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Abstract

Background: Genome-wide association studies (GWAS) have identified more than 40 colorectal cancer
susceptibility loci, but only a small fraction of heritability was explained. To account for missing heritability, we
investigated gene-environment interactions (G × Es) between GWAS-identified single-nucleotide polymorphisms
(SNPs) and established risk or protective factors for colorectal cancer using both case-only and case-control study
designs.

Methods: Data on 703 colorectal cancer cases and 1406 healthy controls from the National Cancer Center in Korea
were used. We tested interactions between 31 GWAS-identified SNPs and 13 established risk or protective factors
for colorectal cancer (family history, body mass index, history of colorectal polyps, inflammatory bowel disease, and
diabetes mellitus, alcohol drinking, smoking, regular exercise, regular aspirin use, postmenopausal hormone replace
therapy, red meat and processed meat intake, and dairy consumption). Logistic regression models were used to
assess G × Es for colorectal cancer risk.

Results: The SNP rs4444235 at 14q22.2 interacted with regular exercise in colorectal cancer (pcase-only = 2.4 × 10− 3,
pcase-control = 1.5 × 10− 3). The risk allele (C) of rs4444235 increased the risk of colorectal cancer in regularly exercising
individuals (OR = 1.47, 95% CI = 1.02–2.10) but decreased the risk in non-exercising individuals (OR = 0.76, 95% CI =
0.62–0.94). Furthermore, the G × E between the SNP rs2423279 at 20p12.3 and regular aspirin use was statistically
significant (pcase-only = 7.7 × 10− 3, pcase-control = 1.6 × 10− 3). The additive effect of the risk allele (T) of rs2423279 on
colorectal cancer risk was increased among regular aspirin users (OR = 4.62, 95% CI = 1.97–10.80).

Conclusion: Our results suggest that SNP rs4444235 at 14q22.2 and SNP rs2423279 at 20p12.3 may interact with
regular exercise and aspirin use in colorectal carcinogenesis.

Keywords: Colorectal cancer, Gene-environment interaction, Single-nucleotide polymorphism, Case-only design,
Case-control design
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Background
The genetic heritability for colorectal cancer was ap-
proximately 35% (95% confidence interval (CI) = 10–
48%) in a twin study [1]. Furthermore, common single-
nucleotide polymorphisms (SNPs) were expected to ex-
plain at least 7.4% of the heritability [2]. Although
genome-wide association studies (GWASs) have identi-
fied more than 40 genetic susceptibility regions related
to colorectal cancer risk with a nominal genome-wide
significance threshold (p-value = 5 × 10− 8) [3], the com-
mon SNPs discovered by previous GWAS only
accounted for 0.65% of the heritability of colorectal can-
cer, resulting in remaining missing heritability [2]. Ac-
cordingly, gene-environment interactions (G × Es) were
suggested to contribute to the missing heritability [4].
Furthermore, since GWAS-identified SNPs might be lo-
cated on non-coding regions or unknown genes of the
DNA since due to a non-hypothesis-driven approach of
GWAS, elucidation G × Es may allow a a better under-
standing of the biological mechanism of the genetic vari-
ations [5].
To investigate the potential contribution of G × Es to

colorectal cancer, several studies have evaluated G × Es
for colorectal cancer susceptibility loci identified by pre-
vious GWAS [6–13] and at a genome-wide level [14].
Most studies have adopted a case-control study design
to study G × Es [6–12], which has the advantage of being
relatively robust and maintaining a desired type I error
rate [15]. Few studies on G × Es have used a case-only
design for colorectal cancer [13, 14]. Although the case-
only design on G × Es is considered an alternative to
case-control design due to potential false positives by
unverified assumption of independence between genetic
and environmental factors, it allows for more efficient
estimation and more powerful association tests to be
performed on G × Es than case-control design [16].
For robust and powerful detection, we used both case-

only and case-control approaches to investigate G × Es
for colorectal cancer. We focused on 31 SNPs in colo-
rectal cancer susceptibility loci identified by previous
GWAS and 13 established environmental risk or pro-
tective factors.

Methods
Study population
The study population was recruited from the National
Cancer Center (NCC) in Korea as previously reported
[11–13] and presented in Additional file 1: Figure S1. In
brief, among 1427 incident colorectal cancer cases who
were diagnosed and had a surgery between 2010 and
2013, 1070 cases agreed to participate in the study. We
excluded patients who did not complete questionnaires
or patients whose blood samples were not insufficient
for genotyping. Thus, a total of 703 colorectal cancer

patients were included in the analyses. The 14201
healthy controls were recruited among people who
underwent a health screening examination, which was a
benefit program of the National Health Insurance be-
tween 2007 and 2014. Among 9037 people who con-
sented to participate in the study and completed the
questionnaire, a total of 1406 healthy controls were in-
cluded in the analyses by 1:2 frequency matching on 5-
year age and sex. All study participants provided written
informed consent, and the study was approved by the in-
stitutional review board (IRB) of the NCC (IRB No.
NCCNCS-10-350 and NCC 2015–0202).

Data collection
In this study, the established colorectal cancer risk or
protective factors were defined as factors or interven-
tions with adequate evidence of increased or decreased
risk of colorectal cancer based on the latest Physician
Data Query (PDQ®) cancer information summaries on
colorectal cancer prevention of the National Cancer In-
stitute (NCI) updated by Mar 1, 2018 [17] and the Colo-
rectal Cancer Facts & Figs. 2017–2019 of American
Cancer Society (ACS®) [18]. Accordingly, the environ-
mental factors considered in this analysis included family
history of colorectal cancer, BMI, history of colorectal
polyps, history of inflammatory bowel disease (IBD), his-
tory of DM, postmenopausal HRT, red meat intake,
processed meat intake, and dairy consumption. Milk
consumption was excluded in this analysis due to sub-
stantial overlap with diary product consumption.
The data for the selected environmental factors were

collected from the structured questionnaires composed
of two parts: one was concerned with demographic and
epidemiological factors, described in detail elsewhere
[11], and the other was a semiquantitative food fre-
quency questionnaire (SQFFQ) [19]. Face-to-face inter-
views were conducted for colorectal cancer patients by
trained interviewers using the written questionnaires.
Controls completed the questionnaires themselves and
their responses were validated by telephone interviews.
The questionnaires were developed based on Korean
National Health and Nutrition Examination survey,
where internal quality assurance as well as external qual-
ity control program were managed by the Korea Centers
for Disease Control and Prevention [20].

SNP selection and genotyping
We included 31 SNPs previously identified to be associ-
ated with colorectal cancer risk with nominal genome-
wide statistical significance (p-value < 5 × 10− 8) as de-
scribed previously in detail [11–13]. DNA extraction and
genotyping were performed on BioRobot M48 automatic
extraction equipment with the MagAttract DNA Blood
M48 Kit (Qiagen, Hilden, Germany) and an Agenabio
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MassArray iPLEX® gold assay (Agena Bioscience, Inc.,
San Diego, CA, US). Briefly, the genotype data for any
SNPs were excluded according to the quality control
procedures for the following reasons: genotyping failure,
monomorphic or minor allele frequency (MAF) < 0.01,
or p-value for deviations from Hardy-Weinberg equilib-
rium (HWE) < 0.01 in controls.

Statistical analysis
To test the difference in the distribution of environmen-
tal factors between colorectal cancer cases and controls,
a chi-square test for categorical variables and a T-test
for continuous variables were conducted. The environ-
mental factors were dichotomized, and a category known
to be a lower risk group for colorectal cancer was con-
sidered as a reference. For genetic factors, individual
SNP alleles were designated as risk or effect alleles based
on the literature review. Based on each genotype of
SNPs coded as 0, 1, or 2 copies of risk or effect alleles,
we calculated MAF, risk or effect allele frequency (RAF),
and p-value for deviations from HWE in controls. To as-
sess the effects of the environmental factors and genetic
factors assuming a log-additive model on colorectal can-
cer risk, a logistic regression model was used.
To detect the statistical significance of G × Es, we

employed both case-only and case-control designs. In
the case-only analysis, each SNP genotype was treated as
an independent variable, and each status of dichoto-
mized environmental factors was treated as a dependent
variable using a logistic regression model. Under the
same setting, control-only analysis was also conducted
to test the assumption of independence between genetic
and environmental factors. In case-control logistic ana-
lysis on colorectal cancer risk, independent variables in-
cluded not only the SNP genotype and binary status of
environmental factors but also the meaning of G × E
terms of those genetic and environmental factors. To be
eligible for further analysis, the SNPs for which the
nominal p-value for G × E was < 0.05 in both case-only
and case-control analyses and at least one p-value for
G × E was < 1.61 × 10− 3 (Bonferroni-corrected p-value;
0.05/31) to account for multiple testing were selected.
To evaluate the genetic effects on colorectal cancer risk
that were modified by environmental factors, association
tests for the selected SNPs with statistically significant p-
values for G × E were conducted, stratified by corre-
sponding environmental factor status. For those SNPs,
we estimated effects for each genotype as well as effects
assuming log-additive, dominant, and recessive models.
The logistic models that only included genetic vari-

ables were unadjusted. If models included environmental
variables, all analyses were adjusted for age and sex. Po-
tential confounders were chosen based on an association
test between environmental factors and colorectal cancer

risk. To prevent a problem of multicollinearity among
the potential confounders, if a statistically significant
correlation was observed between any two paired vari-
ables, the variable making a smaller contribution to colo-
rectal cancer risk was dropped. Accordingly, analyses
were adjusted for age, sex, family history of colorectal
cancer, history of DM, regular exercise, and dairy con-
sumption. Moreover, the dietary factor values were ad-
justed for total energy intake using the residual method
as described elsewhere [21]. All associations and statis-
tical significance were estimated by odds ratio (OR), 95%
CI, and two-sided p-value using SAS 9.4 software (SAS
Institute, Inc., Cary, NC, US).

Results
Table 1 shows the characteristics of the study population
and their associations with colorectal cancer risk. Our
study population consisted of 703 colorectal cancer cases
and 1406 healthy controls. Given that cases and controls
were frequency-matched by age and sex, they had a
similar mean age (56.4 years in cases and 56.0 years in
controls) and the same distribution of sex (31.7% women
and 68.3% men). We observed statistically significant dif-
ferences in family history of colorectal cancer, BMI, his-
tory of DM, regular exercise, regular aspirin use,
postmenopausal HRT use, red and processed meat in-
take, and dairy product consumption (P < 0.05). After
adjustment for covariates, we observed a statistically sig-
nificant association for an increased risk of colorectal
cancer with family history of colorectal cancer (OR =
2.27, 95% CI = 1.56–3.32, P < 0.01), history of DM (OR =
2.27, 95% CI = 1.56–3.32, P < 0.01), nonregular exercise
(OR = 2.97, 95% CI = 2.43–3.62, P < 0.01), nonregular as-
pirin use (OR = 3.26, 95% CI = 1.97–5.41, P < 0.01), and
dairy consumption less than 400 g/day (OR = 2.23, 95%
CI = 1.53–3.25, P < 0.01). Contrary to previous studies,
we observed a statistically significant association for a
decreased risk of colorectal cancer with red meat intake
equal to or greater than 100 g/day (OR = 0.66, 95% CI =
0.47–0.92, P = 0.02).
Table 2 shows the associations between susceptibility

SNPs and colorectal cancer risk in previously published
GWAS and the current study. Among 31 previously re-
ported SNPs, 13 SNPs (rs647161 at 5q31.1, rs6983267 at
8q24.21, rs7014346 at 8q24.21, rs10505477 at 8q24.21,
rs10795668 at 10p14, rs704017 at 10q22.3, rs11196172
at 10q25.2, rs174537 at 11q12.2, rs174550 at 11q12.2,
rs1535 at 11q12.2, rs4779584 at 15q13.3, rs10411210 at
19q13.11, and rs2423279 at 20p12.3) showed statistical
evidence of association with colorectal cancer risk in the
same direction as previous results, with nominal p-
values ranging from 0.05 to 2.0 × 10− 4. The remaining
10 SNPs (rs3802842 at 11q23.1, rs10849432 at 12p13.31,
rs10774214 at 12p13.32, rs7136702 at 12q13.13,
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Table 1 Characteristics of colorectal cancer cases and controls and associations with colorectal cancer risk

Characteristics Colorectal cancer cases Controls Pa OR (95% CI)b Pb

(N = 703, 100%) (N = 1406, 100%)

N (%) N (%)

Age, years

mean (SD) 56.4 (9.6) 56.0 (9.1) 0.31

< 50 159 (22.6) 318 (22.6) > 0.99 1.00 (ref.)

≥ 50 544 (77.4) 1088 (77.4) 1.10 (0.87–1.40) 0.41

Sex

Women 223 (31.7) 446 (31.7) > 0.99 1.00 (ref.)

Men 480 (68.3) 960 (68.3) 0.96 (0.78–1.18) 0.68

Family history of colorectal cancer

No 636 (90.5) 1339 (95.2) < 0.01 1.00 (ref.)

Yes 67 (9.5) 67 (4.8) 2.27 (1.56–3.32) < 0.01

BMI, kg/m2

mean (SD) 23.8 (3.4) 24.1 (2.7) 0.04

< 25.0 478 (68.0) 930 (66.2) 0.47 1.00 (ref.)

≥ 25.0 225 (32.0) 470 (33.4) 0.87 (0.71–1.07) 0.19

History of colorectal polyps

No 628 (89.3) 1227 (87.3) 0.17 1.00 (ref.)

Yes 75 (10.7) 179 (12.7) 0.94 (0.69–1.28) 0.70

History of IBD

No 701 (99.7) 1401 (99.6) 0.79 1.00 (ref.)

Yes 2 (0.3) 5 (0.4) 0.67 (0.12–3.87) 0.66

History of DM

No 616 (87.6) 1287 (91.5) < 0.01 1.00 (ref.)

Yes 87 (12.4) 119 (8.5) 2.27 (1.56–3.32) < 0.01

Alcohol drinking

Never 212 (30.2) 419 (29.8) 0.87 1.00 (ref.)

Ever 491 (69.8) 987 (70.2) 1.07 (0.84–1.36) 0.59

Smoking

Never 316 (45.0) 617 (43.9) 0.64 1.00 (ref.)

Ever 387 (55.1) 789 (56.1) 0.88 (0.68–1.15) 0.36

Regular exercise

Yes 229 (32.6) 566 (40.3) < 0.01 1.00 (ref.)

No 474 (67.4) 833 (59.3) 2.97 (2.43–3.62) < 0.01

Regular aspirin use

Yes 20 (2.8) 134 (9.5) < 0.01 1.00 (ref.)

No 683 (97.2) 1272 (90.5) 3.26 (1.97–5.41) < 0.01

HRT in postmenopausal women

Ever 31 (19.1) 99 (30.9) < 0.01 1.00 (ref.)

Never 130 (80.3) 219 (68.4) 1.50 (0.92–2.44) 0.11

Red meat intake, g/dayc

mean (SD) 51.2 (33.4) 58.0 (39.0) < 0.01

< 100 643 (87.3) 1228 (87.3) < 0.01 1.00 (ref.)

≥ 100 58 (8.3) 176 (12.5) 0.66 (0.47–0.92) 0.02
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rs4444235 at 14q22.2, rs4939827 at 18q21.1, rs1800469
at 19q13.2, rs2241714 at 19q13.2, rs961253 at 20p12.3,
rs4813802 at 20p12.3) of the 18 SNPs showed evidence
of association in the same direction even though it was
not statistically significant.
The G × Es between 31 SNPs and 13 environmental fac-

tors were tested using both case-only (Additional file 1:
Table S1) and case-control designs (Additional file 1: Table
S2). A total of 7 out of 8 G × Es showing the nominal sig-
nificance of p-value < 0.05 in both case-only and case-
control analyses satisfied the assumption of independence
between genetic and environmental factors except 1 G× E
between rs1957636 and smoking status (Additional file 1:
Table S3). Table 3 summarizes those 7 G × Es between
rs10849432 and BMI, rs11196172 and history of colorectal
polyps, rs10795668 and regular exercise, rs4444235 and
regular exercise, rs2241714 and regular aspirin use,
rs2423279 and regular aspirin use, and rs1957636 and diary
consumption in colorectal cancer by study designs. Notably,
2 G × Es between rs4444235 and regular exercise (case-
only: Pinteraction = 2.4 × 10− 3, case-control: Pinteraction = 1.5 ×
10− 3) and rs2423279 and regular exercise (case-only: Pinter-
action = 7.7 × 10− 3, case-control: Pinteraction = 1.6 × 10− 3)
remained significant in at least one of case-only and case-
control analyses even after Bonferroni-corrected p-value for
multiple testing was allowed for.
Table 4 shows the association of 2 SNPs, rs4444235

and rs2423279, with colorectal cancer risk stratified by
regular exercise and regular aspirin use. Although the
SNP rs4444235 was not significantly associated with
colorectal cancer risk (Table 2), the magnitude of the ef-
fect of the C allele for this SNP decreased with regular
exercise (ORCC vs. TT = 0.58, 95% CI = 0.38–0.88, ORaddi-

tive = 0.76, 95% CI = 0.62–0.94, ORrecessive = 0.66, 95%
CI = 0.46–0.94) but increased with nonregular exercise

(ORCC vs. TT = 1.47, 95% CI = 1.02–2.10, ORadditive = 1.21,
95% CI = 1.01–1.44). The increased magnitude of the ef-
fect of the T allele for the SNP rs2423279 on colorectal
cancer risk was observed in regular aspirin users (ORCT

vs. CC = 4.77, 95% CI = 1.28–17.73, ORTT vs. CC = 21.19,
95% CI = 3.82–117.52, ORadditive = 4.62, 95% CI = 1.97–
10.80, ORdominant = 6.30, 95% CI = 1.80–22.09, ORreces-

sive = 8.01, 95% CI = 2.02–31.78).

Discussion
We evaluated G × Es on colorectal cancer risk for 31
susceptibility SNPs identified through GWAS with 13
established environmental risk or protective factors
using both case-only and case-control study designs.
Our analysis showed evidence of G × Es between the
SNP rs4444235 at 14q22.2 and regular exercise and the
SNP rs2423279 at 20p12.3 and regular aspirin use after
accounting for multiple testing. Furthermore, we ob-
served that the associations between rs4444235 and
rs2423279 were modified by regular exercise and regular
aspirin use.
Among previous G × E studies for colorectal cancer

susceptibility loci identified by GWAS, the G × E be-
tween rs4444235 and regular exercise for colorectal can-
cer risk has not been investigated [6–13]. The G × E
between rs2423279 and regular aspirin was tested by
Kantor et al., but the interaction was not detected with a
statistically significant level [7]. Furthermore, previously
reported G × Es identified by GWAS for colorectal car-
cinogenesis were not replicated. This may be due to eth-
nic differences or limited power to detect interactions.
We previously reported on G × Es involving GWAS-
identified colorectal cancer susceptibility loci with age at
cancer onset [13], smoking [11], and alcohol consump-
tion [12] using a conventional method of detecting

Table 1 Characteristics of colorectal cancer cases and controls and associations with colorectal cancer risk (Continued)

Characteristics Colorectal cancer cases Controls Pa OR (95% CI)b Pb

(N = 703, 100%) (N = 1406, 100%)

N (%) N (%)

Processed meat intake, g/dayc

mean (SD) 1.1 (9.1) 2.5 (13.2) < 0.01

< 50 699 (99.4) 1395 (99.2) 0.29 1.00 (ref.)

≥ 50 2 (0.3) 9 (0.6) 0.78 (0.16–3.93) 0.77

Dairy consumption, g/dayc

mean (SD) 72.6 (147.5) 236.4 (807.3) < 0.01

≥ 400 16 (2.3) 198 (14.1) < 0.01 1.00 (ref.)

< 400 685 (97.8) 1206 (85.8) 2.23 (1.53–3.25) < 0.01

SD standard deviation, BMI body mass index, IBD inflammatory bowel disease, DM diabetes mellitus, HRT hormone replacement therapy, OR odds ratio, CI
confidence interval
aChi-square test for categorical variables and T-test for continuous variables
bLogistic regression analysis adjusted for age, sex, family history of colorectal cancer, history of DM, regular exercise, and dairy consumption
cDietary factor values were adjusted for total energy intake using the residual method
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interactions. In the current analysis, we combined the
case-only, case-control, and control-only study designs,
suggesting that the results were more powerful and less
biased.
Colorectal cancer susceptibility associated with the

SNP rs4444235 was first reported by meta-analysis of
two GWAS from individuals of European descent [22].
The association between rs4444235 and colorectal can-
cer risk was also detected among Caucasian and east
Asian patients by a meta-analysis [23]. Although several
Asian studies [24–26] as well as the current study did
not show a statistical association between rs4444235 and
colorectal cancer risk, perhaps due to a small sample
size, the direction of the association was consistent, sug-
gesting a potential higher risk associated with the C al-
lele. rs4444235 is located at chromosome 14q22.2 close
to the bone morphogenetic protein 4 (BMP4) coding
gene. Despite the noncoding risk variant, the C allele of
rs4444235 showed significantly increased allele-specific

expression of the BMP4 gene in the colorectal cancer
cell line [27]. BMP4 is involved in the transforming
growth factor beta (TGFβ) superfamily signaling path-
way, contributing to colorectal tumorigenesis [28]. Colo-
rectal tumorigenesis may be inhibited by favorable
effects of regular exercise stimulating intestinal peristal-
sis and maintaining the general metabolic milieu [29].
This association between the SNP rs2423279 and colo-

rectal cancer risk was identified by GWAS in east Asians
and replicated in east Asians and European-ancestry
populations as well [30]. This study also observed that
rs2423279 with the C allele was associated with an in-
creased risk of colorectal cancer in the same direction.
The 2,423,279 is located at chromosome 20p12.3 close
to HAO1, which encodes hydroxy acid oxidase 1, and
PLCB1, which encodes phospholipase C beta 1. In terms
of HAO1 or PLBC1 genes, the mechanisms of colorectal
carcinogenesis and interaction with aspirin are un-
known. However, because aspirin can be used as a ligand

Table 4 Associations between susceptibility SNPs and colorectal cancer risk by environmental factors

SNP/genotypea Regular exercise

Yes No

Case Control OR (95% CI)b Case Control OR (95% CI)b

N (%) N (%) N (%) N (%)

rs4444235 at 14q22.2 (intergenic)

TT 65 (28.4) 185 (22.2) 1.00 (ref.) 98 (20.7) 142 (25.1) 1.00 (ref.)

TC 113 (49.3) 411 (49.3) 0.82 (0.57–1.17) 227 (47.9) 272 (48.1) 1.28 (0.92–1.78)

CC 51 (22.3) 237 (28.5) 0.58 (0.38–0.88) 149 (31.4) 151 (26.7) 1.47 (1.02–2.10)

Additive model 0.76 (0.62–0.94) 1.21 (1.01–1.44)

Dominant model 0.72 (0.52–1.02) 1.35 (0.99–1.83)

Recessive model 0.66 (0.46–0.94) 1.24 (0.94–1.64)

Interaction between rs4444235 and regular exercise

Case-onlyc P for interaction = 2.4 × 10−3

Case-controld P for interaction = 1.5 × 10− 3

rs2423279 at 20p12.3 (intergenic)

CC 5 (25.0) 75 (56.0) 1.00 (ref.) 337 (49.8) 679 (53.5) 1.00 (ref.)

CT 10 (50.0) 53 (39.6) 4.77 (1.28–17.73) 278 (41.1) 498 (39.2) 1.07 (0.87–1.33)

TT 5 (25.0) 6 (4.5) 21.19 (3.82–117.52) 62 (9.2) 93 (7.3) 1.27 (0.87–1.85)

Additive model 4.62 (1.97–10.80) 1.10 (0.94–1.29)

Dominant model 6.30 (1.80–22.09) 1.11 (0.90–1.35)

Recessive model 8.01 (2.02–31.78) 1.23 (0.86–1.77)

Interaction between rs2423279 and regular aspirin use

Case-onlyc P for interaction = 7.7 × 10−3

Case-controld P for interaction = 1.6 × 10− 3

SNP single-nucleotide polymorphism, OR odds ratio, CI confidence interval, DM diabetes mellitus
aRisk/effect and reference allele was designated based on the literature
bLogistic regression modeladjusted age, sex, family history of colorectal cancer, history of DM, regular exercise, and dairy consumption
cLogistic regression model based on case-only design using individual SNPs based on additive model and dichotomized environmental facators adjusted age, sex,
family history of colorectal cancer, history of DM, regular exercise, and dairy consumption
dLogistic regression model based on case-control design using interaction terms including individual SNPs based on additive model and dichotomized
environmental facators adjusted age, sex, family history of colorectal cancer, history of DM, regular exercise, and dairy consumption
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and/or transport and absorption facilitators of diverse
agents, including RNAi or polynucleotide targeting for
inhibition of HAO1 gene expression [31, 32], there still
remains a possibility of indirect G × Es between HAO1
and aspirin use.
A major strength of this study is that we found novel

G × Es for colorectal cancer susceptibility loci between
SNP rs4444235 and regular exercise and SNP rs2423279
and regular aspirin use after accounting for multiple
testing. However, the calculated power was 32.2% for the
G × E between rs4444235 and regular exercise and 53.2%
for the G × E between rs2423279 and regular aspirin use
considering the case-only analysis with 703 cases. Al-
though we did not obtain enough statistical power to de-
tect weak G × Es due to insufficient sample size, both
case-only and case-control analyses were performed to
overcome sample size limitations, derive additional
power, and ensure general validity. Through additional
control-only analysis, the assumption of independence of
genetic and environmental factors was tested in the
underlying population. Also, because the case-only study
design estimated interactions on the multiplicative scale,
which could not imply that G × Es biologically cause
colorectal cancer, case-control study design validated the
biological hypotheses.
One limitation is that we did not include all colorectal

susceptibility loci identified by previous GWAS in the
analyses. However, our genetic factors included a rela-
tively updated and large number of colorectal cancer
susceptibility SNPs compared with previous G × E stud-
ies for colorectal cancer. Environmental factors in the
analysis were also selected based on the latest evidence
for colorectal cancer risk or protective factors. The other
limitation is that the biological basis of G × Es for
GWAS-identified SNPs remains unclear, because the
functional relationship between those SNPs based on the
agnostic approach and colorectal cancer risk are not
fully understood. Third, the observed G × Es have not
been validated in the other population. We further con-
ducted case-only and case-control analysis on G × Es be-
tween rs4444235 and regular exercise among Whites in
UK Biobank, no statistically significant interactions were
observed (Additional file 1: Table S4). Further studies
for Asian-based established risk and protective factors
on colorectal cancer and validation studies with suffi-
cient sample size are warranted.

Conclusions
In conclusion, our results suggest that there are pos-
sible interactions between the SNP rs4444235 at
14q22.2 and regular exercise and the SNP rs2423279
at 20p12.3 and regular aspirin use in colorectal
carcinogenesis.

Additional files

Additional file 1 : Figure S1. A flow diagram of the study population.
Table S1. Interactions between susceptibility SNPs and environmental
factors in colorectal cancer by case-only analysis. Table S2. Interactions
between susceptibility SNPs and environmental factors in colorectal can-
cer by case-control analysis. Table S3. Independence test between se-
lected susceptibility SNPs and environmental factors by control-only
analysis. Table S4. Associations between rs4444235 and colorectal cancer
risk by regular exercise among Whites in UK Biobank.
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