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Abstract

Background: Community-acquired pneumonia (CAP) requires urgent and specific antimicrobial therapy. However,
the causal pathogen is typically unknown at the point when anti-infective therapeutics must be initiated. Physicians
synthesize information from diverse data streams to make appropriate decisions. Artificial intelligence (Al) excels at
finding complex relationships in large volumes of data. We aimed to evaluate the abilities of experienced physicians
and Al to answer this question at patient admission: is it a viral or a bacterial pneumonia?

Methods: We included patients hospitalized for CAP and recorded all data available in the first 3-h period of care
(clinical, biological and radiological information). For this proof-of-concept investigation, we decided to study only CAP
caused by a singular and identified pathogen. We built a machine learning model prediction using all collected data.
Finally, an independent validation set of samples was used to test the pathogen prediction performance of: (/) a panel
of three experts and (i) the Al algorithm. Both were blinded regarding the final microbial diagnosis. Positive likelihood
ratio (LR) values > 10 and negative LR values < 0.1 were considered clinically relevant.

Results: We included 153 patients with CAP (70.6% men; 62 [51-73] years old; mean SAPSII, 37 [27-471), 37% had viral
pneumonia, 24% had bacterial pneumonia, 20% had a co-infection and 19% had no identified respiratory pathogen.
We performed the analysis on 93 patients as co-pathogen and no-pathogen cases were excluded. The discriminant
abilities of the Al approach were low to moderate (LR+ = 2.12 for viral and 6.29 for bacterial pneumonia), and the
discriminant abilities of the experts were very low to low (LR+ =3.81 for viral and 1.89 for bacterial pneumonia).
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Conclusion: Neither experts nor an Al algorithm can predict the microbial etiology of CAP within the first hours of
hospitalization when there is an urgent need to define the anti-infective therapeutic strategy.

Keywords: Community-acquired pneumonia, Diagnosis, Artificial intelligence

Background
The World Health Organization (WHO) estimates that
due to antimicrobial resistance, bacterial infections will
outcompete any cause of death by 2050 [1], meaning that
there is an urgent need for new strategies to improve anti-
biotic treatments. The Agency for Healthcare Research
and Quality (AHRQ) Safety Program for Improving Anti-
biotic Use recently proposed a structured approach to im-
prove antibiotic decision making by clinicians, which
emphasizes the 4 critical time points in antibiotic prescrib-
ing [2, 3]. The first time point of this organized approach
requires the physician to ask: “Does this patient have an
infection that requires antibiotics?”. This question aims to
remind the clinician to synthesize all relevant patient in-
formation to determine the likelihood of an infection that
requires antibiotic therapy. The questionable ability of
physicians to answer this first question properly in the
context of pneumonia was the impetus for this study.
Community-acquired pneumonia (CAP) is a major
global healthcare burden associated with significant
morbidity, mortality and costs [4—9]. Identifying the eti-
ology of CAP is an utmost priority for its management
and treatment decisions [10]. Although the range of
pathogens that may be involved in these cases is broad,
physicians must at least determine whether a bacterial
or a viral pathogen (or both) is causing the pneumonia
to determine if antibiotic treatment is appropriate.
Whether the etiology of CAP is viral or bacterial should
be determined based on the patient interview, clinical
symptoms and signs, biological findings and radiological
data from the very first hours of the patient’s presenta-
tion (a time when microbiological findings are typically
not yet available). Physicians must use the knowledge
obtained from their routine practice and medical educa-
tion to make sense of these diverse data input streams,
triage the resulting complex dataset, and make appropri-
ate decisions. A growing body of research has recently
suggested that difficulties in accessing, organizing, and
using a substantial amount of data could be significantly
ameliorated by use of emerging artificial intelligence
(AI)-derived methods, which are nowadays applied in di-
verse fields including biology, computer science and
sociology [11]. AI excels at finding complex relationships
in large volumes of data and can rapidly analyze many
variables to predict outcomes of interest. In the context
of CAP in intensive care units (ICUs), where information

are particularly diverse, we wondered if an AI data-
driven approach to reducing the medical complexity of a
patient could allow us to make a better hypothesis re-
garding the microbial etiology at the patient’s
presentation.

The aim of our study was to evaluate and compare the
abilities of experienced physicians and a data-driven ap-
proach to answer this simple question within the first
hours of a patient’s admission to the ICU for CAP: is it
a viral or a bacterial pneumonia?

Methods

This study was conducted in two steps. First, we per-
formed prospective data collection (step 1); second, we
retrospectively assessed the microbial etiology prediction
performances of experienced physicians (more than 10
years’ experience) and a computational data-driven ap-
proach for this dataset (step 2).

Step 1: patient data collection
Prospective data collection was conducted in a single cen-
ter over an 18-month period. The study complied with
French law for observational studies, was approved by the
ethics committee of the French Intensive Care Society (CE
SRLF 13-28), was approved by the Commission Nationale
de l'Informatique et des Libertés (CNIL) for the treatment
of personal health data. We gave written and oral informa-
tion to patients or next-of-kin. Patients or next-of-kin
gave verbal informed consent, as approved by the ethic
committee. Eligible patients were adults hospitalized in
ICU for CAP. Pneumonia was defined as the presence of
an infiltrate on a chest radiograph and one or more of the
following symptoms: fever (temperature=38.0°C) or
hypothermia (temperature < 35.0 °C), cough with or with-
out sputum production, or dyspnea or altered breath
sounds on auscultation. Community-acquired infection
was defined as infection occurring within 48 h of admis-
sion. Cases of pneumonia due to inhalation or infection
with pneumocystis, pregnant women and patients under
guardianship were not included. Cases with PaO2 > 60
mmHg in ambient air or with the need for oxygen therapy
<4 L/min or without mechanical ventilation (invasive or
non-invasive) were not included.

Baseline patient information was collected at case
presentation through in-person semi-structured inter-
views with patients or surrogates (see Supplementary
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Table 1). Observations from the physical examination at
presentation, including vital signs and auscultation of
the lungs, were recorded. Findings of biological tests
done at presentation (within the first three-hour period)
were also recorded (hematology and chemistry tests), as
were findings from chest radiography. Two physicians
interpreted chest x-rays; a third physician reviewed the
images in cases of disagreements in interpretation.
Microbiological investigations included blood cultures,
pneumococcal and legionella urinary antigen tests, bacter-
ial cultures and multiplex PCR RespiFinder SMART 22°
(PathoFinder B.V., Oxfordlaan, Netherlands) analyses on
respiratory fluids (sputum and/or nasal wash and/or endo-
tracheal aspirate and/or bronchoalveolar lavage [BAL]).

Step 2: clinician and data-driven predictions of microbial
etiology

Clinicians and a mathematical algorithm were tasked with
predicting the microbial etiology of pneumonia cases
based on all clinical (43 items), and biological or radio-
logical (17 items) information available in the first 3-h
period after admission except for any microbiological find-
ings (Supplementary Table 1). For this proof-of-concept
investigation, we decided to study only CAP caused by a
singular and identified pathogen; cases of CAP with mixed
etiology or without microbiological documentation were
excluded. From the initial dataset of patients, we randomly
generated two groups (prior to any analysis): (i) a work
dataset (80% of the initial dataset) dedicated to construc-
tion of the mathematical model and training the experts;
(ii) an external validation dataset (20% of the initial data-
set) dedicated to testing the prediction performances. The
methodology used is summarized in Fig. 1a.

Clinician predictions

An external three member expert panel reviewed the work
dataset to familiarize themselves with the dataset contain-
ing the patient characteristics. Then, the experts were
asked to predict the microbial etiologies in the external
validation dataset (Fig. 1a). The clinicians had to answer
the question: is it a viral or a bacterial pneumonia? They
were also asked to give a confidence index regarding the
accuracy of their answer: 1 (very low), 2 (low), 3 (moder-
ate), 4 (high). Agreement of at least two of the three ex-
perts was required for the final predicted etiology.

Data-driven approach predictions

The data were analyzed using an Al method (Fig. 1b)
involving a logistic regression analysis using forward
stepwise inclusion. This method was employed to optimize
the ability of the algorithm to distinguish viral and bacterial
pneumonia based on the combination of parameters
available in the work dataset. All available data were thus
included in the model, regardless of the data type.
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Qualitative data were processed as binary information (i.e.
influenza immunization: present “1”, absent “0”). Raw data
were provided for quantitative values (no cut-offs defined).
We built the predictive mathematical model from the work
dataset using the Random Forest method and Leave-One-
Out Cross-Validation. We started by determining the most
relevant item to use through a variable selection procedure
using the Random Forest method and the Mean Decrease
in Gini criterion (value 0.75). Then, the population in the
work dataset was randomly separated into two independent
datasets: 80% of cases were assigned to the training set and
20% were assigned to the test set. N models with bootstrap
resampling (with N =25) were performed on the training
set and validated on the test set. The model providing the
best prediction criteria was selected, and the final model
was built from the entire work dataset. Finally, an inde-
pendent validation set of samples was used to test the
pathogen prediction performance of the Al algorithm. To
decipher the relative importance of clinical versus
biological/radiological variables in the predictions, we
generated three algorithms built from different parameters
of the work dataset: (i) clinical variables only, (if) biological
and radiological variables only, and (iii) all variables. For
each parameter tested, the area under the ROC curve
(AUC) was calculated, and the best cutoff value that yielded
the highest accuracy was determined along with the
sensitivity and specificity.

Statistical analysis

We compared the concordance between the predictions
and the final microbial etiologies for the experts and for
the algorithm and calculated sensitivity, specificity,
positive predictive value (PPV), negative predictive value
(NPV) and likelihood ratios (LRs) for the predictions [12].
Given the importance of this diagnostic prediction in the
patient’s therapeutic management, we determined that the
discriminant properties should be “high” (LR + > 10 and/
or LR- < 0.1) for the prediction to be considered useful for
clinical practice [13, 14]. Table 1 summarizes the LR
cutoff values defining the discriminant properties of the
predictions [13]. Quantitative data are reported as the
median value and interquartile range (IQR). Statistical
analyses were done with JMP software (SAS, version 7.2).

Results

A total of 188 patients diagnosed with CAP were eligible
for inclusion over an 18-month period; 153 patients were
included; 37% had viral pneumonia, 24% had bacterial
pneumonia, 20% had a co-infection and 19% had no
identified respiratory pathogen. Finally, we performed the
analysis on 93 patients as co-pathogen and no-pathogen
cases were excluded. The patient selection flow chart is
presented in Fig. 2. The characteristics of the patients
according to microbial diagnosis are detailed in Table 2.
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Fig. 1 Schematic representation of the study methodology. a We built an initial dataset from all sources of information available in the first 3 h of
the patient’s presentation in the ICU for CAP. We matched these presenting cases with their final identified causal respiratory pathogen. The
initial dataset was randomly split into a work dataset, used for the machine learning and training the ICU experts on how the data were
presented, and an external validation dataset used to assess the prediction performances of the artificial intelligence (Al) algorithm and the panel
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Clinician predictions

Experts had “high” confidence in their predicted etiology
only 18.8% of the time. Confidence levels were typically
“moderate” (38.9%) or “low” (42.6%), but never “very low”.
All three experts agreed in 61.1% of the cases. Correct pre-
dictions were made 66.7% of the time. The clinician pre-
dictions had a sensitivity of 0.86, specificity of 0.54, PPV of
0.54 and NPV of 0.86 for the diagnosis of bacterial pneu-
monia (Table 3). The LR+ for diagnosing a viral pneumo-
nia was 3.81, and the corresponding LR- was 0.53. The

LR+ for diagnosing a bacterial pneumonia was 1.89, and
the corresponding LR- was 0.26. Therefore, the discrimin-
ant abilities of experienced physicians to distinguish viral
and bacterial etiologies for pneumonia were categorized as
very low to low (according to defined cutoff values for the
interpretation of likelihood ratios, see Table 1).

Data-driven approach predictions
Predictions by the data-driven algorithms generated from
clinical data alone resulted in an ROC curve with a
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Table 1 Interpretation of likelihood ratios

LR+ LR- Discriminant properties
>10 <01 High

5-10 0.1-0.2 Moderate

2-5 0.2-05 Low

1-2 0.5-1 Very low

LR+, positive likelihood ratio; LR-, negative likelihood ratio

corresponding AUC of 0.72. Predictions by the data-driven
algorithms generated from biological and radiological vari-
ables data alone resulted in an ROC curve with an AUC of
0.81. Finally, predictions generated from the dataset that in-
cluded all data sources outperformed the other algorithms
and resulted in an ROC curve with an AUC of 0.84 (Table
3, Fig. 3). This model based on the more inclusive dataset
was considered the final model for comparison with the ex-
pert panel. The final algorithm made predictions with a
sensitivity of 0.57, specificity of 0.91, PPV of 0.80 and NPV
of 0.77 for the diagnosis of bacterial pneumonia. The LR+
for diagnosing a viral pneumonia was 2.12, and the corre-
sponding LR- was 0.16. The LR+ for diagnosing a bacterial
pneumonia was 6.29, and the corresponding LR- was 0.47.
Consequently, the discriminant abilities of the data-driven
algorithm to distinguish viral and bacterial etiologies for
pneumonia were categorized as low to moderate (according
to defined cutoff values for the interpretation of likelihood
ratios, see Table 1).

Discussion
Addressing antimicrobial resistance requires investment
in several critical areas, the most pressing of which is
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the ability to make rapid diagnoses to promote appropri-
ate anti-infective therapeutics and limit unnecessary
antibiotic use. Here, we set up a pilot study and demon-
strated that neither experts nor a mathematical algo-
rithm could accurately predict the microbial etiology of
severe CAP within the first 3 hours of hospitalization
when there is an urgent need to define the appropriate
anti-infective therapeutic strategy.

We encoded all information available in the first 3 hours
after admission for a large cohort comparable with other
published cohorts in terms of the distribution of causal mi-
crobial pathogens, patient characteristics and severity of dis-
ease [15-17]. We demonstrated that experienced clinicians
synthesizing all this information failed to adequately answer
the question: “is it a viral or a bacterial pneumonia?’, as the
discriminant ability between the two diagnoses was consid-
ered Jow. We interpreted our results mainly based on the
calculation of likelihood ratios, as recommended for reports
of a diagnostic test for an infectious disease [12]. Likelihood
ratios incorporate both sensitivity and specificity and, unlike
predictive values, do not vary with prevalence, making them
good statistical tools to facilitate translation of knowledge
from research to clinical practice [12]. In parallel, we de-
signed a data-driven approach. Different AI methods were
available; we selected the Random Forest method because it
is one of the most efficient strategies for providing a predict-
ive algorithm in this context [18—21]. Importantly, the final
algorithm was tasked with providing predictions for a novel
population independent of the dataset used for the algo-
rithm construction. The discriminant abilities of the AI ap-
proach restricted to the binary choice “viral” or “bacterial”
were superior to those of experts but still considered low or

Assessed for eligibility
(n=181)

Excluded (n=28)

Studied patients with
CAPinICU
(n=153)

Microbial etiology

Diagnosis other than CAP (11):
Alveolar hemorrhage (1)
Acute exacerbation of idiopathic pulmonary
fibrosis (2)
Acute chest syndrome (sickle-cell disease) (1)
Cardiogenic pulmonary edema (2)
Amiodarone-induced pulmonary toxicity (1)
Aspiration pneumonia (2)
Normal chest radiography (2)

Pneumocystis pneumonia (12)

No consent given (3)

Patient under guardianship (1)

Language issue (1)

Viral Bacterial Mixed

(n=57, 37%) (n=36, 24%)

(n=31, 20%)
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(n=29, 19%)

N J
Y
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Fig. 2 Flow chart for patient selection
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Table 2 Baseline patient characteristics

Total Bacteria Virus Co-infection No pathogen

(n=153) (n=36) (n=57) (n=31) (n=29)
Sex (male), n (%) 108 (70.6%) 28 (77.8%) 32 (56.1%) 24 (77.4%) 24 (82.7%)
Age (years), median (range) 62 (51-73) 65 (53-77) 61 (48-68) 62 (57-73) 62 (51-73)
SAPS IlI, median (range) 37 (27-47) 44.5 (34-53.5) 33 (27-44) 42 (25-55.5) 31 (19-41)
BMI, median (range) 27 (23-32) 25 (23-27) 31 (26.5-35) 27 (23-31) 28 (23-31)
Seasonal influenza vaccination, n (%) 47 (30.7%) 16 (44.4%) 12 (21%) 8 (25.8%) 11 (37.93%)
Pneumococcal vaccination, n (%) 27 (17.6%) 8 (22.2%) 5 (8.8%) 9 (29%) 5 (17.24%)
COPD, n (%) 37 (24.2%) 6 (16.7%) 11 (19.3%) 7 (22.6%) 13 (44.83%)
Asthma, n (%) 9 (5.9%) 1 (2.8%) 5 (8.8%) 2 (6:4%) 1 (3.4%)
Chronic heart failure, n (%) 22 (14.4%) 1 (2.8%) 10 (17.5%) 7 (22.6%) 4 (13.8%)
Chronic renal failure, n (%) 12 (7.8%) 2 (5.6%) 5 (8.8%) 2 (6.4%) 3 (10.3%)
Diabetes, n (%) 27 (17.6%) 3 (8.3%) 10 (17.5%) 8 (25.8%) 6 (20.7%)
Tobacco use, n (%) 57 (37.2%) 13 (36.1%) 21 (58.3%) 10 (32.3%) 13 (44.8%)
Alcohol abuse, n (%) 29 (18.9%) 9 (25%) 5 (8.8%) 10 (32.3%) 5(17.2%)
Immunocompromised patient, n (%) 41 (26.8%) 11 (30.6%) 11 (19.3%) 12 (38.7%) 7 (24.1%)
Patient treated with antibiotic(s), n (%) 152 (99.3%) 36 (100%) 57 (100%) 31 (100%) 28 (96.5%)
Patient treated with antiviral drug(s), n (%) 21 (13.7%) 0 (0%) 18 (31.6%) 3 (9.7%) 0 (0%)
Patient mechanically ventilated, n (%) 113 (73.9%) 33 (91.7%) 39 (68.4%) 20 (64.5%) 21 (72.4%)
Patient with tracheal intubation, n (%) 89 (58.2%) 30 (83.3%) 28 (49.1%) 19 (61.3%) 12 (41.4%)
Invasive mechanical ventilation (day), median (range) 7 (4-14) 7 (5-9.7) 8 (4-15.7) 6.5 (4.2-10.7) 7 (52-11.7)
Non-invasive mechanical ventilation (day), median (range) 2 (1-4) 2 (2-4) 2 (1-4.5) 1(1-1) 2.5 (1-3)
ARDS, n (%) 41 (26.8%) 15 (41.7%) 13 (22.8%) 8 (25.8%) 5(17.2%)
Patient treated with vasopressor, n (%) 47 (30.7%) 17 (47.2%) 13 (22.8%) 12 (38.7%) 5 (17.2%)
Vasopressor (day), median (range) 3 (2-5) 3(2-5) 2 (2-3) 35 (1-6) 3 (2-3)
Creatinine (uM), median (range) 106 (81-161) 113 (86-194) 108 (77-174) 121 (90-160) 88 (73-110)
Renal replacement therapy, n (%) 14 (9.1%) 7 (19.4%) 5 (8.8%) 1 (3.2%) 1 (3.4%)
ICU mortality, n (%) 13 (8.5%) 5 (13.9%) 3 (53%) 5 (16.1%) 0 (0%)

SAPSII Simplified acute physiology score Il, BMI Body mass index, COPD Chronic obstructive pulmonary disease, ARDS Acute respiratory distress
syndrome, ICU Intensive care unit

Table 3 Diagnostic prediction performances

Data-driven approach predictions Clinician predictions

Algorithm built from Algorithm built from Algorithm built

clinical data biological and radiological from all data sources

data

Sensitivity 0.75 0.54 057 0.86
Specificity 0.71 0.86 091 0.54
PPV 043 0.86 0.80 0.54
NPV 0.91 0.54 0.77 0.86
Accuracy 0.72 0.67 0.78
AUC 0.72 0.81 0.84
LR + bacterial pneumonia 262 382 6.29 1.89
LR + viral pneumonia 2.86 1.89 2.12 3.81
LR - bacterial pneumonia 0.35 0.53 047 0.26
LR - viral pneumonia 0.38 0.26 0.16 0.53

PPV Positive predictive value, NPV Negative predictive value, AUC Area under the curve, LR Likelihood ratio
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Fig. 3 ROC curve of the data-driven algorithm predictions

moderate and were ultimately insufficient to provide an in-
disputable therapeutic decision. It is important to emphasize
that we chose a high cutoff value for determining the dis-
criminant ability of the Al approach (LR+ > 10, LR-<0.1);
this choice was made for two reasons. First, in this proof-of-
concept study, we did not analyze co-infections and re-
stricted the possible choices to a binary prediction. Because
we reduced the complexity of the cases, we expected high
predictive performances. Second, the goal of this study was
not a prediction of outcomes (e.g., ICU length of stay, mor-
tality), which are informative but do not determine patient
management; it was to provide a clear and immediate med-
ical decision: whether or not to prescribe antibiotics. The
immediate clinical consequences in this situation demand a
high predictive performance. Still, it is important to high-
light that the machine learning method we developed
achieved an AUC of 0.84, which is superior or at least equal
to AUC values usually observed for predictive mathematical
models developed for the ICU environment. For instance,
the Systemic Inflammatory Response Syndrome (SIRS) cri-
teria, the Simplified Acute Physiology Score II (SAPS II) and
the Sequential Organ Failure Assessment (SOFA) have
AUC values of 0.61, 0.70 and 0.73, respectively, for identify-
ing sepsis [22]. An Al Sepsis Expert algorithm for early pre-
diction of sepsis has been engineered and achieved AUC
values ranging from 0.83-0.85 according to the time of the
prediction. An AI method for predicting prolonged mechan-
ical ventilation achieved an AUC of 0.82 [23].

How can it be that AI or machine-learning predictive al-
gorithms that can already automatically drive cars or
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successfully understand human speech failed to predict
the microbial cause of pneumonia accurately? First, having
data of excellent quality is critical for the success of Al
predictions. The ICU environment is data-rich, providing
fertile soil for the development of accurate predictive
models [24], but it is also a challenging environment with
heterogeneous and complex data. In our study, the data
that fueled the AI method were from a real-world data
source. It is probably more difficult to create a consistent
data format when merging data from interviews, patient
examinations, biological and radiological information than
when using datasets from the insurance or finance indus-
tries. Additionally, data arising from patient examinations
and interviews are still strictly dependent on the physi-
cian’s skill and experience. Finally, although we hypothe-
sized that the AI capabilities would exceed human skills
and make accurate predictions when physicians cannot,
we must also consider the null hypothesis: viral and bac-
terial pneumonias share the same characteristics and can-
not be distinguished based on initial clinical, biological or
radiological parameters. The dividing lines between the
signs and symptoms of a viral versus a bacterial infection
could be too blurry to permit the two diagnoses to be dis-
cerned without microbial analyses.

Our results emphasize the need to use a rapid turnaround
time system for the accurate identification of respiratory
pathogens from patient specimens. Utilizing rapid molecular
respiratory panel assays may increase the likelihood of opti-
mal treatment of acute respiratory infections [25—29]. How-
ever, antibiotic consumption was not reduced by the use of
a molecular point-of-care strategy in adults presenting with
acute respiratory illness in a large randomized controlled
trial [28]. It seems that we are experiencing a switch in per-
spectives regarding microbial diagnoses of respiratory infec-
tions: physicians are used to dealing with an absence of
information, but they will likely be overloaded with informa-
tion in the near future [30]. The positive detection of re-
spiratory viruses may or may not be useful for the
immediate management of a patient [31]. Thus, the devel-
opment of molecular point-of-care analysis techniques will
not lessen the usefulness of our Al strategy. On the con-
trary, we believe that Al could be a great help in dealing
with information overload, which could soon be a common
problem. Al methods should not be viewed as ways to re-
place human expertise but rather as catalysts that accelerate
human expertise—based analyses of data. AI methods can
assist—rather than replace—in clinical decision-making by
transforming complex data into more actionable informa-
tion. Further studies are needed to assess if Al system inte-
grated with point-of-care rapid molecular respiratory panel
assays could be a useful addition for the clinician. Ultim-
ately, randomized controlled trial should determine the ef-
fect of this strategy on the decision making regarding
antibiotic use.
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Our study should be interpreted in the context of sev-
eral limitations. First, this was a proof-of-concept study,
and we excluded cases of CAP with mixed etiology or
without microbiological documentation. Consequently,
the results were obtained from artificially dichotomized
situations (viral or bacterial pneumonia, 93 patients in
total) and cannot be directly extrapolated to real-life prac-
tice. Moreover, we did not include cases of acute pneumo-
nia with non-infectious origins. Second, the experts were
asked to make their predictions based on case reports ex-
haustively described in Excel files. They did not have the
opportunity to interview or directly examine the patients
themselves. Furthermore, the experts’ predictions were
not performed in “real-life” situation. This could have af-
fected the experts’ predictive performance. Third, we can-
not rule out the possibility that some bacterial or viral
pneumonia cases were misdiagnosed. We relied on state-
of-the-art methods for microbial discovery, but it is pos-
sible that our current technology is sometimes suboptimal
for detecting respiratory microbial pathogens.

Conclusion

Neither a panel of experts nor a data-driven approach
could accurately distinguish viral from bacterial pneu-
monia within the first hours of patient admission in ICU
for CAP. The heterogeneous and complex data gener-
ated in the ICU environment are likely difficult to use to
generate an Al algorithm with a high predictive quality.
The results of our pilot study at least highlight that we
should not treat machine learning and data science as
crystal balls for making predictions and automating
decision-making; we should rather use these techniques
to more critically examine all available information and
enhance existing human expertise.
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