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Abstract

Background: Prostate cancer (PC) can display very heterogeneous phenotypes ranging from indolent
asymptomatic to aggressive lethal forms. Understanding how these PC subtypes vary in their striving for energy
and anabolic molecules is of fundamental importance for developing more effective therapies and diagnostics.
Here, we carried out an extensive analysis of prostate tissue samples to reveal metabolic alterations during PC
development and disease progression and furthermore between TMPRSS2-ERG rearrangement-positive and
-negative PC subclasses.

Methods: Comprehensive metabolomics analysis of prostate tissue samples was performed by non-destructive
high-resolution magic angle spinning nuclear magnetic resonance (1H HR MAS NMR). Subsequently, samples
underwent moderate extraction, leaving tissue morphology intact for histopathological characterization. Metabolites
in tissue extracts were identified by 1H/31P NMR and liquid chromatography-mass spectrometry (LC-MS). These
metabolomics profiles were analyzed by chemometric tools and the outcome was further validated using
proteomic data from a separate sample cohort.

Results: The obtained metabolite patterns significantly differed between PC and benign tissue and between
samples with high and low Gleason score (GS). Five key metabolites (phosphocholine, glutamate, hypoxanthine,
arginine and α-glucose) were identified, who were sufficient to differentiate between cancer and benign tissue and
between high to low GS. In ERG-positive PC, the analysis revealed several acylcarnitines among the increased
metabolites together with decreased levels of proteins involved in β-oxidation; indicating decreased acyl-CoAs
oxidation in ERG-positive tumors. The ERG-positive group also showed increased levels of metabolites and proteins
involved in purine catabolism; a potential sign of increased DNA damage and oxidative stress.

Conclusions: Our comprehensive metabolomic analysis strongly indicates that ERG-positive PC and ERG-negative
PC should be considered as different subtypes of PC; a fact requiring different, sub-type specific treatment
strategies for affected patients.
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Background
Prostate cancer (PC) is one of the most prevalent cancers
and a significant cause of morbidity and mortality in men
[1]. This cancer comes in many flavors, since it is very het-
erogeneous in terms of grade, genetics, ploidy, and onco-
gene/tumor suppressor gene expression, and it displays
complex biological, hormonal, and molecular features [2].
Moreover, this disease has diverse phenotypes ranging from
indolent asymptomatic to very aggressive lethal forms [3].
Current diagnostic strategies are based on serum PSA levels
and prostate biopsy histology, and have a very limited
accuracy in predicting the clinical behavior of individual
tumors, especially the ones prone to become aggressive at
later stages. Therefore, precise risk classification is a central
challenge in clinical PC research, and there is an urgent
need for specific diagnostic tools to distinguish patients in
terms of aggressiveness and choice of therapy; tools which
would save the majority of PC patients unnecessary treat-
ment with often severe side-effect [4].
Ever since the discovery of the genetic fusion between the

erythroblast transformation-specific (ETS) transcriptional
factor ETS-related gene (ERG) and the androgen-responsive
promotor transmembrane protease, serine 2 (TMPRSS2) by
Tomlins et al. [5], there has been an intense debate about its
usefulness as biomarker for the detection and the stratifica-
tion of PC [6]. The gene fusion TMPRSS2-ERG is the major
genomic alteration found in about half of all PCs, and it
leads to aberrant androgen dependent ERG expression [7].
TMPRSS2-ERG can already be found in low-score PC, and
persists even in metastatic and castration-resistant types [8].
However, the debate is still ongoing if this molecular sub-
type displays distinct clinical and biological tumor character-
istics. A majority of studies evaluating the potential of
TMPRSS2–ERG in predicting PC aggressiveness, suggested
that TMPRSS2–ERG is associated with aggressive or fatal
PC, a shortened disease free survival period and an increase
in PC specific death [9–11]. However, other studies failed to
see any association between TMPRSS2-ERG and patient
outcome [12, 13]. Nevertheless, some recent studies
suggested metabolic alterations in TMPRSS2-ERG-posi-
tive PC [14, 15].
To differentiate different types of PC explicitly with re-

spect to tumor grade and TMPRSS2-ERG status, we carried
out a comprehensive metabolomics analysis on intact pros-
tate tissue specimens to identify suitable metabolic markers.
Metabolomics represents a powerful platform for extracting
valuable information from sets of low-molecular weight
metabolites, to provide a global understanding of patho-
physiological alterations occurring during cancer progres-
sion [16]. In this study, we applied complementary
analytical techniques; 1H HR MAS NMR on intact PC tis-
sues, followed by liquid 1H NMR, 31P NMR spectroscopy
and LC-MS on tissue extracts to explore metabolic alter-
ations during PC development and disease progression

from lower to higher GS and between TMPRSS2-ERG-posi-
tive and -negative PC. Analysis of the metabolomics data
by advanced chemometrics based bioinformatics enabled
us to identify biomarkers of potential high diagnostic value;
and these markers provided a better molecular understand-
ing of PC biology in relation to tumor de-differentiation as
well as TMPRSS2-ERG fusion gene expression. The novel
molecular knowledge obtained here will be highly valuable
for developing specific PC diagnostics and subtype-specific
therapies.

Materials
Patients and tissue samples specimens
Fresh-frozen prostate tissues were selected from a series of
samples collected from patients who underwent radical
prostatectomy at Urology Clinic at Umeå University
Hospital between 2009 and 2012. The patients gave written
informed consent and the ethical committee for Umeå
University approved the use of these samples for research.
Immediately after surgical removal the prostates had been
brought to the Pathology Department and cut in 0.5 cm
thick slices. From these slices 20 samples were punched
using a 0.5 cm steel cylinder and frozen in − 70 °C within
30min after surgery. The prostate slices were then fixed in
4% formaldehyde for 24 h, dehydrated, embedded in paraf-
fin (FFPE), cut in 5 μm thick sections and stained with
hematoxylin-eosin (H&E). Frozen samples from 16 patients
were carefully selected based on the histopathology of the
FFPE sections [17] to include non-malignant and malig-
nant tissues, and at the end those were successfully isolated
from 13 and 14 cases, respectively. Each frozen biopsy was
cut into 2 to 6 replicates, resulting in altogether 129
samples that were stored in − 80 °C. After 1H HR MAS
NMR spectroscopy and metabolite extraction, samples
were transferred to Molecular Fixative (UMFix, Sakura,
Torrance, CA, USA) and further processed for histology
examination. The tissue samples were cut in 5 μm thick
sections using a cryostat. Detailed histopathological assess-
ment was carried out to determine the relative fraction
(percentage) of epithelial and stromal tissue, the fraction of
malignant cells, and the tumor differentiation according to
the Gleason grade scale using cryostat sections immuno-
stained for high molecular weight cytokeratin (HMW-CK,
Dako, Stockholm, Sweden) and PAN-CK (AE1/AE3,
Dako), as previously described [17]. Briefly, the percentage
of tumor tissue (glands lacking HMW-CK positive basal
epithelial cells) and non-malignant tissue (glands with an
intact basal epithelial cell layer) and the tumor Gleason
score were determined for all sections as follows. The frac-
tion of malignant vs. non-malignant tissue in each sample
was determined by using a light microscope with a square-
lattice mounted in the eye-piece to count the number of
grid-intersections falling on each tissue compartment. The
Gleason score (GS) was determined by one pathologist
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(A.B.) and expressed as the primary plus secondary Glea-
son grades.
The TMPRSS2-ERG status was accessed by immuno-

histochemical ERG-staining [11]. Ten tissue samples
were embedded in Optimal Cutting Temperature (OCT)
solution before cryo-sectioning and therefore not used
for 1H HR MAS NMR analysis. The clinical sample
characteristics are summarized in Table 1. Because of
observed heterogeneity, each replicate was treated as an
individual sample in the metabolic analysis.

1H HR MAS NMR analysis of intact tissues
Tissue samples were thawed at room temperature and
kept on ice at all times during the preparation

process to minimize metabolite degradation. Each tis-
sue sample (30–50 mg wet weight) was inserted into
disposable 30-μL teflon NMR inserts followed by the
addition of ∼10 μ D2O. Inserts were transfered into 4
mm zirconia MAS rotors and NMR spectra were ob-
tained at 283 K on 500MHz NMR spectrometer (Bru-
ker Biospin, Karlsruhe, Germany). 1H HR MAS NMR
spectra were acquired and processes as described pre-
viously [17, 18] using a 1D Carr-Purcell- Meiboom-
Gill (CPMG) spin-echo pulse sequence and a sample
spinning rate of 5 kHz. The proton chemical shifts
were referenced to CH3 signal of lactate at 1.33 ppm.
Phased and baseline corrected CPMG spectra were
converted into statistical matrices using Chenomix
v.7.72 (Chenomx Inc., Edmonton AB, Canada). Spec-
tra were divided and signal integrals were computed
in δ0.04 intervals. Each integrated NMR spectral re-
gion was normalized to total intensity. Metabolite
identification and chemical assignment were per-
formed on the basis of the literature and with appli-
cation of Chenomix.

Metabolite extraction from intact tissues
A sample extraction protocol was used as described
by Brown et al. [19] with small modifications. Briefly,
after 1H HR MAS NMR experiments the tissue sam-
ple was immediately removed from the NMR rotor
and immediately placed in cryo-vials containing 5 ml
of solvent (80% methanol, 20% ultra-pure water).
Samples were incubated for 24 h at room
temperature. Thereafter, the intact tissue sample was
separated from the solvent extract and processed for
histological investigations as described in detail below.
The solvent extract was spun for 5 min at 2000 rpm,
and the supernatant was evaporated to dryness under
a stream of nitrogen gas. The dried extracts were
reconstituted in 600 μl of deuterated methanol: deu-
terated water (80:20 vol/vol) containing LC standards:
Caffeine (trimethyl-13C3), Cholic Acid (2,2,4,4-D4),
Arachidonic Acid-D8, Caffeic Acid-13C9. Following
metabolite extraction, samples were stored at − 80 °C
until further analysis.

31P NMR analysis of tissue extracts
Measurements were performed at 298 K on a 31P
direct observe 5 mm BBO cryoprobe on a 600 NMR
spectrometer (Bruker, Fällanden, Switzerland). Spec-
tra were recorded using 1400 scans and the spectral
width of 15,000 Hz. Spectra were processed using
TopSpin software v.3.2 and 1.0 Hz line broadening
was applied. Phosphatidylcholine, the most common
and highest concentrated phospholipids, was used
for calibration (− 0.84 ppm). All peaks in the NMR
spectra were integrated by in-house Matlab script

Table 1 Patient and sample characteristics

Total
number

Total number in
ERG-negative

Total number in
ERG-positive

Patients 16 7 10

Benign samples 59

Malignant samples

all 70 24 46

OCT embedded 10 6 4

not-OCT embedded 60 18 42

Percentage of epithelium

1–25% 24 6 18

26–50% 39 15 24

51–75% 6 3 3

> 75% 1 0 1

Percentage of malignancy

1–10% 21 3 18

11–20% 24 7 17

21–30% 10 7 3

31–40% 8 4 4

41–50% 3 3 0

51–60% 0 0 0

61–70% 4 0 4

Percentage of malignancy to
total epithelium area

1–25% 9 1 8

26–50% 18 5 13

51–75% 16 7 9

> 75% 27 11 16

Gleason score

3 + 3 43 7 36

3 + 4 16 10 6

4 + 3 10 6 4

4 + 4 1 1 0
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(R2015a) and normalized to total intensity. The assign-
ment of resonances was performed with the aid of chem-
ical shift values reported in the literature [20, 21]. Sixteen
phospholipids were detected according to their specific
chemical shift values.

1H NMR analysis of tissue extracts
NMR spectra were recorded on a Bruker 600 NMR spec-
trometer (Bruker, Fällanden, Switzerland) at 298 K. To
acquire 1H NMR spectra of tissue extracts a standard
CPMG pulse sequence was used to suppress broad signals
arising from macromolecules. The 90o pulse was set to
10 μs, and 128 scans were acquired into 64 k data points
using a spectral width of 7200Hz (12 ppm). The obtained
FID was processed as described above and chemical shifts
referenced to CH3 signal of lactate at 1.33 ppm. Spectra
were imported into MATLAB (R2015a), integrated using
in-house developed scripts and normalized by the sum of
all intensities. Peak assignments were carried out as de-
scribed for 1H HR MAS NMR.

LC-MS analysis of tissue extracts
Untargeted metabolite profiling was carried using UHPLC-
QTOFMSMS (Agilent 6540) equipped with a Kinetics
2.1 × 100 1.7u C18 column in positive and negative mode.
The injection volume was 1 μL and column oven
temperature was set to 40 °C. Samples were analyzed by a
11min revered-phase chromatography with gradient elu-
tion at 0.5min/min flow rate from 99% mobile phase H2O
(0.1% formic acid) to 99% mobile acetonitrile (0.1% formic
acid). The order of injection of samples was randomized.
QC samples were used to monitor the performance of
UPLC-MS system, and were run at the beginning of the
run (to condition the chromatographic column) and peri-
odically after every 10 samples. Analyses were conducted
separately for positive and negative modes. Two solvent
blanks were injected at the end of each run to identify any
features introduced from the extraction process and solv-
ent systems.
Data processing was done in Profinder v. B.06.00 (Agilent

Technologies Inc., Santa Clara, CA, USA). Targeted feature
extraction (TFE) was applied and as an input formula
source an in-house reference library (Swedish Metabolo-
mics Centre) [22], composed of 713 authentic chemical
standard entries that included retention time, molecular
weight (m/z), preferred adducts, and in-source fragments as
well as their associated MS/MS2 spectra. Only peaks found
in all subjects and identified were used in the analysis. The
processed data set thus consisted of 70 samples character-
ized by 66 variables (identified metabolite peaks) in positive
mode and 81 variables (identified metabolite peaks) in
negative mode. For selected metabolite biomarkers struc-
tural assignments were also carried out by matching MS/
MS spectra, to tandem MS experiments from on-line

databases and in-house databases (Swedish Metabolomics
Centre) [22]. Since it was not the scope of this work to fully
identify all individual metabolites the acquired tentative not
significant identities were not further analyzed or con-
firmed. LC/MS data was normalized total ion counts which
relate ion counts under a given peak to total ion counts.

Univariate and multivariate analysis
Processed 1H HR MAS NMR, 1H NMR, 31P NMR and
LC-MS data were subjected to both univariate and multi-
variate analyses. The processed data sets were UV-scaled
prior to multivariate analysis in SIMCA-P+ (version 13.03,
Umetrics, Umeå, Sweden). Principal component analysis
was used for unsupervised variation analysis to detect
groups and trends in the data and orthogonal partial least
squares discriminant analysis (OPLS-DA) was applied as a
supervised means to identify the discriminating metabo-
lites between selected sample groups. Analysis of variance
of cross-validated predictive residuals (CV-ANOVA) was
used to assess the significance of the OPLS-DA models.
The p-value obtained from this analysis indicates the
probability level that a given model has been built by
chance, and a p-value lower than 0.05 is associated with a
significant model. Using a combination of loadings follow-
ing OPLS-DA, the most perturbed metabolites between
selected groups were determined. The differential metabo-
lites were additionally validated by nonparametric t-test
with Benjamini–Hochberg multiple testing correction per-
formed using in-house software written and compiled in
MATLAB (Mathworks). GraphPad Prism 6 (San Diego,
CA, U.S.A.) was used to calculate the average of metabol-
ite levels, which were expressed as mean ± SEM.

Mixed models
The processed data were further evaluated using linear
mixed models in order to account for repeated mea-
sures. In brief, linear mixed models contain additional
random effect terms (in this case the individuals having
repeated samples) compared to standard linear models.
Furthermore, adjusted linear mixed models were con-
structed; adjusting for epithelium, malignancy, ratio of
malignancy to total epithelium and GS. In the adjusted
models the adjusting factors, eg. Gleason score, enters
the model as a covariate in a similar fashion as for nor-
mal linear regression. In order to correct for multiple
testing Benjamini-Hochberg corrected p-values (ie. q-
values) were calculated. Prior to modelling the 1H NMR
and LC-MS data was subjected to different transformation
methods, eg. log2, square root or the inverse of square root,
according to histograms, qq-plots and the Shapiro-Wilk
test of normality for the residuals. The transformation,
modelling and multiple testing correction was per-
formed in the free software environment R version 3.3.2
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(https://www.R-project.org/) and the R-package nlme
(http://CRAN.R-project.org/package=nlme).

Analysis of proteomic data
The proteomic analysis with LC-MS/MS on a Q-Exactive
mass spectrometer had been previously performed in a
separate patient cohort including prostatectomy samples
[23]. The cohort was annotated according to ERG
rearrangement (ERG-immunostaining) and contain 12
ERG-positive and 16 ERG-negative PC cases.

Results
This study included in total 129 prostate tissue samples,
obtained as replicates from radical prostatectomy speci-
mens from 16 PC patients (Table 1). To increase the infor-
mation content from each sample, a workflow scheme
(Fig. 1) was developed for enabling complementary meta-
bolomics analysis and histological evaluation of the same
tissue sample. Metabolomic profiles of intact tissue speci-
mens were acquired by 1H HR MAS NMR, followed by

subsequent analysis of tissue extracts originating from the
original specimens by 1H NMR, 31P NMR spectroscopy
and LC-MS without any need for exchange of solvents due
to the use of deuterated solvents. This mild extraction ap-
proach allowed subsequent histological evaluation since
the tissue morphology remained intact (Fig. 1). Clinical
and histological characteristics of the patients and their tis-
sue samples are summarized in Table 1. Altogether, 136
metabolites including different lipid species were identified
(summary see Additional file 1: Table S1). We observed, as
others [24], variation in the total amount of metabolites in
the extracted tissues most likely related to sample size and
composition of tissues. Therefore, we used relative inten-
sities of metabolites in all data sets. For LC/MS data these
relative intensities reference to the peak height of the indi-
vidual metabolites in relation to total ion counts in the
sample; and for all NMR-data sets the relative intensities
relate to the integral of the individual metabolites in rela-
tion the sum of all integrals for each spectrum. Our NMR-
based profiles were used as control for sample variability

Fig. 1 A flowchart depicting the outline of the study. Workflow and steps evolved for the metabolomic study conducted on tissue samples using
1H HR MAS NMR, 1H NMR, 31P NMR data and LC-MS (+/−) approaches are shown
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by comparing common metabolites in NMR and LC/MS
data sets. Furthermore, we applied normalization methods,
for LC/MS data – normalization to total ion counts and
for all NMR-data sets normalization by the sum of all
intensities, and strict selection of biomarkers to overcome
this problem.

Analysis of PC and adjacent benign prostate
Initially, principal component analysis was applied in an
unsupervised variation analysis of the data originating
from 1H HR MAS NMR, 1H NMR 31P NMR and LC-MS
(positive and negative mode). The corresponding principal
component analysis score plots (Additional file 2: Figure
S1A-E) display a clear trend of clustering of the malignant
and normal samples, respectively. To maximize the sam-
ple group separation and identify discriminating metabo-
lites, supervised discrimination models were established
based on orthogonal partial least squares discriminant
analysis (OPLS-DA), and a clear class discrimination was
obtained for each of the data sets (Fig. 2a-e). Goodness of
fit values and predictive ability values (R2X, R2Y, Q2)
were obtained (Additional file 3: Table S2), indicating that
all models possessed a reasonable fit and predictive power.
A CV-ANOVA test showed highly significant variation
related to the separation of groups (Additional file 3:
Table S2). Validation plots confirmed the robustness of

the OPLS-DA models (Additional file 4: Figure S2A-E).
Table 2 shows the identity of the features in the OPLS-
DA models that significantly discriminated between PC
and adjacent benign prostate tissues.

Analysis of high-score versus low-score PC
In the multivariate models separating PC tissues from
adjacent normal prostate tissues, we also observed pat-
terns related to tumor differentiation, i.e. GS. Therefore
OPLS-DA models were used to identify metabolites
which differentiated between high-score PC, defined as
GS 3 + 4, 4 + 3 or 4 + 4 (GS ≥ 7), and low-score PC, de-
fined as GS 3 + 3 (GS = 6). A good separation of PC sam-
ples in relation to GS was obtained by 1H HR MAS
NMR data on intact tissues, and 1H NMR/LC-MS
(+) data on extracts (see Fig. 3a, b, d; Additional file 3:
Table S2). However, based on the 31P NMR (Fig. 3c) and
LC (−) (Fig. 3) data, samples were not significantly sepa-
rated with respect to GS. Additionally, principal com-
ponent analysis score plots are shown for each data
set in Additional file 5: Figure S3A-E. Validation plots
of the OPLS-DA models are presented in Add-
itional file 6: Figure S4A-E. In Table 3 the metabolites
that significantly differed between high and low GS sam-
ples based on univariate and multivariate analysis are
shown.

Fig. 2 Tissue metabolomics multivariate analysis of prostate cancer. OPLS-DA score plots of benign samples (green dots) and malignant samples
(brown dots) a. 1H HR MAS NMR data, b. 1H NMR data, c. 31P NMR data, d. LC-MS (+) data, e. LC-MS (−) data
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Integration of metabolomic data related to PC and tumor
differentiation
Metabolomic alterations were found to be specific for
PC compared to benign tissues as well as for high-score
tumors in relation to low-score tumors; with the most
significant alterations being summarized in Fig. 4. The
specific aim of the work here was to identify metabolo-
mic changes which unambiguously separate PC from
benign samples, and also indicate the progressive
changes occurring from low-score to high-score tumors.
Therefore, metabolites were compared by applying two
group analysis and scrutinized following the pattern of
increment or decrement from the benign state to GS = 6
and next to GS ≥ 7. This way, five key metabolites could
be identified with all of them following the pattern of
PC disease progression (see Fig. 5). In the case of the
metabolites phosphocholine, glutamate, hypoxanthine
and arginine an increase was observed with progression
while α-glucose levels showed a steady decrease.

Discrimination between ERG-positive and ERG-negative PC
Data from all five platforms were examined by multivari-
ate analysis in order to create an overview of the meta-
bolic variation in PC tissue samples related to the
TMPRSS2-ERG gene fusion and related protein expres-
sion. The resulting multivariate OPLS-DA classification
models revealed a clear separation between predefined
ERG-positive and ERG-negative PC samples based on
their metabolic profiles from 1H HR MAS NMR and
LC-MS (+) analysis (see Fig. 6a, c). The models were
evaluated using significance testing by means of
ANOVA of the cross-validated model with all values
summarized in Additional file 3: Table S2. The obtained
values indicated that the models were highly significant.
Furthermore, a permutation test confirmed the robust-
ness of both OPLS-DA models in distinguishing between
ERG-positive and –negative PC tissue samples (Fig. 6b –
1H HR MAS NMR-based model and Fig. 6d – LC-MS
(+)-based model). Analysis of the model loading plots

Table 2 Metabolic alterations in prostate cancer tissues compared to benign prostate tissues

Metabolite Change in PC Technique BH p-valuea BH p-value
for mixed model

BH p-value for
mixed model
adjusted for
percentage
of epithelium

BH p-value for
mixed model
adjusted for
percentage
of malignancy

BH p-value for
mixed model
adjusted for
percentage of
epithelium and
malignancy

Phosphocholine ↑ 1H HR MAS NMR 1.08 × 10− 07 2.53 × 10− 10 2.81 × 10− 08 1.22 × 10− 03 1.24 × 10− 04

Glutamate ↑ 1H HR MAS NMR 7.17 × 10− 07 2.26 × 10− 08 6.41 × 10− 07 5.91 × 10− 03 3.87 × 10− 04

Citrate ↓ 1H HR MAS NMR 6.66 × 10− 06 6.48 × 10− 08 1.97 × 10− 07 1.44 × 10−02 2.07 × 10− 02

Hypoxanthine ↑ 1H HR MAS NMR 4.68 × 10−08 1.58 × 10−08 1.11 × 10−05 5.91 × 10− 03 7.73 × 10− 05

Polyamines ↓ 1H HR MAS NMR 9.61 × 10− 05 6.16 × 10− 08 1.42 × 10−07 3.06 × 10− 03 1.22 × 10− 02

Inosine ↑ 1H HR MAS NMR 1.35 × 10− 05 1.07 × 10−04 5.06 × 10− 03 7.25 × 10− 02 1.02 × 10− 02

α-Glucose ↓ 1H NMR 8.89 × 10− 04 1.58 × 10− 08 2.09 × 10− 05 1.75 × 10− 02 1.24 × 10− 04

Nicotinamide adenine
dinucleotide (NAD+)

↓ 1H NMR 3.17 × 10− 03 3.81 × 10− 07 7.77 × 10−06 3.06 × 10− 03 1.87 × 10− 04

Arginine ↑ 1H NMR 8.89 × 10− 04 2.98 × 10− 06 5.46 × 10− 02 3.77 × 10− 01 1.41 × 10− 04

Succinate/Malate ↑ 1H NMR 2.40 × 10− 02 6.80 × 10− 03 6.67 × 10− 01 4.38 × 10− 01 1.80 × 10− 03

Lysophosphatidylcholine ↓ 31P NMR 1.44 × 10− 04 1.87 × 10− 02 3.16 × 10− 01 6.53 × 10− 01 4.31 × 10− 02

Phosphatidylethanolamine ↑ 31P NMR 5.50 × 10− 03 4.82 × 10− 04 1.49 × 10− 03 1.05 × 10− 02 5.87 × 10− 03

Sphingomyelin ↓ 31P NMR 1.01 × 10− 03 4.22 × 10− 05 2.12 × 10− 04 8.34 × 10− 03 3.20 × 10− 03

Uracil ↑ LC-MS (+) 9.69 × 10− 05 2.98 × 10− 06 3.59 × 10− 05 1.71 × 10− 02 1.42 × 10− 03

Docosapentaenoic
acid (22:5)

↑ LC-MS (−) 5.01 × 10− 05 3.81 × 10− 07 3.38 × 10− 04 1.44 × 10− 02 7.73 × 10− 05

Oleic acid (18:1) ↑ LC-MS (−) 9.32 × 10− 05 3.52 × 10− 06 1.09 × 10− 03 4.22 × 10− 03 9.63 × 10− 05

Linoleic acid (18:2) ↑ LC-MS (−) 2.29 × 10− 04 1.45 × 10− 05 3.14 × 10− 03 1.05 × 10− 02 1.53 × 10− 04

Docosahexaenoic
acid (22:6)

↑ LC-MS (−) 1.25 × 10− 03 9.69 × 10− 04 7.92 × 10− 02 2.86 × 10− 02 7.66 × 10− 04

Maleic acid ↑ LC-MS (−) 9.32 × 10− 05 5.63 × 10− 07 2.96 × 10− 05 2.71 × 10− 01 6.19 × 10− 02

Malic acid (Fumarate) ↑ LC-MS (−) 2.92 × 10− 03 6.86 × 10− 03 3.20 × 10− 02 2.71 × 10− 01 3.90 × 10− 02

BH Benjamini–Hochberg multiple testing correction; a nonparametric t-test
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followed by statistical analyses indicated that twenty-five me-
tabolites contributed to the discrimination between groups
(Table 4). Principal component analysis score plots for each
data set are shown in Additional file 7: Figure S5A-E.
The results indicated different metabolic processes in

ERG-positive compared to ERG-negative PC, as presented
in Fig. 7 as a metabolic map. Decreased levels of sphingosine
pointed to a dysregulation of the sphingolipid pathway. Fur-
thermore, different levels of glycerophosphocholine, phos-
phocholine and myo-inositol pointed towards disturbances
in choline metabolism. In addition, the levels of many amino
acids were significantly lower in ERG-positive than in -nega-
tive PC samples. Interestingly, ERG-positive PC showed
increased levels of several acylcarnitines, suggesting a
disturbed fatty acid metabolism. Finally, increased levels of
metabolites belonging to the purine catabolism reflected
presumably a homeostatic response to oxidative stress.

Proteomic analysis of ERG-positive and ERG-negative PC
tissue versus benign prostate tissue
The obtained metabolomic data strongly indicate, that
TMPRSS2-ERG rearrangement in PC is related to changes

in β-oxidation and purine metabolism. To provide further
evidence for a mechanistic link to ERG expression, we inves-
tigated an existing proteomic data set of non-malignant and
malignant tissue samples from 28 radical prostatectomy pa-
tients [23] from separate cohort. Focus was on the differ-
ences between ERG-positive (n= 12) and ERG-negative
(n= 16) samples, especially on levels of proteins involved the
β-oxidation and purine metabolism pathways. As shown in
Fig. 7, ERG-positive prostate tumors indicated decreased
levels of some proteins involved in mitochondrial β-
oxidation; carnitine palmitoyltransferase 2 (CPT2) (p=
0.018), peroxisomal protein enoyl-CoA (EHHADH) (p <
0.0001) and long-chain-fatty-acid-CoA ligase 1 (ACSL1)
(p= 0.215), but increased levels of carnitine palmitoyltrans-
ferase 1A (CPT1) (p= 0.021) in comparison to ERG-
negative prostate tumors. Surprisingly, ACSL1, CPT1,
CPT2, and EHHADH protein levels found in ERG-positive
PC, were similar to the levels found in benign neighboring
tissue. However, in ERG-negative PC relatively higher levels
were detected compared to benign prostate tissue (Fig. 7).
Moreover, for key proteins involved in the purine pathway,
pronounced differences in their relative concentrations were

Fig. 3 Tissue metabolomics multivariate analysis of Gleason scores. OPLS-DA score plots of Gleason score = 6 samples (orange dots) and Gleason
score ≥ 7 samples (red dots) a. 1H HR MAS NMR data, b. 1H NMR data, c. 31P NMR data, d. LC-MS (+) data, e. LC-MS (−) data
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found depending on tissue type. In contrast to ERG-
negative samples, ERG-positive tissues displayed a decreased
level of adenine phosphoribosyltransferase (APRT) (p =
0.018), while the concentration of adenosine monopho-
sphate deaminase 3 (AMPD3) (p= 0.048) and 5′-Nucleotid-
ase Ecto (NT5E) (p= 0.024) was increased (Fig. 7). Like in
the β-oxidation pathway, proteins belonging to the purine
pathway showed similar levels in the ERG-positive group as
in benign tissue. All detected proteins in purine and β-
oxidation pathways are listed in Additional file 8: Table S3.

Discussion
In this study, we established an approach for integrating in-
formation originating from distinct analytical methods, to
generate tissue specific metabolite profiles, which showed
characteristic and unambiguous alterations in PC, high-
score PC, and TMPRSS2-ERG-positive PC, respectively. To
achieve this accuracy, the workflow developed here (see
Fig. 1) enabled histological examinations in parallel to the
comprehensive metabolomic analysis of each tissue sample
by various analytical approaches, ranging from, 1H HR
MAS NMR on the intact tissues to liquid 1H NMR, 31P
NMR and LC-MS analysis of the corresponding tissue
extracts. We used a mild extraction protocol without any
requirement for tissue homogenization [19]; an approach
which left the morphology and structure of the tissue
specimen intact and allowed thorough histopathological

analysis of the same specimen. Since deuterated water (for
intact tissue 1H HR MAS NMR required as NMR 2H spin-
lock signal) and deuterated solvents for extraction were
used, extracts could be analyzed by liquid NMR and LC-
MS without any additional (potentially damaging) steps of
solvent exchange [25]. In total, 136 metabolites were iden-
tified using all four analytical platforms together. Many of
these metabolites were detected simultaneously by differ-
ent platforms. Nevertheless, the main focus was on the
verification of our integrated approach rather than obtain-
ing the highest number of identities. As shown here, the
complementary nature of these four different techniques
offers an insightful approach to understand the differences
in the metabolic profiles of PC, in the context of GS and
TMPRSS2-ERG-fusion status.

Metabolism in PC
Five key metabolites (phosphocholine, glutamate, hypo-
xanthine, arginine, α-glucose) emerged here, whose
appearance and deviations in relative levels allowed an
unambiguous differentiation between cancer and benign
tissue and even between high and low GS. Patterns
observed for these metabolites also reflected the progres-
sive changes occurring from benign to low-score PC and
then to high-score PC (Fig. 5). Therefore, these five
metabolites could be highly indicative markers for tumor
progression and disease aggressiveness.

Table 3 Metabolic alterations in high Gleason score (GS ≥ 7) to low Gleason score (GS = 6) prostate cancer

Metabolite Change
in GS≥ 7

Technique BH p-valuea BH p-value
for Mixed
Model

BH p-value for
Mixed Model
adjusted for
percentage
of epithelium

BH p-value for
Mixed Model
adjusted for
percentage
of malignancy

BH p-value for
Mixed Model
adjusted for
percentage of
epithelium and
malignancy

Glycerophosphorylcholine ↑ 1H HR MAS NMR 1.89 × 10−04 4.46 × 10− 2 2.94 × 10− 1 1.06 × 10− 1 2.07 × 10− 2

Phosphocholine ↑ 1H HR MAS NMR 3.10 × 10− 03 1.91 × 10− 2 4.23 × 10− 2 8.04 × 10− 2 2.07 × 10− 2

Hypoxanthine ↑ 1H HR MAS NMR 2.29 × 10− 05 3.51 × 10− 4 5.37 × 10− 2 9.01 × 10− 2 7.81 × 10− 4

Lysine ↑ 1H HR MAS NMR 1.89 × 10− 04 3.04 × 10− 4 4.43 × 10− 2 6.54 × 10− 2 2.68 × 10− 4

Glutamate ↑ 1H HR MAS NMR 2.95 × 10− 05 1.28 × 10− 4 2.30 × 10− 2 7.86 × 10− 2 3.33 × 10− 4

Threonine ↑ 1H HR MAS NMR 5.95 × 10− 03 4.34 × 10− 2 4.17 × 10− 1 3.28 × 10− 1 2.07 × 10− 2

Tyrosine ↑ 1H HR MAS NMR 9.99 × 10− 03 3.97 × 10− 3 4.71 × 10− 2 6.54 × 10− 2 1.72 × 10− 3

Valine ↑ 1H HR MAS NMR 6.90 × 10− 03 3.64 × 10− 3 4.23 × 10− 2 6.54 × 10− 2 3.54 × 10− 3

Ascorbate ↑ 1H HR MAS NMR 4.26 × 10− 03 1.78 × 10− 2 2.57 × 10− 1 3.44 × 10− 1 2.07 × 10− 2

Phenylalanine ↑ 1H HR MAS NMR 4.34 × 10− 02 3.52 × 10− 2 5.37 × 10− 2 9.01 × 10− 2 2.07 × 10− 2

α-Glucose ↓ 1H NMR 2.25 × 10− 02 2.02 × 10− 8 3.02 × 10− 3 1.42 × 10− 1 2.68 × 10− 4

Arginine ↑ 1H NMR 2.44 × 10− 03 2.02 × 10− 8 5.37 × 10− 2 9.01 × 10− 2 6.36 × 10− 7

Lipid (n) CH2 ↓ 1H NMR 2.25 × 10− 02 4.34 × 10− 2 9.18 × 10− 1 6.14 × 10− 1 4.07 × 10− 3

2-Hydroxybutyrate ↑ 1H NMR 2.44 × 10− 03 1.39 × 10− 3 5.76 × 10− 1 1.42 × 10− 1 1.56 × 10− 4

Sphingosine ↑ LC-MS (+) 5.62 × 10− 03 2.73 × 10− 1 6.49 × 10− 1 6.75 × 10− 1 3.06 × 10− 1

Hexanoylcarnitine ↑ LC-MS (+) 5.62 × 10− 03 2.10 × 10− 1 3.53 × 10− 1 3.28 × 10− 1 2.37 × 10− 1

BH Benjamini–Hochberg multiple testing correction; a nonparametric t-test
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Glucose levels were reduced in PC tissues, as seen in
other cancers [26–28]. The correlation between diminish-
ing glucose concentrations with increasing GS pinpoints
glycolysis as preferred pathway for generating the metabolic
intermediates needed for de novo biosynthesis to support
cell proliferation. Besides glycolysis, increased glutaminoly-
sis is recognized as a vital metabolism pathway of cancer
cells to meet the high-energy demand under hypoxic condi-
tions [29]. For glutamate increased levels were seen in PC,
and these levels were positively correlated with a higher GS.
Another hallmark of cancer cells is an intensified de novo
lipogenic signature reflecting the need of an increased lipid
generation for cell proliferation [30]. Phospholipids are
playing a vital active role in cellular physiology by mediating
key signal transduction pathways controlling cellular
survival and proliferation [20]. Higher levels of the lipid
phosphocholine were observed in PC compared to normal
prostate; as seen even in other malignant tumors [26, 31].

Additionally, significant differences were seen in phospho-
choline levels between high-score and low-score PC.
Already previous ex vivo studies indicated correlations
between GS and choline metabolism [32, 33]. The most sig-
nificant metabolic perturbations visible between the five
key metabolites, were the severely increased levels found
for arginine and hypoxanthine. Arginine and its products
are critical for tumor growth of several cancers, and argin-
ine depletion has been shown to be effective as anti-cancer
therapy including even PC ones [34, 35]. Increase in hypo-
xanthine reflects most likely an upregulation in purine me-
tabolism due to hypoxia and oxidative stress, with both
occurring during PC development [36]. Further metabolic
changes were observed which were either specific for
discriminating PC from benign samples (see Table 2) or
between high and low GS (see Table 3).
We also validated our results by comparison with the

metabolomics alterations on PC tissues found in previous

Fig. 4 Metabolomics pathway network map of significantly altered metabolites in prostate cancer compared to benign prostate and additionally
high Gleason score compared to low Gleason score. Metabolites significantly increased in PC are marked on red, significantly decreased in PC are
marked on blue. Metabolites significantly increased and decreased in Gleason score ≥ 7 compared to Gleason score = 6 are represented by red
and blue arrows, respectively
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studies [37, 38]. Sreekumar et al. [39] reported a signifi-
cant increase of six metabolites including sarcosine, uracil,
kynurenine, glycerol-3-phosphate, leucine and proline,
during disease progression from benign to PC to meta-
static samples. Those results were confirmed by McDunn
et al. [40], who also found metabolites like proline, malate,
ADP-ribose and 6-sialyl-N-acetyllactosamine being mostly
associated with Gleason pattern progression. Like in those
two studies we observed an increase in levels of uracil in
PC. Another interesting approach of metabolomic profil-
ing of intact tissue was presented by Huan et al. [24]; an
approach based on molecular preservation by extraction
and fixation and high-performance chemical isotope label-
ing LC-MS. They proposed a subset of five metabolites,
including, adenosine monophosphate, uracil and spermi-
dine, significant in comparison between PC and normal
samples. Uracil was again a common metabolite as also

found by us here, and additionally spermidine, belonging
to the group of polyamines. Our observed changes in the
levels of polyamines were also confirmed by an previous
study by Huang et al. [41]. As reported by Jung et al. [42],
we also observed increased levels in fatty acids in PC and
again an increase in choline-containing metabolites. There
are some variations in the results reported by these previ-
ous studies and our findings. One reason could be that
different extraction methods were used; with our method
being milder to allow subsequent histopathology upon
NMR measurements of intact specimens. Another reason
could be that – in contrast to us – many other studies did
not correlate metabolomic profile outcome with exact
histopathological analysis and could therefore not correct
for important factors, like tumor load and grade. Interest-
ingly, our metabolomics profile of cancer samples share
common pattern of changes with another study also using

Fig. 5 Common significant metabolites discriminating malignant samples from benign samples and high Gleason score compared to low
Gleason score. Box and whisker plots illustrating normalized intensities differences between benign samples (green box), PC Gleason score = 6
(yellow box) and PC Gleason score ≥ 7 (orange box)
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the 1H HR MAS NMR technique [43]. These changes in-
clude decreased levels of polyamines, citrate and glucose
and increased levels of choline-containing compounds,
succinate and glutamate. Authors of this study also com-
pared high and low tumor grade and proposed citrate and
spermine as a biomarkers of PC aggressiveness. Here, the
variations observed by us were not significant enough to
recommend citrate and polyamines as metabolic bio-
markers for PC aggressiveness. These deviations might be
explained in the higher number of samples with GS ≥ 8 in
their study [43], while we had only one sample in that
range.

Metabolism in relation to ERG rearrangement
ERG is one of the most consistently overexpressed onco-
genes in malignant PC and there is increasing evi-
dence that it is crucially implicated in the etiology
of PC [7]. Understanding the molecular heterogen-
eity between ERG rearrangement-positive and ERG
rearrangement-negative PC may unlock novel prognostic
and therapeutic biomarkers for PC, a major aim in this
study. Prior the work presented here, only two reports
showed any influence of ERG on the metabolome. Meller
et al. [15] pointed at an altered fatty acid oxidation in
ERG-positive tumors and Hansen et al. [14] established a

connection between the tissue metabolic profile of
TMPRSS2-ERG and the metabolism of polyamines and
citrate, and also glycolysis and fatty acid metabolism.
Their results indicated that TMPRSS2-ERG differentiates
PC towards an aggressive phenotype. Comparison of
ERG-positive and -negative tumors in our study showed
significant changes over a wide range of metabolites. Most
of them belonged to β-oxidation and purine pathways, a
conclusion further validated by external proteomic data
originating from a separate cohort of patients.
Here, significantly higher levels of acyl-carnitines in

ERG-positive PC were observed as indication of alter-
ations in the β-oxidation metabolism between ERG-
positive and -negative PC. Acyl-carnitines have recently
gained considerable interest in cancer research [44]. Lu
et al. [45] proposed serum acetylcarnitine as a biomarker
of hepatocellular carcinoma. Increased level of acylcarni-
tines have also been associated with development of
colorectal tumors [46]. Furthermore, differences in levels
of acylcarnitines were seen between subtypes of breast
cancer [47]. Several acylcarnitines showed increased
levels in the urine of kidney cancer patients and in pa-
tients with high cancer grades [48]. Many studies also
suggested that alteration in β-oxidation might play an
important role in the pathogenesis and progression of

Fig. 6 Tissue metabolomics multivariate analysis of ERG-positive PC and ERG-negative PC. a. OPLS-DA score plots of ERG-negative samples (bleu dots)
and ERG-positive samples (red dots) of 1H HR MAS NMR data, b. Plot obtained after performing a random permutation test with 200 permutations on
OPLS-DA model of 1H HR MAS NMR data, c. OPLS-DA score plots of ERG-negative samples (bleu dots) and ERG-positive samples (red dots) of LC-MS
(+) data, d. Plot obtained after performing a random permutation test with 200 permutations on OPLS-DA model of LC-MS (+) data
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PC. These suggestions were further confirmed by proteo-
mics data indicating an upregulation of fatty acid oxidation
[23]. Even peroximal branched chain fatty acid β-oxidation
was upregulated in PC [49], and lipids were also suggested
as potential markers of metastatic PC [50]. Importantly, the
results of our study here, suggest that an increase in β-
oxidation can be mainly attributed to TMPRSS2-ERG-nega-
tive tumors, while ERG-positive tumors instead accumulate
acetylcarnitines, most likely due to reduced levels in pro-
teins involved in mitochondrial β-oxidation.
In ERG-positive PC, disturbances were also detected

for metabolites belonging to the purine catabolism path-
way, namely elevated levels for inosine, xanthine and
uric acid and decreased hypoxanthine levels. Moreover,
three proteins (APRT, AMPD3 and NT5E) from this
pathway showed significantly enhanced levels in ERG-
positive cases of the validation cohort. These changes
are indicative for oxidative stress and high tumor cell

turnover of nucleotides to nucleosides. Experimental
and clinical studies suggest that oxidative stress plays a
major role in explaining PC development and progres-
sion [51]. Moreover, purines are essential for cell prolif-
eration and their inhibition can lead to apoptosis [52].
Taken together, our results thus indicate that the purine
degradation cycle is higher in TMPRSS2-ERG-negative
tumors.
We found significantly lower levels for many amino

acids in ERG rearrangement-positive PC samples, possibly
suggesting a particularly high demand of amino acids in
this tumor subtype. Also increased levels of sphingosine
were detected, indicating that these membrane building
sphingolipids play also a significant role in tumorigenesis
[53]. PC samples with positive- ERG rearrangement
showed also reduced levels of glycero-3-phosphocholine
and phosphocholine; an observation indicating presum-
ably an extensive turnover of cell membranes. Even, the

Table 4 Metabolic alterations in ERG Rearrangement-positive PC versus ERG Rearrangement-negative PC

Metabolite Change in
ERG-positive PC

Technique BH p-valuea BH p-value
for mixed
model

BH p-value for
mixed model
adjusted for
Gleason score

BH p-value for
mixed model
adjusted for
percentage of
epithelium

BH p-value for
mixed model
adjusted for
percentage of
malignancy

Glycerophosphocholine ↓ 1H HR MAS NMR 7.05 × 10−3 4.50 × 10−01 7.69 × 10− 01 4.03 × 10− 01 3.79 × 10− 01

O-Phosphocholine ↓ 1H HR MAS NMR 2.96 × 10− 2 5.43 × 10− 01 7.47 × 10− 01 5.31 × 10− 01 5.47 × 10− 01

Lysine ↓ 1H HR MAS NMR 1.64 × 10− 2 8.85 × 10− 02 6.46 × 10− 01 1.05 × 10− 02 2.00 × 10− 02

Tyrosine ↓ 1H HR MAS NMR 8.74 × 10− 3 1.54 × 10− 03 2.40 × 10− 01 1.54 × 10− 03 2.81 × 10− 03

Myo-inositol ↑ 1H HR MAS NMR 4.73 × 10−3 3.00 × 10− 02 2.99 × 10− 01 5.09 × 10− 02 5.82 × 10− 02

Valine ↓ 1H HR MAS NMR 1.81 × 10− 2 6.91 × 10− 02 6.46 × 10− 01 3.09 × 10− 02 3.54 × 10− 02

Phenylalanine ↓ 1H HR MAS NMR 3.52 × 10− 2 1.34 × 10− 02 2.89 × 10− 01 1.39 × 10− 02 2.00 × 10− 02

Hypoxanthine ↓ 1H HR MAS NMR 1.71 × 10− 2 8.23 × 10− 02 6.13 × 10− 01 7.59 × 10− 02 4.68 × 10− 02

Ascorbate ↓ 1H HR MAS NMR 3.57 × 10− 2 3.20 × 10− 01 7.69 × 10− 01 4.03 × 10− 01 2.81 × 10− 01

Glutathione ↓ 1H HR MAS NMR 3.57 × 10− 2 3.66 × 10− 01 7.95 × 10− 01 4.93 × 10− 01 4.03 × 10− 01

Aspartate ↓ 1H HR MAS NMR 4.15 × 10− 2 2.74 × 10− 01 7.69 × 10− 01 2.92 × 10− 01 4.28 × 10− 01

Butyrylcarnitine ↑ LC-MS (+) 6.90 × 10− 4 1.63 × 10− 01 3.46 × 10− 01 1.57 × 10− 01 1.57 × 10− 01

Myristoylcarnitine ↑ LC-MS (+) 3.06 × 10− 4 8.85 × 10− 02 1.88 × 10− 01 5.99 × 10− 02 3.76 × 10− 02

Hexanoylcarnitine ↑ LC-MS (+) 6.90 × 10− 4 2.30 × 10− 01 6.08 × 10− 01 2.50 × 10− 01 2.42 × 10− 01

Xanthine ↑ LC-MS (+) 2.84 × 10−4 8.97 × 10− 04 3.42 × 10− 03 1.54 × 10− 03 2.81 × 10− 03

Acetylcarnitine ↑ LC-MS (+) 3.46 × 10− 4 9.15 × 10− 01 3.31 × 10− 01 9.77 × 10− 02 1.12 × 10− 01

Adenine ↑ LC-MS (+) 1.55 × 10− 3 1.75 × 10− 01 2.89 × 10− 01 1.69 × 10− 01 1.57 × 10− 01

Palmitoylcarnitine ↑ LC-MS (+) 2.76 × 10− 3 1.78 × 10− 01 2.89 × 10− 01 1.26 × 10− 01 1.27 × 10− 01

Sphingosine ↓ LC-MS (+) 8.34 × 10− 3 2.75 × 10− 01 6.13 × 10− 01 3.32 × 10− 01 3.08 × 10− 01

Dodecanoylcarnitine ↑ LC-MS (+) 2.58 × 10− 3 2.67 × 10− 01 4.73 × 10− 01 2.92 × 10− 01 2.34 × 10− 01

Oleoylcarnitine ↑ LC-MS (+) 1.70 × 10− 2 4.77 × 10− 01 5.60 × 10− 01 3.61 × 10− 01 3.36 × 10− 01

Stearoylcarnitine ↑ LC-MS (+) 4.26 × 10− 3 1.81 × 10− 01 2.89 × 10− 01 1.25 × 10− 01 1.27 × 10− 01

Inosine ↑ LC-MS (+) 8.44 × 10− 4 1.78 × 10− 01 4.73 × 10− 01 1.80 × 10− 01 1.89 × 10− 01

Propionylcarnitine ↑ LC-MS (+) 2.90 × 10−2 4.05 × 10− 01 7.35 × 10− 01 4.22 × 10− 01 4.03 × 10− 01

Uric acid ↑ LC-MS (+) 2.16 × 10− 3 1.75 × 10− 01 4.73 × 10− 01 1.57 × 10− 01 1.83 × 10− 01

BH Benjamini–Hochberg multiple testing correction; a nonparametric t-test
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decreased level of glutathione found, is an important indi-
cator of oxidative stress in ERG-positive PC, while the ob-
served attenuation of myo-inositol levels in ERG-positive
PC could be indicative of a change in PI3K-AKT-mTOR
signaling pathway. Activation of this pathway is mainly
caused by the common loss of function of phosphatase
and tensin homologue (PTEN) in PC [54]. It has been
shown that ERG rearrangements and PTEN loss are con-
current events that collaboratively stimulates PC develop-
ment and progression [55–57]. Therefore, as suggested by
Squire [58], future therapies developed for treatment of
ERG- positive PC should probably target not only the ETS
pathway, but also the PTEN pathway.

Conclusions
The study presented here identified a group of metabolites
that do not only constitute potential biomarkers for ag-
gressive PC, but also provide molecular information about
underlying biochemical mechanisms. This information
can be useful for design novel diagnostic and therapeutic
approaches for further validation in considerably larger
patient cohorts. The detected metabolomics-derived
markers associated with high GS, could be exploited in
magnetic resonance imaging or positron emission tomog-
raphy (PET) imaging approaches for noninvasive, in vivo
detection of clinical relevant PC. Analogues of phospho-
choline, glutamate and glucose, as identified here, are

Fig. 7 Combined proteomics and metabolomics pathway network map of significantly altered metabolites and proteins in ERG-positive prostate
cancer compared to ERG-negative prostate cancer. Metabolites significantly increased in ERG-positive PC are marked on red, significantly
decreased in ERG-positive PC are marked on blue. Significantly altered proteins are presented on box and whisker plots illustrating normalized
intensities differences between benign samples (green box), ERG-negative PC (blue box) and ERG-positive PC (red box)
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already applied in PC studies. The 11C/18F choline-based
agents are lipid-metabolism PET tracers that have been
approved by the U.S. Food and Drug Administration for
PET imaging of recurrent PC. Several 11C- and 18F-labeled
glutamine analogs have been used as PET tumor-imaging
agents, and 18F-fluorodeoxyglucose PET is an analog of
glucose that reflects local rates of glucose consumption by
tissues [59, 60]. Furthermore, our results highlight two
additional metabolites, hypoxanthine and arginine, being
associated with PC occurrence and progression.
The observed metabolic differences between ERG-

positive and ERG-negative PC indicate that the increase
in β-oxidation and purine metabolism often reported for
PC could be mainly attributed to TMPRSS2-ERG-nega-
tive tumors. Taken together, our results strongly support
the view that ERG-positive and ERG-negative PC should
be considered as partly different diseases probably re-
quiring different treatment strategies.
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