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HLA-DPA1 gene is a potential predictor

with prognostic values in multiple
myeloma

Jie Yang, Fei Wang and Baoan Chen*
Abstract

Background: Multiple myeloma (MM) is an incurable hematological tumor, which is closely related to hypoxic
bone marrow microenvironment. However, the underlying mechanisms are still far from fully understood. We took
integrated bioinformatics analysis with expression profile GSE110113 downloaded from National Center for Biotechnology
Information-Gene Expression Omnibus (NCBI-GEO) database, and screened out major histocompatibility complex, class II,
DP alpha 1 (HLA-DPA1) as a hub gene related to hypoxia in MM.

Methods: Differentially expressed genes (DEGs) were filtrated with R package “limma”. Gene Ontology (GO) enrichment
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed using “clusterProfiler” package in R.
Then, protein-protein interaction (PPI) network was established. Hub genes were screened out according to Maximal
Clique Centrality (MCC). PrognoScan evaluated all the significant hub genes for survival analysis. ScanGEO was used for
visualization of gene expression in different clinical studies. P and Cox p value < 0.05 was considered to be statistical
significance.

Results: HLA-DPA1 was finally picked out as a hub gene in MM related to hypoxia. MM patients with down-regulated
expression of HLA-DPA1 has statistically significantly shorter disease specific survival (DSS) (COX p = 0.005411). Based on
the clinical data of GSE47552 dataset, HLA-DPA1 expression showed significantly lower in MM patients than that in
healthy donors (HDs) (p = 0.017).

Conclusion: We identified HLA-DPA1 as a hub gene in MM related to hypoxia. HLA-DPA1 down-regulated expression
was associated with MM patients’ poor outcome. Further functional and mechanistic studies are need to investigate HLA-
DPA1 as potential therapeutic target.
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Background
Multiple myeloma (MM) is a hematological malignancy
which is characterized by aberrant plasma cells infiltra-
tion in the bone marrow and complex heterogeneous
cytogenetic abnormalities [1]. Accumulation of abnormal
plasma cells replaces normal hematopoietic cells and
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leads to “CRAB” - hypercalcemia, renal failure, anemia,
and bone lesions, even fetal outcome eventually [2].
With the deepening of basic and clinicalresearches,
novel drugs mainly including proteasome inhibitors and
immunomodulatory drugs have improved patients’ out-
come to some extend [3, 4]. Besides, high-dose chemo-
therapy and tandem autologous stem cell transplant
(ASCT), together with supportive care have significantly
prolonged patients’ progression-free survival (PFS) and
overall survival (OS) [5]. However, MM remains an
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uncurable disease as underlying molecular mechanisms
of pathogenesis and progression are still largely unclear.
Quite a few patients cannot get diagnosis and proper
treatment in time. Therefore, identifying key mecha-
nisms regulating MM is critically important for early
diagnosis and targeted therapy.
With the advances of high-throughput platforms and

microarray, more and more molecular heterogeneity on
MM has been recognized [6, 7]. Hypoxia plays an
important role in occurrence and development of MM
[8, 9] and more related pathogenesis is still urgent needs
to be explore for better diagnosis and treatment. In
order to find potential biomarker of MM related to hyp-
oxia, we analyzed the differentially expressed genes
(DEGs) functions and pathways between normoxic and
hypoxia-resistant (HR) MM cell lines contained in
GSE110113 dataset. Major histocompatibility complex,
class II, DP alpha 1 (HLA-DPA1) was finally screened out
as a hub gene associated with poor outcome of MM re-
lated to hypoxia. In addition, survival analyses and gene
expression level were visualized with online clinical data,
and the results validated higher HLA-DPA1expression
level of MM patients was associated with poor clinical
outcome. The findings in this study provide new insights
on HLA-DPA1 as a potential biomarker for MM and
more research needs to be performed.

Methods
Data source and DEGs identification
Gene expression profile GSE110113 was downloaded
from National Center for Biotechnology Information-
Gene Expression Omnibus (NCBI-GEO) database
(https://www.ncbi.nlm.nih.gov/geo/) [10]. The array data
of GSE110113 were generated on GPL6244 platform
(HuGene-1_0-st Affymetrix Human Gene 1.0 ST Array).
There are four parental cells (RPMI8226, KMS-11,
U266, IM-9) and four HR cells that derived from above
parental cells. Two group cells were cultured under nor-
moxic condition (20% O2) and hypoxic condition (1%
O2) for 24 h, respectively.
R package “limma” was used to identify DEGs be-

tween normoxic and HR cells groups [11]. The
screen criteria were adjusted p value < 0.05 and
[log2FoldChange (log2FC)] > 1. All genes were visual-
ized by volcanic maps and top 50 dramatically al-
tered genes were selected to draw a heatmap by R
package “ggplot2” [12].

GO and KEGG analysis
Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis were conducted by using R package “clusterPro-
filer” [13] which is for functional classification and gene
clusters enrichment. GO enrichment includes biological
process (BP), molecular function (MF), and cellular com-
ponent (CC) three subontologies. Analysis results were
displayed with “GOplot” package of R [14]. In addition,
relationship between pathways was further analyzed with
the ClueGO plug-ins of Cytoscape software 3.7.2 [15]. A
p value less than 0.05 was considered statistically
significant.
PPI network analysis
To clarify the relationships among proteins encoded by
selected enrichment genes, a protein-protein interaction
(PPI) network was established using the STRING data-
base (https://string-db.org) [16]. Cytoscape software
3.7.2 was used to visualize the genes with minimum
interaction score more than 0.4 [15]. Then, we utilized
cytoHubba plug-ins to recognize interaction degree of
hub-gene clustering according to the Maximal Clique
Centrality (MCC) methods. Wayne diagram produced by
online tool Bioinformatics & Evolutionary Genomics
(http://bioinformatics.psb.ugent.be/webtools/Venn/) was
used to show the overlapped genes.
Survival analysis
To assess the prognostic value of selected genes in MM pa-
tients, survival analysis was performed with the PrognoScan
database (http://dna00.bio.kyutech.ac.jp/PrognoScan/) [17].
PrognoScan explores the relationship between gene expres-
sion and prognosis of patients, across all the public available
microarray datasets provided. The results are displayed with
hazard ratio (HR) and Cox p value from a Log-rank test.
Cox p value < 0.05 was considered statistically significant.
Based on GSE2658 dataset (n = 559) provided by Zhan [18],
relationship between gene expression and corresponding
disease specific survival (DSS) were researched. Besides,
according to online ScanGEO database (http://scangeo.
dartmouth.edu/ScanGEO/) [19], we chose p value < 0.05 as
significance criterion and screened out GSE47552 [20] and
GSE2113 [21] datasets which involved HLA-DPA1 expres-
sion level compared to different degree of disease progres-
sion and healthy donors (HDs). Gene expression level in
clinical patients was explored with the two datasets.
Results
Identification of DEGs
This study was performed as a multiple strategy to pick
out the hub gene related to hypoxia in MM dataset
GSE110113. The hub gene was then validated with on-
line clinical data (Fig. 1). Myeloma cells were divided
into normoxic and HR groups. Totally, 1285 DEGs were
identified including 614 up-regulated and 671 down-
regulated genes using “limma” R package (Fig. 2a) and a
heatmap depicted top 50 genes (Fig. 2b).

https://www.ncbi.nlm.nih.gov/geo/
https://string-db.org
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://dna00.bio.kyutech.ac.jp/PrognoScan/
http://scangeo.dartmouth.edu/ScanGEO/
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Fig. 1 A schematic view of the procedure of the study with GSE110113
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GO and KEGG enrichment analysis
GO and KEGG enrichment analyses were performed
with all DEGs to further explore their functions with R
package “clusterProfiler”. Three subontologies including
BP, MF, and CC were examined in GO analysis. Adap-
tive immune response pathway (p = 1.31e-10, FDR =
6.59e-07), cell adhesion molecule binding pathway (p =
0.000162, FDR = 0.104) and receptor complex pathway
(p = 1.23e-05, FDR = 0.00221) were selected as the most
significant pathway in each subontologies, respectively
(Fig. 3a-c). According to their p values, we selected
adaptive immune response for further analysis and
found 65 DEGs was enriched in this GO term. The top
enriched pathway of the DEGs in KEGG enrichment
analysis was herpes simplex virus 1 infection pathway
(p = 1.39e-08, FDR = 3.63e-06) (Fig. 3d). We further used
ClueGO to analyze and show the interrelation of the
enriched pathways and the DEGs. Herpes simplex virus
1 infection pathway remained the most significant path-
way, and there were 70 DEGs involved in this pathway
(Figs. 3e, f).
Totally, 65 and 70 DEGs were involved in the two
selected pathways, respectively (Table 1). Next, we
identified 9 common genes by overlapping DEGs in
the two selected pathways with Wayne diagram (Fig.
3g). They were SYK, POU2F2, LTA, HLA-DPB1,
HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-DMA
and HLA-DMB.
PPI network
To pick out and further understand the hub genes,
we firstly constructed the PPI network consisting of
all the DEGs from the two most significant pathways
mentioned above in STRING (Fig. 4a, b), respectively.
Then, we used Cytoscape plug-ins cytoHubba to
screen top 15 candidate hub genes of each pathway
according nodes rank (Fig. 4c, d) and they are listed
in Table 2. Subsequently, we identified 3 common
genes in the two sets of top 15 hub genes, including
HLA-DPA1, DQHLA-DQA1 and HLA-DQB1 as can-
didate hub genes.



Fig. 2 Identification of differentially expressed genes in GSE110113 dataset. a Volcano plot of GSE110113 dataset. Red plots represent genes with
adjusted p value < 0.05 and [log2FoldChange (log2FC)] > 1. Other plots represent the remaining genes with no significant difference. b Heatmap
of the top 50 DEGs (50 up- and 50 down-regulated genes). DEGs, differentially expressed genes
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Survival analysis
Finally, we evaluated the correlation between candi-
date hub genes and the prognosis of patients with
MM. Potential prognostic value of the candidate hub
genes were assessed with PrognoScan. The result
showed that only HLA-DPA1 (Cox p = 0.005411) was
statistically significant associated with DSS of MM
patients based on 559 patients in GSE2658 dataset
(Fig. 5a, Additional file 1). In addition, ScanGEO ex-
ploration results showed expression level of HLA-
DPA1 in MM patients was significant lower than
that in HDs (p = 0.017) according to GSE47552 data-
set (Fig. 5b). The clinical characteristics of the MM
patients [20] in GSE47552 dataset is showed in
Additional file 2. Regarding GSE2113, there are 7
monoclonal gammopathy of undetermined significance
(MGUS), 39 newly diagnosed MM and 6 plasma-cell
leukemia (PCL) patients. As the severity of the disease
woresned, the level of HLA-DPA1 gene expression grad-
ually decreased (p = 0.007) (Fig. 5c). Further verification of
this gene in clinical research remains need.
Discussion
In this study, we analyzed 1285 DEGs between normoxic
and hypoxic cultured MM cells based on GSE110113
dataset. Enrichment analysis indicated that adaptive im-
mune response was the most significant GO term and
herpes simplex virus 1 infection pathway was the most
significant KEEG pathway. It is well-known that human
immune system can eradicate cancer cells. Cancers’ oc-
currence and development is critically associated with
immune response adaptation and immune escape which
have been demonstrated with mice model [22, 23]. Her-
pes simplex virus (HSV) 1 has antitumor effect which
mainly depends on its cytotoxic effect and replication
ability with tumor in order to produce more virus for
tumor lysis [24]. Previous study indicated HSV was asso-
ciated with occurrence of MM and Bortezomib could in-
hibit HSV infection by halting viral capsid transport to
the nucleus [25].
Establishment of the PPI network and further analysis

with Cytoscape plug-ins cytoHubba identified 3 candi-
date hub genes, HLA-DPA1, HLA-DQA1 and HLA-



Fig. 3 GO and KEGG enrichment analysis. a-d The bubble chart showed the top 10 pathways with significant difference. a The GO biological
process enrichment analysis. b The GO molecular function enrichment analysis. C The GO cellular component enrichment analysis. d The KEGG
enrichment analysis. e, f Interrelation analysis of pathways via assessment of KEGG processes in ClueGO. e The interrelation between pathways of
KEGG. f Numbers of genes enriched in the identified pathways. g Venn diagram showed the common gene of candidate genes. GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes
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DQB1. The major histocompatibility complex (MHC)
class II proteins include HLA-DR, HLA-DQ and HLA-
DP classical proteins and they only expressed on profes-
sional antigen-presenting cells (B lymphocytes, dendritic
cells and macrophages) to activate CD4+ T cells [26].
They could participate in cancer development as it has
been proved that dysregulation of immune function
which involved antigen presentation was associated with
cancer [27]. Subsequently, survival analysis based on
GSE2658 dataset with PrognoScan revealed HLA-DPA1



Table 1 DEGs identified from selected pathways of GO and KEGG

DEGs Gene names

Adaptive immune response
pathway

ADA, ADCY7, CD8B, DENND1B, EMP2, FAM49B, IGKV1D-8, LAIR1, PYCARD, SMAD7, SYK, THEMIS, TLR4, TNFRSF1B,
TNFRSF21, ULBP3, UNC93B1, ZP3, BATF, C2, CAMK4, CD274, CD48, CD70, CD79A, CD79B, CD80, CD86, CEACAM1,
CTSH, ERAP2, GPR183, HAVCR2, HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DPB1, HLA- DQA1, HLA-DQB1, ICAM1, IL23A,
IL23R, INPP5D, JAK3, LAMP3, LILRB4, LTA, MEF2C, NFKBIZ, PAG1, POU2F2, PTPRC, RAB27A, RORA, SAMSN1, SASH3,
SLAMF1, SLAMF6, SLAMF7, SPN, TEC, TFRC, TNFAIP3, TNFSF13B, TXK

Herpes simplex virus 1
infection pathway

CCL2, IKBKE, SYK, TNFRSF1A, ZNF26, ZNF382, ZNF605, ZNF717, BIRC3, CHUK, EIF2AK3, HLA-DMA, HLA-DMB, HLA-DPA1,
HLA-DPB1, HLA-DQA1, HLA-DQB1, IFIH1, IRF9, LTA, OAS1, OAS2, OAS3, POU2F2, SP100, STAT1, ZFP30, ZFP82, ZNF100,
ZNF155, ZNF175, ZNF208, ZNF221, ZNF222, ZNF223, ZNF234, ZNF254, ZNF256, ZNF283, ZNF30, ZNF404, ZNF415,
ZNF429, ZNF43, ZNF431, ZNF439, ZNF45, ZNF486, ZNF510, ZNF543, ZNF546

Abbreviations: DEGs differentially expressed genes; GO Gene Ontology; KEGG Kyoto Encyclopedia of Genes and Genomes

Fig. 4 PPI network analysis. a, b The PPI analysis at STRING. c, d Cytoscape plug-ins cytoHubba analysis of candidate genes after PPI analysis. a, c
Genes identified from adaptive immune response pathway. b, d Genes identified from herpes simplex virus 1 infection pathway. PPI,
protein-protein interaction
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Table 2 The top 15 genes with the highest score of each pathway through the Cytoscape “cytoHubba” module analysis

Top 15 Adaptive immune response pathway Herpes simplex virus 1 infection pathway

Rank Name Score Name Score

1 PTPRC 11,394 IRF9 40,560

2 CD86 9512 OAS1 40,560

3 ICAM1 9390 OAS2 40,560

4 CD80 9146 OAS3 40,560

5 TNFSF13B 5760 SP100 40,440

6 TLR4 5337 HLA-DQB1 40,440

7 CD274 4108 HLA-DQA1 40,440

8 SPN 3648 HLA-DPB1 40,440

9 HLA-DQA1 3528 HLA-DPA1 40,440

10 CD70 2880 STAT1 250

11 HLA-DQB1 2808 IFIH1 126

12 SYK 2410 HLA-DMB 120

13 HLA-DPA1 1992 HLA-DMA 120

14 CD48 1566 TNFRSF1A 12

15 TNFRSF1B 1493 CCL2 10
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as the hub gene associated with DSS of MM patients.
Since GSE2658 dataset did not provided detail clinical
data of patients’ general condition, multivariate Cox’s
proportional hazard regression models could not be con-
structed to further clarify the relationship between HLA-
DPA1 and survival. According to ScanGEO analysis re-
sults, gene expression of HLA-DPA1 was significantly
lower compared to HDs and MGUS.
Hypoxia is common and essential in various cancers

which can bring different gene expression change during
metabolic adaptations [28]. As a result, cancer cells can
survival and keep high rate proliferation. Previous stud-
ies have shown hypoxic bone marrow microenvironment
plays a critical role in MM occurrence and progression
through different aspects. For instance, endothelial cells
(ECs) in MM patients having a hypoxic phenotype could
keep up with enhanced angiogenesis in cancer growth
and metastasis [8]. Hypoxia induced MM cells dediffer-
entiation, stem-cell like state acquisition without apop-
tosis and enhanced drug resistance to proteasome
inhibitors [9].
In the GO enrichment analysis, cell adhesion molecule

binding was the most significant term. Evidences sug-
gested cell adhesion molecule binding is an important
pathway in MM related to hypoxia. Hypoxia reduces the
adhesion of tumor cells and accelerates tumor develop-
ment process [7, 29], manifested as extramedullary
(EMD). Central nervous system (CNS) involvement
phenotype is an rare, EMD form of MM which indicates
unfavorable cytogenetics, shorter survival time even with
intensive treatment [30]. Capicua transcriptional repressor
(CIC) is a transducer of receptor tyrosine kinase (RTK)
signaling that functions through default repression [31].
Marra MA et al. found that CIC deficiency was associated
with down-regulated expression of genes involving in cell-
cell adhesion which led to tumor progression and over-
expression mitogen-activated protein kinase (MAPK) sig-
naling cascade [32]. Another research proved CIC muta-
tion affected the BRAF-RAS pathway and resulted in drug
resistance in MM patients [33]. Other several mutations
including Ki-ras2 Kirsten rat sarcoma viral oncogene
homolog (KRAS), Neuroblastoma Ras viral oncogene
homolog (NRAS) also participate in drug resistance of
MM [34, 35]. In our study, HLA-DPA1 is also down-
regulated under hypoxic condition and we hypothesize
that it may play an oncogenic role in MM through hyp-
oxic activated signaling pathway.
HLA-DPA1, also known as HLA-DP1A, HLASB or

DPA1, belongs to the HLA class II alpha chain paralogues
[36]. As a result, HLA-DPA1 function as an MHC class II
receptor to participate in immune response and antigenic
peptides presentation. Clinical study on adrenocortical tu-
mors (ACT) indicated low expression of HLA-DPA1 was
associated with poor prognosis [37]. Acute myeloid
leukemia (AML) relapse after transplantation was ana-
lyzed by Christopher MJ et al. It was proved to be as-
sociated with dysregulation of pathways which had an
influence on immune function. HLA-DPA1 and sev-
eral other MHC class II genes’ down-regulation were
involved as they function in antigen presentation [38].
Other several researches showed MHC class II genes
had crucial relationship with cancer immunology, and
down-regulation of related genes indicated a poor
prognosis [26, 39, 40].



Fig. 5 Analysis of hub gene HLA-DPA1. a Kaplan-Meier survival curves comparing high and low expression of HLA-DPA1 in MM with PrognoScan
(Cox p = 0.005411). b, c HLA-DPA1 gene expression in different clinical datasets. b HLA-DPA1 gene expression in GSE47552 dataset (p = 0.017). c
HLA-DPA1 gene expression in GSE2113 dataset (p = 0.007). MGUS, monoclonal gammopathy of undetermined significance; MM, multiple
myeloma; SMM, smoldering multiple myeloma; PCL, plasma-cell leukemia
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Conclusion
HLA-DPA1 was a hub gene related to hypoxia in MM.
Down-regulated expression of HLA-DPA1 was associ-
ated with shorter survival time of MM patients. Notably,
3 candidate hub genes were all related to immune
response. Based on the findings in our study, further re-
searches investigating immune process of MM patho-
genesis may help us to better understand MM. This
study provided a novel insight into HLA-DPA1 as a crit-
ical potential biomarker for MM.
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