent cleavage of type II collagen (prepared by chymotrypsin
digestion of procollagen) by recombinant cathepsin K
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(less than 1.5 μm long) filaments, with one tapered and
one blunt end, suggesting a unipolar structure [58, 59].
Both ends of longer filaments tend to appear tapered, indi-
cating that in some cases fibril growth continues from
both ends. After 20 min, the fibril height increases to
around 9 nm (Fig. 8b), but without a corresponding in-
crease in length. After 30 min, the fibril height increases
to around 10 nm and their length appears unchanged

(Fig. 8c). No significant change can be observed under fur-
ther incubation of up to 24 h. Therefore, when grown
under these conditions, the fibrils become mature after
30 min of incubation. As before, both unipolar and bipolar
fibrils are observed.
From these images, the bending modulus of fibrils at

different stages of assembly was extracted. Equation (4)
was used to determine persistence lengths from angular

Fig. 6 Circular dichroism (CD) spectroscopy to probe collagen’s triple helical structure. a CD spectrum of our type II collagen, produced by Lys-C
digestion of recombinant human type II procollagen, shows significant negative ellipticity at 198 nm and a slight peak at 223 nm, indicative of
proper formation of the triple helix. b Thermal melt curve for the type II collagen sample of (a), measured by recording the ellipticity at 198 nm
as a function of temperature. The temperature was increased at a rate of 0.4 °C/min. As the triple helix denatures, ellipticity is lost at 198 nm.
The melting temperature obtained from a fit to this plot with equation (2) (red line) is Tm = 39.6 °C
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correlations along the collagen fibrils. From this value
and the height (diameter) [60] of the fibrils, the bending
modulus is given by equation (5). This approach to
extracting mechanical parameters has been applied to
other types of images as well [61, 62]. As the method
does not require indentation, pulling, or other direct
manipulation of the sample it offers advantages in meas-
uring soft and thin samples [63, 64]. The link between
persistence length and mechanical properties is well
established [62], including direct comparative measure-
ments of mechanical response from persistence length
and from stretching [65]. Our analysis assumes the
collagen samples to be equilibrated on the surface
prior to drying (two-dimensional equilibration). If they
are instead two-dimensional projections of solution
conformations, or pinned somewhere between the two-
dimensional and three-dimensional cases, then estimates

for persistence length and hence bending modulus will
be significantly different [66, 67].
A plot of bending modulus versus filament diameter is

shown in Fig. 8d, which also includes the data for the
earliest stages of formation. These data indicate that the
bending modulus decreases as fibril diameter increases,
with a bending modulus for the thickest 11 nm diameter
fibrils of around 8 MPa. While the persistence length
should depend on the diameter, as seen in equation (5),
the bending modulus is not presented as depending on
diameter. In fact, however, the bending modulus does
change with diameter. This decrease in stiffness for fi-
brils vis a vis monomers has been observed for type I
collagen and can be explained by the weaker interactions
between components in a fibril (monomer-monomer in-
teractions) than between components in a monomer (a
triple helix held together by many hydrogen bonds [68]).

Fig. 7 Optical tweezers stretching curves of type II procollagen described at low force by entropic elasticity. a The Worm-Like Chain (WLC) model
(red; equation (3)) is fit to an example force-extension curve (black dots), giving a persistence length of 32 nm for a molecule of 300 nm contour
length, when a maximum force of 5 pN is used for the fit. Inset: a schematic showing procollagen stretching in the optical tweezers and illustrating
the extension z and bead offset from trap Δz, from which force is determined. Schematic is not to scale. b The persistence length from fitting the WLC
model decreases as the maximum force used in the fitting increases. The error bars show the uncertainty of the fitting parameter
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As a final assay of fibril morphology and organization,
we imaged fibrils formed from our recombinant type II
collagen using transmission electron microscopy (TEM)
(Fig. 9). TEM images show fibrils displaying distinct
light/dark D-periodic banding patterns, a distinguishing
feature of well-ordered collagen fibrils. Fibrils imaged
using TEM consistently exhibited larger diameters than
those formed for the AFM imaging experiments. We at-
tribute this to the different protocols followed to initiate
fibril formation in the two sets of experiments. It is well
known that fibril properties can be influenced strongly
by the conditions used for their formation [69]. Import-
antly, here the D-banding revealed in the TEM images
confirms the formation of well-ordered fibrils, and the
measured D-band spacing (69 nm) is consistent with

literature values for type II collagen [70, 71]. This result
offers a final demonstration of the native-like perform-
ance of our recombinantly expressed procollagen.

Conclusions
Utilizing a human fibrosarcoma cell line, we have devel-
oped a recombinant system for expressing human type
II procollagen. Demonstrated advances of this system
over past approaches are (1) an easy-to-screen, non-
covalently linked fluorescence reporter for transfected
cells; (2) a demonstrated suite of post-translational mod-
ifications including hydroxylation and glycosylation in
the resultant purified protein; and (3) a full-length native
procollagen sequence, whose wide range of biophysical
properties characterized within this work all correspond

Fig. 8 Atomic force microscopy analysis of type II collagen fibrillogenesis. a-c Images of collagen fibrils formed after a 10 min, b 20 min, and c 30 min
of incubation. The upward pointing arrows show tapered ends and downward pointing arrows show blunt ends. d Bending modulus versus filament
diameter extracted from AFM images at different time points of the fibrillogenesis process
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to the expected values of the native protein. This system
should enable future work investigating the effects of
chemical composition on these properties, and could

provide a viable alternative to other approaches seeking
to produce correctly modified collagen for materials or
medical investigations.

Fig. 9 Transmission electron microscopy (TEM) shows evidence of highly ordered collagen fibrils. TEM images showing a section of a fibril
formed in vitro from Lys-C-treated recombinant type II procollagen, exhibiting the dark/light D-banding pattern of a well-ordered structure, and
showing substructure within each D period. Fibrils were negatively stained using 3 % uranyl acetate. a Scale bar = 500 nm. b Scale bar = 100 nm
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Methods
Stable cell line construction
The human COL2A1 gene was amplified from IMAGE
consortium [41] CloneID 7486698 using primers that
introduced a 5’ BglII restriction site and a 3’ BamHI
site flanking the gene (forward primer: TTA GAG
ATC TAC CAT GAT TCG CCT CGG GGC TCC
CCA GAC GCT GG; reverse primer: TAA TCG
GAT CCT ATT ACA AGA AGC AGA CCG GCC
C). This allowed the direct replacement of the EYFP
gene from pYIC (Addgene plasmid 18673) with the
COL2A1 gene, leaving an intact internal ribosomal
entry site (IRES) to provide co-translational expres-
sion of ECFP in mammalian cells. DNA sequencing
was used to verify the plasmid-based construct prior
to transfection.
The construct was transfected into human fibrosar-

coma cells (HT1080), [72] which were cultured at 37 °C
with 8 % CO2 in Dulbecco’s modified Eagles media
(DMEM, Mediatech) supplemented with 10 % foetal
bovine serum (FBS, Invitrogen), 0.5 mM ascorbic-2-
phosphate (Asc-2-P, Sigma) [73] and 20 mM 4-(2-
Hydroxyethyl) piperazine-1-ethanesulfonic acid, N-(2-
Hydroxyethyl) piperazine-N′-(2-ethanesulfonic acid)
pH 7.2 (HEPES, Sigma). Plasmids were introduced into
the cells using Superfect reagent (Qiagen) as per manufac-
turer’s recommendation [74]. Stable transformants were
selected by the addition of geneticin (G418, Mediatech) to
400 μg/ml in the above media. Surviving cells were visu-
ally examined for ECFP fluorescence and selected clones
expanded to confluence in T175 flasks (Sarstadt). Procol-
lagen was precipitated from the clarified (5,000 g, 15 min)
supernatant by the dropwise addition of 50 % aqueous
PEG 3350 (Sigma) to a final concentration of 5 %, then
harvesting by centrifugation (15,000 g, 15 min). The pellet
was resuspended in a minimum volume of 100 mM Tris–
HCl (Invitrogen) containing 403 mM NaCl (Caledon) and
25 mM EDTA (Bioshop) at pH 8.0. Select lines confirmed
to be producing procollagen via Western blotting were
re-cloned to homogeneity, expanded, and then stored
in liquid nitrogen.

Procollagen II purification
Secreted type II procollagen was purified from the stable
cell line following a modification of a published protocol
[17]. The procollagen producing cell line 2D12 was ex-
panded to confluence into 1400 cm2 roller bottles under
the conditions specified above, except with 0.2 mM Acs-
2-P and 330 μg/ml G418. Once confluence was achieved,
the media was replaced with harvest media (DMEM
with 0.2 mM Asc-2-P and 20 mM HEPES pH 7.4).
Media was subsequently removed by aspiration and
replaced every 48 to 72 h for up to 2 weeks. Ap-
proximately 100 ml of 1 M Tris–HCl with 4 M NaCl

and 250 mM EDTA pH 8.0 were added to each litre
of media immediately after harvest, followed by clarifica-
tion (5,000 g, 15 min, 4 °C). All subsequent steps were
performed at 4 °C.
Proteins in the media were concentrated using either

ammonium sulfate precipitation or tangential flow filtra-
tion. Ammonium sulfate ((NH4)2SO4, 175 mg/mL) was
added to the clarified media to precipitate the procolla-
gen overnight. The precipitate was harvested by centri-
fugation (7000 g for 4 h), the pellet was resuspended in
1X DE I buffer (50 mM Tris HCl, 100 mM NaCl, 2 mM
EDTA, 1 M Urea, pH 7.4 at 4 °C), and the sample was
further dialysed overnight against 1X DE I buffer to
remove excess salts (4 °C, 12 kDa molecular weight cut-
off ). Alternatively, in a method that appeared to give a
higher procollagen yield, the procollagen-containing
media was concentrated from ~1 l to 50 ml using
tangential flow filtration (Millipore Pellicon XL 100 kDa,
4 °C, ~13 h), and then dialysed as above into 1X DE I buf-
fer. Following centrifugation (2,000 g for 10 min) to clarify
the sample, it was passed through a diethylaminoethanol
(DEAE) cellulose column (Sigma). The procollagen-
containing flow-through was collected and immedi-
ately dialysed against several changes of Q Sepharose
buffer (37 mM Tris–HCl, 1 mM EDTA, 1 M Urea,
pH 8.5 at 4 °C). The dialysate was clarified as before,
and then applied onto a Q Sepharose column (Sigma).
The procollagen was eluted with a stepwise gradient of
NaCl in Q Sepharose buffer. For long-term storage, the
collagen was dialysed into 1X storage buffer (10 mM
Tris HCl, 40 mM NaCl, 2.5 mM EDTA, pH 8.0) and
kept at 4 °C.
Concentrations of collagen were determined using a

Sircol-type assay, [75] using as a dye Sirius Red F3B
(Direct Red 80, Sigma). The assay was validated by
comparison with a commercial Sircol assay (Biocolor,
with rat tail tendon collagen I as a standard) and
using chicken sternal cartilage collagen (Sigma C9301)
as a standard.

Gel electrophoresis and Western blotting
Samples were run in 6 % polyacrylamide (Biorad) gels
under reducing, denaturing conditions. Staining was
performed with Coomassie blue (1 g Coomassie R250 in
40 % methanol) or silver (Biorad; volume used was half
of manufacturer’s recommendation). Gels containing
collagen fluorescently labelled with Alexa 647 (see
below) were imaged with a gel scanner (Typhoon 9410
Gel and Blot Imager). For Western blotting, samples
were transferred to 0.22 μm PVDF membranes (Biorad)
and probed for the presence of procollagen with a colla-
gen II specific monoclonal antibody (5B2.5, Abcam),
which recognizes the sequence GGFDEK in the N-
terminal telopeptide.
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Fluorescent labelling
Procollagen was labelled [76] with Alexa Fluor 647
carboyxlic acid, succinimidyl ester (Invitrogen A-20006) in
0.2 M carbonate-bicarbonate buffer pH 9.3 with 1 M
NaCl, for 1 h at room temperature with gentle shaking in
the dark. Unreacted fluorophores were removed using an
HR-300 Sephadex column.

MS/MS identification of tryptic fragments
Measurements were conducted at the UVic-Genome
BC Proteomics Centre. Protein identity was established by
searching against the Uniprot-Swissprot 20090225 (410518
sequences; 148080998 residues) all species, with the search
parameters set to include modifications including hydroxy-
proline, hydroxylysine, glucosylgalactosyl hydroxylysine and
galactosyl hydroxylysine, known post-translational modifi-
cations of collagen [77].

Protease digestion
Chymotrypsin cleavage: Procollagen was digested with
variable concentrations of chymotrypsin (Sigma, C7762)
in 1X storage buffer, in volumes of 20 μl for 30 min
at 4 °C. Reactions were stopped by adding 5 μl gel
loading buffer.
Lys-C cleavage: Procollagen was incubated at 37 °C

with lysyl endopeptidase (Lys-C, Roche, EC.3.4.21.50)
[32] in 50 mM Tris buffer, pH 7.0 with 200 mM NaCl.
Aliquots were removed at the specified time points and
reactions were quenched by addition of an equal volume
of protein gel loading buffer.
Cathepsin K cleavage: Recombinant procollagen was

first digested by chymotrypsin to remove propeptides
and generate type II collagen. Collagen was purified
away from digested propeptides and chymotrypsin (spin
filter, MWCO 50 kDA) and transferred into 1X activity
buffer (100 mM sodium acetate, 2.5 mM EDTA, 2.5 mM
dithiothreitol (DTT), pH 5.5). Digestions were per-
formed at 28 °C in 1X activity buffer at concentrations
of 0.6 mg/ml collagen, 400 nM of recombinant human
cathepsin K [78] and 200 mM chondroitin sulfate (CSA)
(Sigma-Aldrich). At the desired time points, aliquots were
removed and inactivated for 30 min at room temperature
with E64 (Sigma-Aldrich), a general cysteine protease in-
hibitor. Western blots were performed with an anti-type II
collagen antibody cocktail (Chondrex, 7006).

Circular dichroism (CD) spectroscopy
Following removal of propeptides via Lys-C digestion,
collagen was exchanged into 0.2 M sodium phosphate
for CD measurements. CD measurements were performed
at 20 °C with a JASCO 810 CD spectrometer. The
spectrum was measured at 0.5 nm wavelength increments
and subsequently smoothed with a 10-point moving aver-
age. To determine a melting temperature, the ellipticity at

198 nm was monitored as the temperature was increased
from 20 to 60 °C at a rate of 0.4 °C/min. The melting
curve was fit with a sigmoidal expression

E Tð Þ ¼ E2 þ E1−E2ð Þ
1þ exp T−Tm

dT

� �� ð1Þ

to obtain an estimate for the melting temperature under
these conditions. Here, Tm is the melting temperature,
dT relates to the sharpness of the transition, and E1 and
E2 represent the ellipticities before and after melting.

Optical tweezers stretching
Single-molecule procollagen stretching experiments (Fig. 7a,
inset) were performed using our home-built single-beam
optical tweezers instrument [39, 79]. It uses a high numer-
ical aperture objective lens (Olympus UPlanApo/IR, NA
1.2, 60 X water-immersions) to focus an 835 nm, 200 mW
diode laser Gaussian beam into a flow chamber. A manu-
ally pulled glass micropipette is inserted in the flow cham-
ber and mounted on a piezo-electric stage (Mad City Labs,
Nano H-50), allowing it to be moved relative to the optical
trap with nanometer-scale precision. The manipulation is
in a plane perpendicular to the optical axis. Using a second,
identical objective lens the laser light is re-collimated
and directed onto a position sensitive photodiode (UDT
Sensors, DL-10) that images the back-focal plane of the
second objective. The photodiode detects deflections of
the light as a result of the trapped object displacement
from the trap center in directions perpendicular to the op-
tical axis. In addition, images are recorded at 60 Hz using
a CCD camera (Flea, Point Grey Research), from which
the positions of the trapped and pipette-immobilized
beads can be determined.
The deflection of the laser was used to determine the

position of the trapped bead and its offset from equilib-
rium Δz, and the stage read-out was used to determine
the relative pipette bead position. These data were sam-
pled at 1 kHz and were low-pass filtered to 10 Hz.
Photodiode readings were calibrated based on positions
of the trapped bead from video imaging. The video im-
ages are analyzed using an algorithm that fits a circle to
the edge of the bead image (Labview 8.5, IMAQ Find
Circular Edge), and were converted to distances in
nanometers based on calibration of the camera.
To stretch single procollagen molecules, their ends were

functionalized and bound to microspheres for manipula-
tion. The cysteine residues in the globular propeptide ends
were first reduced with beta-mercaptoethanol (Bioshop),
and then were covalently biotinylated using maleimide-
biotin (EZ-Link Maleimide-PEG2-Biotin, Thermo Scien-
tific). Biotinylation was confirmed by Western blotting
with streptavidin. The biotinylated procollagen was la-
beled with an antibody against the N-terminal propeptide
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(003-02, Abcam). The end-labeled procollagen sample
was incubated with 2.1 μm diameter protein-G-coated
polystyrene beads (Spherotech). In the optical tweezers
instrument, the free biotinylated end of the molecule was
attached specifically to a streptavidin-coated polystyrene
bead held by suction on the tip of the micropipette [80].
This bead had a diameter of 1.27 μm, smaller than the
trapped bead to be able distinguish it from the other bead
and also to avoid optical interaction with the laser beam
when a close separation from the trapped bead [79]. By
moving the pipette, the end-to-end distance of the mol-
ecule was manipulated while positions of both beads were
recorded. The resultant offset of the trapped bead Δz re-
veals the force applied on the tethered molecule during ma-
nipulation. The relative separation of the two beads z gives
the relative end-to-end distance of the molecule. Stretching
experiments were performed in PBS buffer pH 7.4.
From the trapped bead displacement Δz from equilib-

rium, force was calculated via F = -κΔz, where κ is the
trap stiffness. Using power spectral analysis and fitting a
Lorentzian to the data, trap stiffness is calculated from
the resulting fitting parameter, corner frequency f c ¼ κ

2πγ

[81]. γ is the drag coefficient of the trapped particle,
here assumed to be that corresponding to the nominal
bead radius.
To analyze the response of the molecule to the applied

force, the inextensible Worm-Like Chain (WLC) poly-
mer elasticity model was used [82, 83].

F zð Þ ¼ kBT
p

1

4 1− z
L

� �2 − 1
4
þ z
L

" #
ð2Þ

Here, F(z) provides the force required to achieve a
given end-to-end extension of the molecule, L is the mo-
lecular contour length (300 nm for collagen [68]), kB is
Boltzmann’s constant, T is the absolute temperature, and
p is the persistence length of the molecule. Because the
positions of the beads are known only relatively and the
exact binding point on the pipette bead is unknown, a
length offset parameter, o, is added to equation (2):

F zð Þ ¼ kBT
p

1

4 1− z−o
L

� �2 − 1
4
þ z−o

L

" #
ð3Þ

Force-extension curves were analyzed only if they rup-
tured to zero force in a single step, indicating tethering
by a single molecule.

Fibril formation
To make collagen fibrils for TEM analysis, purified pro-
collagen was first dialyzed into phosphate buffered saline
(PBS) pH 7.4 using Slide-A-Lyzer MINI Dialysis Units
(20 kDa MWCO, Pierce) to a final concentration of
120 μg/ml. To initiate fibril formation, 25 μl of the

concentrated procollagen was incubated with 3.5 μl of
10 μg/ml Lys-C (Roche) at 37 °C to remove N-and C-
terminal propeptides [32]. Collagen fibrils formed after
24 h of incubation were isolated by centrifugation at
16,000 g for 45 min. The supernatant was removed and
the pellet gently resuspended in 10 μl of PBS.
For AFM analysis, Lys-C cleavage of procollagen was

followed by removal of enzyme and propeptide frag-
ments by buffer exchange into 10 mM HCl via multiple
passes through a Millipore YM-100 microcon filtration
unit. This collagen was assembled into fibrils following
the general approach of the “cold start” procedure [69].
The 100 μg/ml collagen monomer solution was mixed
with phosphate buffer resulting in a solution of 0.05 M
K2HPO4, 0.05 M KH2PO4 and 0.05 mg/ml collagen. The
solution pH was adjusted to 7.0 by adding 0.01 M HCl
or 0.01 M NaOH solutions. The sample was then incu-
bated in a closed conical tube at 35 °C in a water bath.
The solution pH remained around 7 throughout the
experiment.

Atomic force microscopy
Every 10 min, 10 μl solution was removed and diluted 100
times with ultrapure water (Barnstead, 18.2 MΩ · cm).
Then 10–20 μl of diluted solution was deposited on a
freshly cleaved mica surface. The sample was dried with a
stream of dry, filtered compressed air for about 5 min and
then mounted on the AFM stage for analysis.
All AFM experiments were performed using tapping

mode (MikroMasch NSC35/CR-AU tips) under ambient
conditions using an Asylum Research MFP-3D. Persist-
ence lengths of the filaments were determined using the
software 2D Single Molecules, as follows [84]. The fila-
ment contour was drawn by tracing along the filament
direction. The program equally subdivided the contour
curves into variable length vectors. These vectors were
then analyzed to calculate persistence length p of the
filament using the following equation assuming two-
dimensional equilibration: [66]

cosθh i2D ¼ exp −
l
2p

� �
ð4Þ

Here, θ is the angle between two tangent vectors sepa-
rated by distance l along the filament contour. To ex-
tract the bending modulus, the following relation was
applied, [85]

p ¼ πEb

64kBT
� d4; ð5Þ

where Eb is the bending modulus of the filament and d
is its diameter.

Wieczorek et al. BMC Biotechnology  (2015) 15:112 Page 14 of 17



Transmission electron microscopy
Samples were prepared by floating carbon-Formvar cop-
per grids (300 mesh, Ted Pella) on 5 μl of resuspended
collagen fibrils in PBS for 1 h. The grids were washed
three times with deionized water, blotted with Whatman
filter paper and then negatively stained with 2 % uranyl
acetate (Ted Pella) for 45 s. Excess stain was removed by
blotting and the grids were allowed to air dry at room
temperature. The negatively stained samples were im-
aged at 200 kV accelerating voltage with a Hitachi
8000 transmission electron microscope at Simon Fraser
University’s NanoImaging facility in 4D Labs.

Additional file

Additional file 1: Figure S1. Results of mass spectrometric analysis on
the recombinant human type II procollagen, demonstrating protein
sequence coverage of COL2A1 and expected posttranslational
modifications. (PDF 70 kb)
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