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Abstract

Background: The rapid development of single-cell RNA sequencing (scRNA-seq) provides unprecedented
opportunities to study the tumor ecosystem that involves a heterogeneous mixture of cell types. However, the
majority of previous and current studies related to translational and molecular oncology have only focused on the
bulk tumor and there is a wealth of gene expression data accumulated with matched clinical outcomes.

Results: In this paper, we introduce a scheme for characterizing cell compositions from bulk tumor gene
expression by integrating signatures learned from scRNA-seq data. We derived the reference expression matrix to
each cell type based on cell subpopulations identified in head and neck cancer dataset. Our results suggest that
scRNA-Seq-derived reference matrix outperforms the existing gene panel and reference matrix with respect to
distinguishing immune cell subtypes.

Conclusions: Findings and resources created from this study enable future and secondary analysis of tumor RNA
mixtures in head and neck cancer for a more accurate cellular deconvolution, and can facilitate the profiling of the
immune infiltration in other solid tumors due to the expression homogeneity observed in immune cells.
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Background
Cancer immunotherapy has made substantial progress and
has dramatically impacted the treatment of multiple cancers,
including skin cancer, lung cancer, and head and neck can-
cer. The cellular composition of a tumor and its immune
microenvironment varies between patients and tissue types.
The presence and higher content of tumor-infiltrating lym-
phocytes (TILs) is believed to be associated with response to
the immunotherapy. In melanoma, it was also found that the
composition of immune cells such as CD8+ cytotoxic lym-
phocytes and dendritic cells are strong prognostic predictors
themselves and are associated with overall clinical outcomes.
However, there are still considerable technological and ana-
lytical barriers to assess cancer and immune cell composi-
tions in the tumor quantitatively. The pathological
approaches such as immunohistochemical (IHC) staining
and flow cytometry analysis are labor intensive and often

involve considerable inter-observer variation. Therefore, the
cell decomposition based on existing molecular profiles of
tumors has received many attentions in recent years. Earlier
work has been centered on whole exome sequencing data.
Based on DNA mutational signatures and the distribution of
local copy numbers, several methods have been proposed to
infer the tumor purity—defined as the proportion of cancer-
ous cells in the tumor tissue. Based on the similar computa-
tional model [1], subclonal heterogeneity and somatic
homozygosity can also be explored. Previous studies have
also attempted to deconvolve gene expression profiles (in-
cluding microarray and RNA-seq) of tumor samples to infer
the stromal and immune cell admixture [2]. These methods
leverage distinct transcriptional properties of different cell
types, which provide finer granularity in the cell composition
estimation than using DNA mutational profiles alone.
The software CIBERSORT has now been widely used

in the area to estimate immune cell subsets from tumor
expression profiles. But its application has been limited
to microarray studies due to the source of the training
gene expression panel. Only recently have efforts begun
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to extend the cell deconvolution method to RNA-seq
data and to identify more microenvironment-informative
markers. These reference markers were selected from
whole transcriptome data and narrowed down through
correlating gene expression with tumor purity estimates.
The nCounter system (NanoString) has gained popularity
in the clinical and translational setting as an alternative
tool for immune cell profiling. The advantage of Nano-
String platform is that it is based on a highly sensitive and
non-enzymatic process to enable a more precise quantifi-
cation of RNA expression, which provides reliable data
even with FFPE samples. However, nCounter is a targeted
gene expression panel, and the surrogate expression pro-
file cannot differentiate all cell subpopulations. Therefore,
there is a pressing need to develop more efficient gene ref-
erence panel and related computational tools to quantify
the components of tumor microenvironment in situ on a
larger scale, which will facilitate both retrospective and
prospective studies.
The recent maturation of single-cell RNA sequencing

(scRNA-seq) has enabled us to directly profile the cell com-
position and understand tumor heterogeneity at a cellular
level. With newly developed high-throughput cell sorting
and barcoding technologies, thousands of individual cells per
tumor can be profiled in parallel to capture intra-tumor het-
erogeneity at an unprecedented resolution [3–5]. Unless the
main goal of a project is to study underrepresented cell pop-
ulations, scRNA-seq experiments can be done without the
need for cell sorting--which is laborious and prone to consid-
erable bias due to cell death and cell selection. The unbiased
and simultaneous characterization of both immune and can-
cer cell is essential for tracking and forecasting the tumor
ecosystem, e.g., in patients before and after immunotherapy.
The cellular composition, as well as the relationships be-
tween different cell subpopulations, are generally explored
by clustering analysis using all gene expression data--most
notably, based on the method called t-Distributed Stochastic
Neighbor Embedding (t-SNE). Cell types corresponding to
each cell cluster can then be inferred based on existing cell-
type-specific marker genes and any available prior knowledge
about the cells. Furthermore, a differential expression ana-
lysis between distinct cell populations may provide new
marker genes for cell mixture deconvolution. Nevertheless,
large-scale scRNA-seq studies involve expensive sequencing
efforts, prohibiting them from being more widely used in
practical and clinical settings. There is still considerable
interest in the community to drive cell-type-informative
markers for facilitating the analysis of bulk tumor sequen-
cing. It thus motivates us to derive more efficient cell-type-
informative markers by leveraging high-quality scRNA-seq
data generated from existing studies.
Here we investigated gene expression profiles of 6,000 sin-

gle cells from 15 head and neck squamous cell carcinoma
(HNSCC) patients. To allow for a finer deconvolution of

immune cell subtypes, we employ an adaptive divide-and-
conquer scheme to isolate cell populations in silico. The ref-
erence gene expression profile matrix was then built based
on identified single cell populations. We show that the refer-
ence profiles obtained from single cell expression data enable
a more reliable estimation of cellular composition in bulk
tumor, and they have ability to discriminate immune cell
types with finer granularity. Our work demonstrates that
established single cell gene expression in each tumor type
can further add value to the digital dissection the tumor mi-
croenvironments. We provide these reference matrices and
gene panels, namely single-cell gene expression profiles
(scGEPs), to the community as a useful resource for studying
heterogeneous tumor ecosystems.

Methods
Single-cell RNAseq data
We downloaded the single-cell RNA-seq data from Puram
et al. [3] which generated expression data of 6,000 single cells
from head and neck squamous cell carcinoma (HNSCC) pa-
tients. By reviewing all published single-cell RNA-seq data
(up to Dec 2018) in cancer, we found that this dataset cov-
ered the most diverse stromal, malignment and immune
cells in the tumor microenvironment (TME), and relatively
large number of patients. Importantly, it provides annotated
cells from four T cell major subpopulations: regulatory T-
cells (Tregs), convectional CD4+ Tcells (CD4+ Tconv), CD8+

T and CD8+ T exhausted. Therefore, single cell expression
profiles from Puram et al. study is an ideal source of refer-
ence data. Note that expression profiles of malignant cells
are highly specific to HNSCC, but we hypothesize that ex-
pression reference of immune cells is applicable to other
cancer types. After removing the patient samples (MEEI9
and MEEI23) with less than 50 cells, 5712 cells from 16
treatment-naive patients plus matched lymph nodes from
three of these patients remained for analysis (Additional file 2:
Table S1). As described in Methods in Puram et al. [3] gene
expressions were quantified as y = log2 (TPM+1), where
TPM refers to transcripts per million, a gene quantification
method that has been considered superior to FPKM
(fragments per kilobase per million read) and more robust to
differences in RNA library size [6].

Enrichment analysis of cell-type-specific genes
We adapted the single-sample Gene Set Enrichment Ana-
lysis, or ssGSEA [7], to calculate the enrichment scores of
pre-existing cell-type-specific marker genes. These scores
will be used to assist the cell type assignment step to be
described in the following sections. ssGSEA is an exten-
sion of GSEA method that computes an aggregated en-
richment score for a gene set. But instead of gene-
phenotype association score, ssGSEA considers rankings
of gene expression relative to remaining genes in the gen-
ome within each sample, and calculate a score that
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represents the degree that genes in a gene set are coordi-
nately up- or down-regulated. Signature genes for HNSCC
tumor, immune, and stromal cells were obtained from previ-
ous studies [3, 8, 9]. To choose the most reliable and general-
ized signatures, we used only the genes shared by all
resources. Together, we collected 140 signature genes cover-
ing 15 cell types including HNSCC tumor cells, immune
cells, T cell subtypes, and stromal cells. The curated gene list
is given in Additional file 3: Table S2. Note that this list alone
is not sufficient to be used as a reference panel for the cell
content deconvolution with bulk tumor gene expression
data. Enrichment of each cell-type signature was assessed
using ssGSEA implemented in R package gsva [8].

Cell type identification
Similar to the data analysis presented in Purma study, we
choose to use the t-SNE method to visualize the cell clusters
and explore the cell type compositions based on transcrip-
tomes of all examined cells. However, as shown in the previ-
ous analysis and in the results section, t-SNE method alone
is only able to identify clusters of major cell types and not
able to distinguish between T cell subpopulations. Further-
more, the location of the clusters in the t-SNE map and their
relative positions to other clusters will change across analysis
runs. As a limitation of the technique, t-SNE cannot repro-
duce the same clustering map if different cells or perplexity
parameters are chosen in one analysis run. Therefore, we
propose to use a multi-stage cell identification scheme for
obtaining more accurate cell type inference--by adaptively in-
tegrating t-SNE and ssGSEA results. The steps and detailed
parameters used are described below.

(1).Tumor cell classification: To classify HNSCC
malignant cells, we performed t-SNE analysis of all
cells using perplexity parameter of 50 followed by
DBscan clustering (with parameters eps = 5 and
minPts =5). Clusters were classified as malignant
cells and non-malignant cells based on their
ssGSEA enrichment scores using signature genes
for HNSCC tumor cells (Additional file 1: Figure
S1A, B). As reported previously in various cancer
studies [3, 5], malignant cells were clustered by
patients while non-malignant cells were clustered
by cell types (Additional file 1: Figure S1C).

(2).Non-tumor cell classification: The non-tumor cells
identified in step 1 were subjective to a secondary
stage of clustering analysis. t-SNE with the
perplexity of 30 was performed followed by DBscan
clustering (with parameters eps = 6 and minPts =
15). These parameters were chosen based on two
criteria: (1) the resulted clusters should maximize
the degree of differentiation of cell populations; (2)
the resulted clusters should have the greatest
consensus possible with the ssGSEA metrics. Based

on the ssGSEA enrichment scores, clusters are
assigned to major immune and stromal cell types
including Fibroblasts, B cell, Macrophages,
Endothelial cells, Dendritic cells, Mast cells and T
cells (Additional file 1: Figure S2A and Additional
file 1: Figure S2B).

(3).T cell subtype identification: Similar procedure was
used to classify T cell subtypes from the lumped T
cells population identified in step 2. We performed
single-cell consensus clustering (SC3) analysis [10]
and were able to identify four distinct clusters of T
cell subpopulations. These four clusters were
assigned to conventional CD4+ T cells (CD4+

Tconv), T-regulatory cells (Treg), conventional
CD8+ T cells (CD8+ Tconv), and exhausted CD8+ T
cells, based on their ssGSEA enrichment scores
(Additional file 1: Figure S3A and Additional file 1:
Figure S3B). Next, differential expression analysis
was performed comparing CD4 Tconv vs. Treg
cells, and CD8+ Tconv vs. exhausted CD8+ T cells
using R package limma [11]. Only genes with
|log2FoldChange| > 1 and Benjamini-Hochberg
adjusted p-value < 0.05 were considered
significantly differentially expressed and reported in
Additional file 4: Table S3. The identified
differentially expressed genes were compared with
previously reported marker genes for these cell
types.

scRNA-derived marker genes
To develop a finer panel of cell-type-specific genes, we iden-
tified marker genes that are specifically expressed in each cell
type. Differential expression analysis was first performed be-
tween any pairs of the 11 cell types using R package limma.
Then marker genes of each cell type were identified as those
significantly highly expressed in cell type under consideration
compared to at least 5 other cell types (log2FoldChange > 3
and Benjamini-Hochberg adjusted p-value < 0.05). In total,
we identified 581 marker genes and reported the gene names
and limma results in Additional file 5: Table S4.

Deconvolution method for bulk tumor
The objective of the deconvolution algorithm is designed to
solve for the linear equationsm= f ×B, wherem is the input
gene expression profile (GEP) matrix, f is a vector of cell
fractions to be estimated, and B is the gene expression signa-
ture or reference GEP matrix. A machine learning method,
ν-support vector regression (ν-SVR) combining feature selec-
tion with a linear loss function and L2-regularisation [12],
was used to infer the compositions of the malignant cells,
tumor-infiltrating cell types/subtypes, and stromal cells from
the bulk gene expression. This method has been imple-
mented in CIBERSOR [13], a tool that has now been widely
used for in cancer research. The initial setting of
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CIBERSORT was designed for estimating 22 immune cell
types using 547 signature genes (LM22) derived from micro-
array data. In this study, we will apply the same SVR
method implemented in CIBERSORT to infer cell types
that are more representative in head and neck tumors.
The reference GEP panels used in SVR will be described
in the following section.

In silico assessment of final reference GEP panels
With the availability of high-resolution scRNA-seq data, one
main objective of this study is to explore new ways to gener-
ate the reference GEP matrices to be used in bulk tumor de-
convolution, i.e., the matrix B as described in the previous
section. The ideal B matrix should be able to yield maximal
and robust discriminatory power between cell type clusters.
Meanwhile, the pooled scRNA-seq data can be served as
ground truth for benchmarking the performance of reference
GEP as well as deconvolution methods—because the true
cell composition in the bulk gene expression data will be
known. The similar idea has been implemented in a recent
study [9]. The first step of constructing reference GEP matri-
ces is to choose a panel of reference genes that can distin-
guish the cell populations. In this study, we will focus on
four gene panels: (1) LM22 gene reference panel, designed
by Newman et al.: it contains 547 genes that distinguish 22
human hematopoietic cell phenotypes including several T-
cells types, B cells, and natural killer cells. This panel is the
default panel used in CIBERSORT and thus has been used
extensively; (2) A panel of signature genes identified from
previous literature: it contains 140 genes that are served as
signatures for 15 major cell types including HNSCC tumor
cells, immune cells, T cell subtypes, and stromal cells (Add-
itional file 3: Table S2). (3) The scRNA-derived marker gene
panel discovered through the steps described previously in
the method: which contains genes that uniquely expressed in
each cell population identified from HNSC scRNA-seq data
(Additional file 5: Table S4); (4) A T-cell-specific GEP panel
discovered through steps similar to GEP panel (3) but with a
focus on four T cell subtypes (Additional file 4: Table S3).
Note that we only used the gene list information of these
panels. The GEP matrix of these genes is formed through
averaging all single cells assigned to these populations. In
order to assess the prediction performance of the above four
GEP panels, we tested them on in silico bulk tumors by ag-
gregating the single cell transcriptome data. Expression data
of individual cells from the same patient in Puram study
were pooled to form 15 in-silico tumors, which exhibit var-
ied cellular compositions.

Results
Identifiable cell types using HNSCC single cell data
Overall, the adaptive clustering analysis on single-cell
transcriptome data pooled from all HNSCC tumor sam-
ples identified distinct 11 cell clusters to be used in

generating reference GEP. These cells types are: HNSCC
Malignant cells, Fibroblasts, Macrophages, Dendritic cells,
Endothelial cells, Mast cells, B cells, conventional CD4+ T
cells, T-regulatory cells, conventional CD8+ T cells, and
exhausted CD8+ T cells. As shown in the t-SNE plot with
all cells projected (Fig. 1a), most cells from same immune
cell types are grouped together while malignant cell and
Fibroblasts cell clusters contains multiple subgroups
within each cluster. In the follow-up analyses, we will show
that these subgroups are mainly driven by inter-tumor het-
erogeneity. The cell grouping information was then used to
construct the cell composition map back in each tumor. As
illustrated in the stacked bar chart in Fig. 1b, the proportions
of malignant cells (tumor purity) vary uniformly between 0
and 1. This pattern reflects the original experimental design
and is consistent with results from the original analysis [3].
We also observed that some important immune subsets
such as tumor-infiltrating Treg cells (coded with dark blue)
only exist in tumor samples with lower tumor purity, i.e.
sample towards the right side of the plot. Treg cells plays im-
portant role as regulators of anti-tumor immune suppression
and Treg/CD8+ T cell ratio may have a clinical significance
in analyzing tumors in HNSCC patients [14]. However, re-
sults from scRNA-seq data suggests that the overall Treg ex-
pression signature may be underrepresented in genomic
projects that are biased towards tumors with higher purity,
such as TCGA. In the following, we briefly describe results
generated from each step. First, we observed that the un-
supervised clustering on all cells based on t-SNE revealed
eight major clusters as depicted in Additional file 1: Figure
S1A. Note that, at this stage, we had no information about
cell types underlying these cell groups and the number of
clusters might differ subject to the perplexity parameter
choice in t-SNE. We started the cell type identification from
first distinguishing tumor and non-tumor cells. By adding
ssGSEA scores representing the tumor cell signature into the
t-SNE map (Additional file 1: Figure S1B), we identified two
major cluster regions of malignant cells located in the very
top and lower regions. By further adding the color layers
reflecting the tumor origin, we observed that the cell clusters
in these regions were clearly separated by patient IDs while
they were mixed together in a mosaic pattern in other cluster
regions (Fig. 1c). The results above align with previous find-
ings [3, 5, 9] that inter-tumor heterogeneity may arise more
at the tumor malignant cell level than at the immune cell
level—suggesting that immune cell signatures abstracted
from the proposed scheme will be applicable to not only
HNSCC samples generated from different studies but also
samples from different tumor types. Next, we performed a
second round of t-SNE analysis by excluding all tumor cells
identified from previous steps. The new clustering analysis
revealed seven major cell clusters (Additional file 1: Figure
S2A). We were able to identify the cell types corresponding
to each cluster by adding ssGSEA score specific to
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Fibroblasts, B cell, Macrophages, endothelial cells, dendritic
cells, mast cell, and T cells one at each time as depicted in
Additional file 1: Figure S2B. As expected, this subset of cell
population is dominated by Fibroblasts and T cells. When
we adding the color layers reflecting patient origins into
Additional file 1: Figure S2A, we found a similar pattern
that patient IDs were mixed together in each cell type
cluster, indicating that the sub-clusters (such as in the T
cells) may reveal further cell subtypes. This leads us to the
next step by further zooming into the expression profiles
of cells from T cell populations.

Deconvolution of T cell subtypes using identified T cell
population
Based on SC3, we further identified four clusters from Tcells
(Figs. 2a). The cell types in the Tcell subpopulation were first
determined based on the gene enrichment signatures of
CD4+ and CD8+ cells (as shown in the upper panel in Add-
itional file 1: Figure S3B). Within these two subpopulations,
CD8+ cells further marked with ssGSEA signatures for CD8+

Tconv and CD8+ exhausted; and CD4+ cells were marked
with CD4+ Tconv and Treg cells signature values (Additional
file 1: Figure S3B). As shown in Additional file 1: Figure S3,
the signatures for two CD8+ cell types are overlapped and it
is difficult to assign these cells to any subtypes. As further
summarized in the heatmap of ssGSEA scores (Additional
file 1: Figure S4), the ssGSEA analysis based on curated sig-
nature genes were able to distinguish between major cell
types using single cell level expression data but failed to
provide the necessary granularity in separating T cell sub-
types. To determine T cell subtypes, especially CD8+ sub-
types, we performed differential expression analysis
between the two cell groups identified within CD4+ T cells
and CD8+ T cells. Differentially expressed genes (adjusted p

value < 0.05, limma moderated t-test, and |log2fold-change|
> 1) are reported in Additional file 4: Table S3. Cell sub-
types were then inferred from the status of top differentially
expressed genes, by comparing them with existing cell-
type-specific marker genes. Figure 2b and c are heatmaps
depicting top differentially expressed genes between CD8+

cell clusters and CD4+ cell clusters, respectively. Candidate
genes that overlapped with marker genes identified from pre-
vious studies are listed and labeled in heatmaps. Note that
several exhaustion-related genes can serve as markers for
separating both subtypes in CD4 and CD8, such as TIGIT
and CTLA4. For the CD8+ T cell subtypes, we compared the
candidate marker genes identified in our DE analysis to the
exhausted CD8+ T cells marker genes reported in a previous
single-cell RNA-seq from infiltrating T cells of lung cancer
[15]. A total of 36 genes are found shared by the two studies
and all labeled in Fig. 2b. Among these 36 genes also in-
cludes 14 known exhaustion markers, such as PCCD1,
TIGIT, HAVCR2, and CTLA4 (Fig. 2b, text in red), which
further confirmed the identify of these exhausted CD8+ T
cells. The other CD8+ Tcell cluster without expression of ex-
haustion genes is considered as conventional CD8+ T cells.
For the CD4+ T cell subtypes, we also compared the candi-
date marker genes identified from the DE analysis with the
Tregs marker genes reported by four previously published
scRNA-seq data from different cancer types [15–18] (Fig.
2d). We observed that there were 20 genes shared by all five
studies (Fig. 2c, text in red), including known Tregs markers
FOXP3, TIGIT, and CLTA4; and there were many more
genes previously identified at least once (Fig. 2e). Our study
also identified 207 genes that uniquely enriched in this
HNSCC dataset (Fig. 2e), including PPP1CA, RUNX3, CCR6,
and PSMB8 which were previously reported to be associated
with Tregs and their functions [19–22]. Based on these
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observations, we assigned Tregs to this cluster of CD4+ Tcells.
The other CD4+ cluster with low expression of exhaustion
markers and with exclusively high expression of CCR7,
CXCR4, and TOBI was considered as conventional CD4+ T
cells.

Evaluation of prediction performance of reference GEPs
For each cell type identified from previous steps, we estab-
lished cell-type-specific reference GEP matrix by the mean
expression values of selected genes. We use C1 to denote
the curated gene list from previous literatures which are

used in ssGSEA (Additional file 3: Table S2), C2 to denote
marker genes selected from the DE analysis described
above (Additional file 5: Table S4), T1 to denote the marker
genes selected from DE analyses for separating T cell sub-
types (Additional file 4: Table S3), and M1 to denote
marker genes selected from DE analyses for separating
tumor and non-tumor cells. In our analysis, we constructed
reference GEP matrices by taking the mean from the fol-
lowing ensemble gene lists: (1) LM22, (2) C1, (3) C2, (4)
LM22 +C1, (5) LM22 +C1 +T1, (6) LM22 +C1 +T1 +
M1, and (7) LM22 +C1 +C2 +T1 +M1. As presented in

A B C

D E

Fig. 2 Deconvolution of T cell subtypes. a 2D t-sne projection of T cells. T cell subtypes identified by clustering analysis are annotated and
marked by color codes. b Heatmap of genes significantly expressed in exhausted CD8+ T cells comparing to conventional CD8+ T cells (adjusted
p-value <0.05, log2fold-change > 1). Genes also reported by a previous study are labeled on left, of which the known exhaustion markers are
labeled in red text. Cell types are indicated by the colored bar at top. c Heatmap of genes differentially expressed in Tregs comparing with
conventional CD4+ T cells (adjusted p-value < 0.05, |log2fold-change| > 1). Selective Treg genes are labeled in dark blue and known markers for
conventional CD4+ T cells are labeled in light blue. d Comparing Treg genes identified in (c) with Treg genes reported by previous four studies.
The combination matrix at the bottom indicates all intersections of any of the five studies. If a study is participating in an interaction, the
corresponding matrix cell is filled with black. All studies participating in the same interaction are linked by lines. The bars above the combination
matrix encode the size of each intersection. The 20 Treg genes shared by all five studies are highlighted in orange and also labeled in (c). e
Volcano plot of genes differentially expressed in Tregs vs. conventional CD4+ T cells. Unique genes found by this study are labeled in green.
Those identified once (blue), twice (red), and three times (pink) previously are also labeled
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Additional file 1: Figure S5, we evaluated the prediction
performance of CIBERSORT using these GEPs in terms of
correlation between predicted abundance and the true
abundance in the simulated bulk tumor (through pooling
all cells in one patient, see Methods). We observed that all
of these reference GEPs achieved promising prediction ac-
curacies (r > 0.9). This result indicates that existing marker
genes provides saturated signatures if forming GEPs on
right cell groups. Therefore, we will focus on the evaluation
of the LM22 +C1 gene panel because of it has a moderate
number of genes and all genes included are well studied.
All reference GEPs matrices used in this study are provided
in Additional file 6: Table S5.
Scatterplots in Fig. 3a demonstrate strong correlations

between true cell proportions and predicted cell propor-
tions based on GEP curated form LM22 + C1 scRNA-
seq data, where each point represents a simulated bulk
sample. Figure 3b further compares the cell abundance
estimation accuracy (correlation) for the reference GEP
included in CIBERSORT and the reference GEP trained
based on the LM22 + C1 scRNA-seq panel. Our method
shows better prediction performance in all case for cell
types that CIBERSORT can provide estimation, espe-
cially in estimating CD8 T cells. We further gauged the
estimated cell proportion from CIBERSROT by taking
into account the fact that the original GEP only include
reference for immune cells. Such adjustment was made
by assuming that tumor cell (purity) and stromal cell
proportion were known so that a relative abundance on
each remaining cell types can be calculated. Even with
this unrealistic scenario, the prediction performance
based on the adjusted proportion was still inferior to the
scRNA-seq trained GEP in all cases. But we did observe
that CIBERSORT estimation on macrophages and den-
dritic cells was greatly improved with this adjustment
(Additional file 1: Figure S6). To test the robustness of
the GEP panel to the cell components, we re-run the de-
volution analysis on all simulated samples using the
leave-one-out GEP, i.e. each time we remove one cell-
type-specific vector from the GEP matrix. As shown in
Additional file 1: Figure S7, the high prediction accuracy
was maintained in most scenarios, and only the estima-
tions for fibroblasts and malignant cells were detectably
impacted by the leave-one-out GEP.
Although C2 and T1 gene sets (determined based on

DE tests) did not provide additional information as a
gene panel in constructing GEP, they provide a new al-
ternative cell-type-specific biomarker for future studies.
As shown in violin plots (Additional file 1: Figure S14),
these markers are exclusively over-expressed in cell types
that they are representing, indicating their validity as in-
dependent surrogate biomarkers. A total of 182 genes
were found overlapping between groups C2 + T1 and
LM22 + C1. Expressions of these genes for each single

cell were plotted in Additional file 1: Figure S15, demon-
strating their ability as biomarker panel alone to separate
major cell types but not T cell subtypes.
Finally, as a supportive validation, we tested the proposed

scGEP on TCGA HNSCC tumor samples and compared
with results generated from similar methods developed for
bulk tumor deconvolution. Additional file 1: Figure S8
compared the tumor purity estimates with three other
methods: ABSOLUTE [1], ESTIMATE [2] and CPE [23].
These methods are based on WES, RNAseq and a consen-
sus score based on all molecular data. Our method showed
the best correlation with the estimation from ESTIMATE
in terms of purity estimation. Further, we compared the
Immune and Stromal score predicted by ESTIMATE with
the absolute proportion estimates from the scGEP-based
method. As shown in Additional file 1: Figure S9, the ana-
lysis showed a good agreement between two methods. We
also compared the estimated total immune cell proportions
and total T cell proportions between HPV positive and
HPV negative cancer patients. As expected, tumors from
HPV positive patients showed higher infiltration of immune
cells and T cells (Additional file 1: Figure S10). Abundance
of tumor infiltrating CD8 and total immune cells were also
found associated with survival outcomes in TCGA HNSCC
patients (Additional file 1: Figure S11).

Discussion
scRNA-seq provides high resolution data to study cell
heterogeneity, and provides new chance to understand the
dynamic ecosystem comprising tumor cells, fibroblasts, and
immune cells. Nevertheless, gene expression data from bulk
tumors is indispensable and still dominates the clinical and
translational settings. In this study we developed a pipeline
to construct the reference gene expression profile matrix
based on scRNA-seq data (scGEP), and assessed its perform-
ance in estimating cancer and immune cell compositions
from bulk tumor gene expression data. By combining gene
expression profiles of major cancer and immune cell types in
HNSCC established from a high-quality single cell data, our
approach overcomes a key shortcoming of most existing
studies that relied on limited source of FACS-purified cell
populations for the reference signature gene matrix. As
noted in previous studies, PBMC-based GEP is also insuffi-
cient to provide accurate estimate on bulk tumor samples.
The scGEP matrix derived from our analysis provides a new
resource for future endeavors in analyzing expression data in
head and neck cancers. The estimation on tumor purity will
be greatly improved with the tailored reference signature for
HNSCC malignant cells. Importantly, more accurate estima-
tion on cancer cells partly contributes to better estimation
on the relative abundance of immune cells. We validated re-
sults by using in silico pooled bulk tumor samples, and also
showed that single-cell-derived signatures provides the ability
to separate T cell subtypes. The finer and more accurate
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tumor immune profiling of HNSCC samples will help reveal
more prognostic biomarkers with implications for immuno-
therapy. Furthermore, because immune cell share very simi-
lar expression profiles across cancer types, in theory the
reference matrix can be broadly employed to other solid tu-
mors, but it will only provide relative abundance for immune
cell types. With the increased availability of single-cell data
in cancers such as melanoma and lung cancers, an ideal
scGEP matrix should be generated based on the same tumor
type using the proposed pipeline.
The key step in constructing scGEP matrix involves accur-

ately identifying cells of the same types or subtypes from het-
erogeneous populations, which is the in-silico equivalent of
isolating cells using physical sorting methods. Compared to
traditional sorting methods such as FACS, in-silco methods
are less time consuming, less laborious, and more cost

effective. Cell type determination at cellular level have bene-
fited greatly from specialized clustering methods developed
for scRNA-seq [10, 16, 24–26]. While there are more ad-
vanced approaches including deep learning [27, 28] have
been proposed in recent years, fully automated decompos-
ition of cell types is still a challenging problem. Part of the
difficulty arises from the fact that each tumor includes a large
variety of malignant and nonmalignant cells at different
stages. The cellular mixing component and proportions even
with the same section of a tumor can be very different if
sampled under different time or conditions, e.g., before or
after treatment. In addition, due to the limitations of the
scRNA-seq technology itself, single cell gene expression data
are often very noisy. And hence cells of the same type can
end up in different clusters, and cells of different types can
be in the same cluster due to unknown technology batch
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effects. Therefore, it is important to carefully curate and
select high-quality cell clusters before calculating cell-type-
specific reference matrix. In this study, we adopted an adap-
tive divide-and-conquer scheme to identify all major cell
types in HNSCC tumor tissues, starting from the easiest split
of cancer vs. non-cancer cells to the most challenging T cell
subtype separation. In every step of the process, cell types
are inferred based on both the results from the unsupervised
clustering analysis and the expression status of existing
marker genes. Any prior knowledge about the cellular com-
ponent of the studied tumor type also helps in assigning a
cell cluster to a cell types. In later stages of the analysis where
cell subtypes are getting harder to distinguish, multiple set-
tings or even multiple methods of clustering analysis need to
tired. This process cannot be automated due to the need to
visually inspect the clustering results in each step, but can
achieve the best possible results for cell mixture deconvolu-
tion. The adaptive method was also based on a key assump-
tion and it was further demonstrated in our clustering
analysis: despite the significant heterogeneity of malignant
cells across tumors, cells from the same immune cell types
can be clustered together due to their relatively similar gene
expression profiles.
It is important to highlight main advantage of using the

data from Puram et al. as training dataset: it by far contains
the largest collection of single cells from solid tumors (in
terms of patient number and cell number) from a single
study. The above-described property allows us to calculate
the composite reference GEP not only from pooled cells
from different tumor samples, but also from different
scRNA-seq experiments. The single-cell HNSCC data is
complementary to the TCGA bulk tumor data in that, while
TCGA designs have been focused on tumor regions,
scRNA-seq experiments can capture more immune cells in
the surrounding stroma or tumor margin, where a higher
amount of lymphocytes such as Treg cells might reside in. A
caveat is that data pooled across studies involves more com-
plicated batch effects and it is by now generally accepted that
correcting for the batch effect in RNAseq data across experi-
ments is technically challenging. It is interesting to note,
though, that some recently proposed ideas for batch effect
correction with scRNA-seq data are based on consensus
clustering, which leverages the same philosophy mentioned
above by projecting more homogenous immune cells into
the same cluster. As pointed out in the original analysis,
some apparent batch effect observed may be linked to the
enzyme used for reverse transcription in the scRNA experi-
ments. We further investigated the factor of enzyme usage in
the adaptive clustering scheme and found that it explains
well the sub-clusters observed in Fibroblast cell populations
(Additional file 1: Figure S12), but had limited impact on
other cell types (Additional file 1: Figure S13).
One notable observation in our simulation studies is that

the GEP calculated based on existing marker gene panel

(LM22 +C1) can provide as accurate a predictive capability
as the genes selected only from the differential expression
of single cell populations, although they are overlapped in
many genes. We conclude that the prediction performance
of GEP is more sensitive to the cell populations purified for a
particular cell type than the marker gene panel. Nevertheless,
the newly discovered genes from the scRNA-seq data and
their underlying pathway warrant further validations as po-
tential biomarkers, especially those genes that are differen-
tially expressed between T subtypes.
Although we have only tested support vector regression

method for cell mixture estimation, the HNSCC single cell
sequencing data curated from this study provides a useful
source for the assessment of accuracy of newly developed de-
convolution methods. For example, the core SVR algorithm
implemented in CIBESRORT only uses a single kernel under
the fixed default parameter setting. The prediction perform-
ance might be improved through searching for an optimal
kernel or using the state-of-the-art multiple kernel learning
technologies [24]. Currently there is a lack of suitable bench-
mark dataset that allows a fair and systematic evaluation of
methods for estimating cell mixtures in solid tumors. Weak
correlations were often found between molecular-data-based
estimations and pathology based methods such as IHC and
H&E images [29]. This is partially due to the fact that each
of these assays was carried out using input materials from
different parts of a tumor. Because all cell proportions are
known, the in silico pooled bulk tumor data from individual
cells provides a more accurate reference at almost zero cost.
Plus the composite cells from a single tumor could better
mimic the real case scenario than creating bulk expression
dataset through conducting RNA-seq on randomly mixed
cells. For head and neck cancer per se, the scRNA-seq data
from Puram study provide an ideal source for both training
and validation purposes because the studied tumors have (1)
uniformly varied tumor purity, and (2) it provides reference
for subpopulations such as exhaustive CD8+ T cell that were
not present in previous scRNA-seq experiments on melan-
oma and lung cancers. A limitation of the in silico method is
that the cell size factor has not been taken into account. As
cell types of different size have different amount of RNA
yield, it is of interest for future research to be able to adjust
for the cell size factor so that the estimated relative abun-
dance will be closer to absolute cell proportions.
The key idea proposed in this work is most similar to a

previous study conducted by Schelker et al. [9] which fo-
cused on scRNA-seq data from melanoma and PBMC. The
two main differences between the two works are (1) the mel-
anoma data used by Schelker et al. only provided sufficient
information for distinguish nine major cell types and three T
cell subtypes, whereas the HNSCC data we studied was able
to further separate exhaustive CD8 Tcells and provide corre-
sponding reference GEP; (2) In our method, we used both
marker gene information and a global ssGSEA scores to
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determine cell types from adaptive clustering analysis. We
believe that more studies along this line will be conducted to
generate more accurate cancer-type-specific and T-cell-
subtype-specific reference GEP. Finally, we believe that apart
from looking for reference profiles based on gene expression,
the same approach can be extended in future search to iden-
tify reference DNA methylation profiles (DMP). DMP will
be a promising new resource for tumor composition decon-
volution because Alternations at DNA methylation level are
deemed to be more stable than the gene expression level.
But the single-cell DNA methylation analysis, such as bisul-
fite sequencing, is still in an experimental phase.

Conclusions
We developed a novel scheme for characterizing cell com-
positions from bulk tumor gene expression by integrating
signatures learned from scRNA-seq data. Findings and ref-
erence panels created from this study enable future and
secondary analysis of tumor RNA mixtures in head and
neck cancer for a more accurate cellular deconvolution,
and can facilitate the profiling of the immune infiltration in
other solid tumors due to the expression homogeneity ob-
served in immune cells.
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