
RESEARCH ARTICLE Open Access

Spatial distribution of tuberculosis
incidence in Los Angeles County
Adam Readhead1* , Alicia H. Chang2, Jo Kay Ghosh3, Frank Sorvillo1, Julie Higashi2 and Roger Detels1

Abstract

Background: In Los Angeles County, the tuberculosis (TB) disease incidence rate is seven times higher among non-U.S.-
born persons than U.S.-born persons and varies by country of birth. But translating these findings into public health action
requires more granular information, especially considering that Los Angeles County is more than 4000 mile2. Local public
health authorities may benefit from data on which areas of the county are most affected, yet these data remain largely
unreported in part because of limitations of sparse data. We aimed to describe the spatial distribution of TB disease
incidence in Los Angeles County while addressing challenges arising from sparse data and accounting for known cofactors.

Methods: Data on 5447 TB cases from Los Angeles County were combined with stratified population estimates available
from the 2005–2011 Public Use Microdata Survey. TB disease incidence rates stratified by country of birth and Public Use
Microdata Area were calculated and spatial smoothing was applied using a conditional autoregressive model. We used
Bayesian Poisson models to investigate spatial patterns adjusting for age, sex, country of birth and years since initial arrival in
the U.S.

Results: There were notable differences in the crude and spatially-smoothed maps of TB disease rates for high-risk
subgroups, namely persons born in Mexico, Vietnam or the Philippines. Spatially-smoothed maps showed areas of high
incidence in downtown Los Angeles and surrounding areas for persons born in the Philippines or Vietnam. Areas of
high incidence were more dispersed for persons born in Mexico. Adjusted models suggested that the spatial
distribution of TB disease could not be fully explained using age, sex, country of birth and years since initial arrival.

Conclusions: This study highlights areas of high TB incidence within Los Angeles County both for U.S.-born cases and
for cases born in Mexico, Vietnam or the Philippines. It also highlights areas that had high incidence rates even when
accounting for non-spatial error and country of birth, age, sex, and years since initial arrival in the U.S. Information on
spatial distribution provided here complements other descriptions of local disease burden and may help focus
ongoing efforts to scale up testing for TB infection and treatment among high-risk subgroups.

Background
In the United States, TB disease incidence is notably
higher among non-U.S.-born persons and incidence
rates vary substantially by country of birth [1]. Los
Angeles County has a diverse population of more than
10 million people, of which 3.5 million were born out-
side the U.S., and covers more than 4000 mile2 [2].

Substantial disparities in TB incidence by country of
birth have been noted in Los Angeles County, however,
the spatial distribution of TB incidence in Los Angeles
County has largely remained unreported [3, 4].
We anticipate that TB disease is unevenly distributed

given spatial analyses conducted in other locales [5, 6].
Information on areas of elevated TB disease are espe-
cially relevant now as scaling up targeted testing and
treatment for TB infection has been shown to be an im-
portant component of TB elimination [7]. Only a frac-
tion of those infected with TB will go on to develop TB
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disease. While sub-county data on TB infection prevalence
is rarely available, TB incidence rates can function as a
reasonable proxy. Estimating TB infection prevalence is
difficult as it would require a large-scale effort to adminis-
ter tests for latent TB infection to a random sample of the
population. There has also been substantial interest in
spatially targeted public health interventions [8, 9].
We used data from the Los Angeles County TB sur-

veillance system and the American Community Survey
to calculate crude TB incidence rates by country of birth
and sub-county area. We then smoothed these maps
using a spatial conditional autoregressive model to at-
tenuate the effects of sparse data. Finally, we created ex-
tended models to account for additional covariates and
non-spatial error.

Methods
Data collection has been described previously [3]. Be-
tween 2005 and 2011, 5447 TB cases meeting the defin-
ition for the report of a verified case of tuberculosis
(RVCT) were reported to the Los Angeles County De-
partment of Public Health TB Control Program [10].
Addresses at diagnosis were geocoded using a Los
Angeles Countywide Address Management System loca-
tor and spatially joined to allow the case to be assigned
to one of 67 Public Use Microdata Areas (PUMAs) in
Los Angeles County as defined by the 2000 U.S. Census
[11]. This study was deemed exempt by the Los Angeles
County Department of Public Health Institutional Re-
view Board. Data for population estimates stratified by
PUMA and other covariates of interest were obtained
from the Integrated Public Use Microdata Series, a cu-
rated copy of the U.S. Census’s Public Use Microdata
Survey and other microdata [12]. PUMAs were chosen
as the geography of interest because they were the smal-
lest area for which the full joint distribution of key co-
variates was available. These covariates were age at
diagnosis, sex, country of birth and years since initial ar-
rival in the U. S, which was defined as years since the
year of immigration. Population estimates were calcu-
lated using replicate weights; exclusions, replicate
weights, and sampling frame were discussed in detail in
prior work [3]. After excluding 494 (9%) cases due to
missing data or differences in sampling frame between
Los Angeles County TB surveillance and the American
Community Survey, 4953 cases were available for ana-
lysis. Years since initial arrival in the U.S. was found to
be strongly associated with TB incidence in previous
studies [1]. To accommodate the inclusion of years since
initial arrival in multivariable models, the data were fur-
ther limited to non-U.S.-born cases, leaving 3945 cases
for analysis. Cases residing in the cities of Long Beach or
Pasadena were not included as those cases are not

reported to the Los Angeles County Department of Pub-
lic Health.
Crude TB incidence rates stratified by PUMA alone

and by country of birth and PUMA were calculated.
Spatial smoothing was achieved using Bayesian Poisson
model with a conditional autoregressive term from Besag
et al. which is used frequently in spatial applications
[13]. The preliminary model (Eq. 1 below) accounts for
area and country of birth only. Following the notation of
Kleinschmidt et al., Yic is defined as the observed diag-
noses occurring in area and among country of birth
c; Pic is defined as the person-time for the same stratum
[14]. Additionally, we define ηic ≡ E[Yic] and assume that
Yic~Poisson(ηic). The transformed linear regression is
then:

log ηic
� � ¼ log Picð Þ þ αþ βcXc þ φi ð1Þ

where φi denotes a spatially-correlated random effects
term defined by the following [13]:

φi j φ − i ¼ N φi;
σφ2

ni

� �

φi ¼ 1
ni

X

j∈neighbors of i

φi:

Neighbors of area were defined with queen-style
contiguity.
Subsequent models (eqs. 2 and 3), adjusted for covari-

ates age at diagnosis, sex, country of birth, and years
since initial arrival, used the following transformed linear
regressions:

log ηis
� � ¼ log Pisð Þ þ αþ βX þ φi ð2Þ

log ηis
� � ¼ log Pisð Þ þ αþ βX þ φi þ ωs ð3Þ

where s denotes the stratum, βX denotes the vectors of
covariates and covariate betas, ωs denotes the spatially-
uncorrelated heterogeneity with the distribution ωs~N(0,
σ2). The priors were set as follows: α was given a flat
prior, β were given N (0, 1000), and φi and ωs were both
given Gamma (0.5, 2000). Bayesian models were run
with two chains for 100,000 iterations and 10,000 itera-
tions of burn-in. Mixing was evaluated through visual in-
spection of caterpillar plots and density charts. ArcGIS
10.0 was used to geocode and assign PUMA geography.
R version 3.4, R Studio version 1.0.143 and a variety of
packages were used to manage and analyze data and cre-
ate maps [15–21]. Bayesian models were run in Open-
BUGS version 3.2.2 rev 1012 [22]. Due to limitations
stemming from sparse data for most country-of-birth
groups, only a select group of countries of birth were an-
alyzed via crude and spatially-smoothed TB incidence.
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Data from all country-of-birth groups were included in
subsequent adjusted models.

Results
The tuberculosis average annual incidence in Los
Angeles County 2005–2011 was 7.2 per 100,000 person-
years; the rate among U.S.-born persons was 2.3 per 100,
000 in contrast to the rate among non-US-born persons
which was occurring among 15.8 per 100,000 [3]. The
map for crude incidence among all residents shows
higher incidence in central areas of the county and lower
incidence in outer areas (Fig. 1a). For reference, the
California and U.S. TB disease incidence rate in the
same period were 7.1 per 100,000 and 4.1 per 100,000
respectively [23]. Areas of notable high incidence include
Panorama City, Pico Heights and Echo Park, and Mon-
terey Park-Rosemead, which are in the northwest, cen-
ter, and east sections of the county, respectively. These
areas had crude incidence rates of 13.2, 19.7, 17.2 and
19.2 TB cases per 100,000 respectively. Spatial smooth-
ing had minimal effect on estimates (Fig. 1b); median ab-
solute difference between spatially-smoothed and crude
incidence rates was 0.13 per 100,000 with a maximum of
0.59 per 100,000.
TB incidence among U.S.-born persons and non-

U.S.-born persons showed different spatial patterns.
Among U.S.-born persons, there were areas of high
incidence in Los Angeles City downtown, Watts, and
East Los Angeles (Fig. 1c, d). These areas had inci-
dence rates of 8.0, 7.9 and 6.1 per 100,000 respect-
ively. In contrast, among non-U.S.-born persons, TB
incidence was notably higher in Monterey Park/Rose-
mead, Pico Heights, and Echo Park. These areas had
TB incidence rates of 32.8, 26.2 and 28.3 per 100,000
respectively. Also noteworthy were two areas of ele-
vated incidence that are not contiguous with the area
of elevated incidence at the center of the county, spe-
cifically Panorama City (northwest) that had an inci-
dence rate of 23.1 per 100,000 and Carson (about 18
miles south of downtown) that had an incidence rate
of 25.1 per 100,000. Changes in estimates via spatial
smoothing for both U.S.-born and non-U.S.-born per-
sons were minor (Fig. 1d, f).
Prior reports have shown notable differences in in-

cidence by country of birth with the largest absolute
number of cases occurring among persons born in
Mexico, Philippines or Vietnam [3, 4]. The map for
crude incidence rates among persons born in Mexico
shows a condensed spatial form centered north of
downtown Los Angeles in contrast to maps for crude
incidence among persons born in the Philippines or
Vietnam which show more dispersed patterning
throughout the county (Fig. 2a, c, e). Maps of
spatially-smoothed incidence rates had a less

dispersed pattern than crude maps and show concen-
trated areas of high incidence in the center of the
county (Fig. 2b, d, and f). Maps for spatially-
smoothed incidence rates among persons born in
Mexico or the Philippines show a cluster of areas of
high incidence centered on the Los Angeles City
downtown (Fig. 2b, d). The spatially-smoothed map
for incidence rates among persons born in Vietnam
shows a small area of high incidence centered on the
Los Angeles downtown (Fig. 2f).
Subsequent adjusted models which included age, sex,

country of birth and years since initial arrival showed
condensed spatial patterns (Fig. 3). Maps show spatial
clustering even when accounting for these covariates
and non-spatially correlated error.

Discussion
TB disease incidence rates were uneven across Los
Angeles County, both for TB cases overall and for
country-of-birth subgroups that were analyzed. Areas
of high incidence among U.S.-born persons were evi-
dent in downtown Los Angeles as well as to the east
of the city center. Among persons born the
Philippines or Vietnam, crude TB incidence rates ex-
hibited a highly-dispersed spatial pattern. In contrast,
among persons born in Mexico, a condensed spatial
pattern in crude TB incidence was evident. Maps of
spatially-smoothed TB incidence rates showed areas
of high incidence centered on the Los Angeles down-
town area. For the local clinical community, we be-
lieve that this information can add supportive detail
to a clinical risk assessment. The California Depart-
ment of Public Health TB Control Branch recently is-
sued a tuberculosis risk assessment that underscores
the importance of country of birth in determining TB
risk [24]. Additional detail on country of birth specific
risks and risks specific to local community areas
could also help providers.
The notable differences between the crude and

smoothed maps for the selected countries of birth show
the utility of spatial smoothing. In the crude maps, low
absolute values of strata numerators and denominators
for persons born in the Philippines or Vietnam produced
highly variable incidence estimates. The smoothed maps
are easier to interpret because high variability of areas
with sparse data has been attenuated. These maps would
be the preferred starting point in assessing burden and
identifying areas where “place-based” interventions could
be focused.
Spatial patterning persisted even when adjusting for

country of birth, age, sex, years since initial arrival and
non-spatial error. The notable spatial heterogeneity as
evidenced by the spatially-correlated random effects
term for the country of birth only model suggests that
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models with additional covariates were justified to ex-
plain spatial differences, in that country of birth alone
was not sufficient to explain the existing spatial pattern
(Fig. 3a). However, two further models, one using add-
itional covariates and another with additional covariates
and non-spatial error, attenuated but did not remove
this spatial heterogeneity (Fig. 3b and c). This suggests
that these models cannot fully explain the spatial distri-
bution of TB incidence. Additional data, such as data on
recent transmission and socio-economic status, may

improve future models of the spatial component of TB
disease [25, 26].
This analysis has additional limitations beyond is-

sues of case ascertainment and survey error dis-
cussed in prior work [3]. This analysis is
vulnerable to the modifiable areal unit problem
(MAUP) and may yield different results based on
the size and shape of the areas under study. Low
absolute numbers in strata numerators and denom-
inators make incidence calculations more variable.

Fig. 1 Crude and Spatially-smoothed TB Incidence per 100,000 among Selected Subgroups, Los Angeles County 2005–2011. Note: Estimates of TB
incidence for Pasadena and Long Beach were not calculated as data for these cases are not reported to the Los Angeles County Department of
Public Health. Map created with R under the GNU library general license version 2
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Areas on the edge of the county have fewer neigh-
bors and so may not be as well smoothed as those
in the middle of the county. PUMA boundary defi-
nitions from the 2000 Census allowed for non-
contiguous areas, which could have distorted the
smoothing process by creating neighbors for non-
contiguous areas. Also, cases from Long Beach and
Pasadena are not included here, as they belong to
public health departments distinct from Los
Angeles County. As a result, areas around Pasadena

and Long Beach are missing a neighbor area and
so are not smoothed as they would be if those
cases had been included.

Conclusion
TB disease incidence is spatially heterogeneous within
Los Angeles County and remained so when stratified by
country of birth and after accounting for age, sex, years
since initial arrival and non-spatial error. The spatial
patterning in the maps provides complementary

Fig. 2 Crude and Spatially-smoothed TB Incidence among Selected Countries of Birth, Los Angeles County 2005–2011. Note: Estimates of TB
incidence for Pasadena and Long Beach were not calculated as data for these cases are not reported to the Los Angeles County Department of
Public Health. Map created with R under the GNU library general license version 2
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Fig. 3 (See legend on next page.)
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information to descriptions of the local disease burden.
This information informs public health planning by
identifying areas of high incidence where interventions
can be focused. For example, public health outreach fo-
cused on these high incidence areas could take the form
of local education activities for the public and health
care providers on TB targeted testing and new treatment
regimens to prevent TB reactivation. These analyses
could be further extended by using ecological variables,
such as crowding or other socio-economic indicators,
and by separately analyzing cases identified as resulting
from recent transmission [26].
This study reinforces the importance of spatial data in

local description of TB epidemiology and suggests their
utility in enhancing predictive models of TB incidence.
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