
RESEARCH ARTICLE Open Access

Cribriform and intraductal prostate cancer
are associated with increased genomic
instability and distinct genomic alterations
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Abstract

Background: Invasive cribriform and intraductal carcinoma (CR/IDC) is associated with adverse outcome of prostate
cancer patients. The aim of this study was to determine the molecular aberrations associated with CR/IDC in primary
prostate cancer, focusing on genomic instability and somatic copy number alterations (CNA).

Methods: Whole-slide images of The Cancer Genome Atlas Project (TCGA, N = 260) and the Canadian Prostate Cancer
Genome Network (CPC-GENE, N = 199) radical prostatectomy datasets were reviewed for Gleason score (GS) and
presence of CR/IDC. Genomic instability was assessed by calculating the percentage of genome altered (PGA).
Somatic copy number alterations (CNA) were determined using Fisher-Boschloo tests and logistic regression.
Primary analysis were performed on TCGA (N = 260) as discovery and CPC-GENE (N = 199) as validation set.

Results: CR/IDC growth was present in 80/260 (31%) TCGA and 76/199 (38%) CPC-GENE cases. Patients with
CR/IDC and ≥ GS 7 had significantly higher PGA than men without this pattern in both TCGA (2.2 fold; p = 0.0003)
and CPC-GENE (1.7 fold; p = 0.004) cohorts. CR/IDC growth was associated with deletions of 8p, 16q, 10q23, 13q22,
17p13, 21q22, and amplification of 8q24. CNAs comprised a total of 1299 gene deletions and 369 amplifications in the
TCGA dataset, of which 474 and 328 events were independently validated, respectively. Several of the affected genes
were known to be associated with aggressive prostate cancer such as loss of PTEN, CDH1, BCAR1 and gain of MYC.
Point mutations in TP53, SPOP and FOXA1were also associated with CR/IDC, but occurred less frequently than CNAs.

Conclusions: CR/IDC growth is associated with increased genomic instability clustering to genetic regions involved in
aggressive prostate cancer. Therefore, CR/IDC is a pathologic substrate for progressive molecular tumour derangement.

Keywords: Cribriform, Intraductal carcinoma, Prostate cancer, Copy number alteration, Aggressive disease,
Genomic instability

Background
Prostate cancer is heterogeneous regarding its pathologic
features, genetic background and clinical outcome. Clinical-
decision making mostly depends upon serum Prostate
Specific Antigen (PSA) level, clinical tumour stage, and
pathologic biopsy Gleason score (GS) – a grading system
based on architectural tumour patterns [1]. While patients

with the lowest GS ≤6 (WHO/ISUP group 1) have an excel-
lent patient outcome, those with the highest GS 9–10
(WHO/ISUP group 5) have the worst [1, 2]. The clinical
outcome of GS 3 + 4 = 7 (WHO/ISUP group 2) prostate
cancer patients is variable. Improving risk assessment in
this subgroup of patients is of clinical relevance as biopsy
GS 3 + 4 = 7 is an important threshold for active treatment.
Recent studies have indicated that, among Gleason grade 4
growth patterns, cribriform growth is associated with worse
clinical outcome [3–6].
In recent years the clinical relevance of intraductal car-

cinoma of the prostate (IDC) – a malignant epithelial
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proliferation filling and extending pre-existent glands –
has been acknowledged. Although not included in the
Gleason grading system, IDC has been associated with
high GS, advanced tumour stage, biochemical relapse
and distant metastasis [7–12]. IDC often mimics invasive
cribriform carcinoma, requiring basal cell immunohisto-
chemistry for their distinction. Recently, our group has
shown that patients with cribriform and/or intraductal
carcinoma (CR/IDC), have significantly worse disease-
specific survival probabilities than those without, regard-
less of GS [13]. Furthermore, patients with focal CR/IDC
have similar outcome as men with extensive CR/IDC,
indicating that the mere presence of this growth pattern
is an adverse feature [13, 14].
Although the number of mutational events in pros-

tate cancer is relatively low, copy number alterations
(CNAs) are significantly more frequent [15–24]. Several
studies have developed molecular prognostic signa-
tures, showing that indolent tumours have relatively
few CNAs in contrast to large-scale CNAs in high-
grade or metastatic tumours [16, 17, 25, 26]. However,
both the intra- and inter-tumour heterogeneity pose
significant challenges for personalizing treatment in pa-
tients with prostate cancer [27–29]. For instance, GS 7
prostate cancers harbour a wide range of CNA burden
varying between <1% to 50% [26].
Since presence of CR/IDC growth pattern is an in-

dependent, adverse clinico-pathologic parameter, we
hypothesize that CR/IDC represents a morphological
substrate of genomic alterations associated with ag-
gressive disease [13]. The objective of this study was
to determine the CNAs and single nucleotide variants
(SNVs) associated with CR/IDC using bioinformatics
analyses of datasets from The Cancer Genome Atlas
Project (TCGA) and the Canadian Prostate Cancer
Genome Network (CPC-GENE).

Methods
Pathological review
Via online access (http://cancer.digitalslidearchive.net)
and mScope Portal (Aurora Interactive, Montréal,
Canada) three investigators with expertise in urogenital
pathology (C.K., Th.v.d.K., and G.v.L.) reviewed available
whole-slide images of frozen sections of both TCGA
(n = 260) and CPC-GENE (n = 199) cohorts. Both co-
horts contained radical prostatectomy specimens with-
out prior hormonal or radiation therapy. Each slide
was reviewed for GS, tumour percentage and per-
centage CR/IDC. Percentage CR/IDC was defined as
estimated number of CR/IDC tumour cells divided
by the total number of cells present in the tissue
slice. Since invasive cribriform and IDC-P were mor-
phologically indistinguishable, they were not scored
individually [13].

Somatic copy number alterations
All statistical analyses were performed in the statistical
programming language R v3.2.1 and all genomic coordi-
nates in this manuscript are based on the latest hg19
genome build. Gene-wise log2 ratios for revised TCGA
PRAD samples (based on Affymetrix SNP 6.0 arrays)
were retrieved via the TCGA-Assembler R-package [30].
To obtain discrete values, gains or deletions of genetic
regions were called if a sample’s copy number exceeded
the threshold of ±log2(1.5/2). Similarly, a gene-by-sample
matrix was obtained for all revised CPC-GENE samples
based on Affymetrix OncoScan arrays as described in [17].
Percent genome altered (PGA) was calculated for both the
whole genome (excluding chrX and chrY) as described in
[17] and separately for individual chromosome arms. For
chromosome arms, separate PGAs for amplifications and
deletions were obtained by dividing the number of bases
affected by a deletion/amplification by the number of
bases of the respective chromosome arm, taking into ac-
count only one DNA strand as PGA does not account for
the strand of CNAs. For all values, a Wilcoxon-Mann-
Whitney test was performed to test for significant dif-
ferences between GS categories.
For identifying CR/IDC-associated events, the TCGA

cohort was used as discovery set and the CPC-GENE co-
hort was used for validation. We initially used all CR/
IDC positive samples for our analyses, but subsequently
limited the CR/IDC group to cases with at least 30% to
account for possible signal losses due to dilution effects
caused by non-CR/IDC tissue without CNAs. This dilu-
tion effect can be envisioned assuming that CNAs of
interest are CR/IDC-associated and corresponding sig-
nals therefore mainly originate from the CR/IDC com-
partment of the tumour. Surrounding non-CR/IDC
tissue hence does not harbor these CNAs and only con-
tributes to background signal leading to a reduced
signal-to-noise ratio when trying to detect the CNAs in
a mixture of both tissues. Prior to analysis, duplicated
gene names, known read-throughs, genes on non-
random/haplotype chromosomes, as well as genes in
pseudoautosomal regions and with missing data were
removed. After these filtering steps, 22,350 and
22,420 genes remained for analysis of the TCGA and
CPC-GENE cohort, respectively. Next, adjacent genes
exhibiting the same CNA profiles were grouped into
regions to further reduce the number of tests. Boschloo’s
exact test (one-sided, R-package ‘Exact’) was applied to re-
gions with CNAs in at least 10% of all samples to identify
events that occurred significantly more often in samples
with CR/IDC. Multiple testing correction was performed
via false discovery rate (FDR) and regions with a q-value
below 0.05 were considered significant. To integrate both
cohorts, all genes in regions that were identified as signifi-
cant in the TCGA cohort were tested in the CPC-GENE
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cohort. Genes with a q-value below 0.1 were considered
validated. A logistic regression was used to assess which
individual deletion or amplification events were predictive
for CR/IDC status while accounting for PGA and GS as
confounding factors. To account for correlations between
PGA and individual CNAs, PGA was re-calculated for
each event by excluding the chromosome the particular
event was located on. Visualization of results was done
with BoutrosLab.plotting.general R-package (v5.6.10;
P’ng et al. in review).

ERG expression, chromothripsis and kataegis
To quantify ERG expression in the TCGA cohort, RSEM
‘scaled estimates’ were obtained via TCGA-Assembler
and multiplied by 106 to convert them to transcripts per
million (TPM). Subsequently a log10 transformation was
applied and UCSC transcript uc002yxa.2 was used to es-
timate ERG expression. Deletion events located between
TMPRSS2 and ERG were determined by combining dele-
tions of the genes ETS2, BACE2, BRWD1, PSMG1 and
HMGN1. For the CPC-GENE cohort, scores for chromo-
thripsis and kataegic regions were computed using the
ShatterProof [31] and SeqKat (Fraser et al. Nature, in
press) algorithms. The maximum values for each sample
were used for comparison (Wilcoxon-Mann-Whitney
test) to ascertain that despite their rare occurrence, any
presence of these phenomena in the CPC-GENE sam-
ples could be detected and tested for association with
CR/IDC.

Somatic mutations
Automated and curated somatic mutation calls for ex-
ome sequencing data from TCGA PRAD samples were
obtained via the TCGA Data Portal (https://tcga-
data.nci.nih.gov/). Functional events were summarized
patient-wise for each gene (i.e. multiple mutations in one
gene were only counted once per patient, excluding cat-
egories ‘Silent’ and ‘RNA’). In addition, non-recurrent
events and events that occurred in less than 5% of all
tested samples were excluded from further analysis; all
remaining gene mutations were tested for significant en-
richment in CR/IDC positive samples using Boschloo’s
exact test (one-sided, R-package ‘Exact’). CPC-GENE
whole genome sequencing-derived SNVs (Fraser et al.
Nature, in press) were filtered to only include functional
mutations located in exonic regions and then processed as
described above.

Results
Patient characteristics
Patient characteristics of both TCGA (n = 260) and
CPC-GENE (n = 199) cohorts are listed in Table 1. The
TCGA cohort included more patients with adverse char-
acteristics than the CPC-GENE cohort, having higher

PSA levels (Wilcoxon rank sum test, p = 2.2·10−16), GS
(Pearson’s χ2 test, p = 4.0·10−5) and pT stage (Pearson’s
χ2 test, p = 3.1·10−9), which can be explained by the spe-
cific inclusion of clinically intermediate-risk disease in
the latter cohort. Moreover, tumour cellularity was
higher in TCGA than CPC-GENE (Additional file 1:
Figure S1). Representative prostate cancer samples of GS
6 and GS ≥ 7 are depicted in Fig. 1.

CR/IDC is associated with genomic instability
To assess whether CR/IDC was associated with genomic
instability, we calculated PGA for all patients and used a
Wilcoxon-test to identify significant differences [17, 26].
PGA was 3 fold (p = 1.6·10−4) higher in men with CR/
IDC as compared to men without (Fig. 2). Exclusion of
men with GS 6, who generally lack CR/IDC growth,
yielded similar results with 2.2 fold (p = 3·10−4) PGA in-
crease in cases containing CR/IDC. Subgroup analysis
revealed that PGA was significantly higher in samples
with CR/IDC in GS 4 + 3 = 7 (2.2 fold; p = 5.3·10−3), but
not in GS 3 + 4 = 7 (2.1 fold; p = 0.19), GS 8 (5.1 fold;
p = 0.57) and GS 9–10 (1.7 fold; p = 0.10). Moreover,
PGA scores did not differ significantly between GS 3 + 4 =
7 without CR/IDC pattern and GS 6 (1.2 fold; p = 0.51).
Validation within the CPC-GENE cohort revealed over-
all 1.7 fold higher PGA of CR/IDC positive men with
GS ≥ 3 + 4 = 7 (p = 4·10−3). Subgroup analysis showed
1.3 fold (p = 0.02) higher PGA in GS 3 + 4 = 7 cases with
CR/IDC as compared to those without. PGA scores were
significantly lower in GS 6 as compared to GS 3 + 4 = 7
with CR/IDC (2.2 fold; p = 4.7·10−7) than those without
CR/IDC (1.6 fold; p = 0.07). Since 32 out of 35 CPC-
GENE patients with GS ≥ 4 + 3 = 7 had CR/IDC, statistical
analysis in respective subgroups lacked statistical power.
To determine whether genomic instability in CR/IDC

was a global phenomenon or affected specific genomic
regions, we computed PGA for individual chromosome
arms utilizing deletion and amplification events inde-
pendently. We found that deletions were mostly
present on chromosome arms 1p, 4p, 4q, 5q, 7q, 8p,
10p, 10q, 12p, 13q, 16q, 17p, 18q and 21q in samples
with CR/IDC (p < 0.05, Additional file 1: Figs. S2 and S3;
Additional file 2: Table S1), while amplifications were
found on chromosome 4q, 8p, 8q, 9p, 14q and 18p.
Several of these chromosome arms have been linked to
advanced prostate cancer [21, 32–35]. Increased PGA for
chromosome 4p, 8p, 10q, 12p and 16q deletions were also
present in the CPC-GENE cohort (p < 0.05, Additional
file 1: Figs. S4 and S5; Additional file 2: Table S1).

Somatic CNAs associated with aggressive clinical outcome
are enriched in CR/IDC
To identify somatic CNAs associated with CR/IDC, we
applied Boschloo’s exact test, independently for each
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gene locus in GS ≥ 3 + 4 = 7 samples. We found 592 gene
deletions and 366 amplifications significantly associated
with CR/IDC (q < 0.05). These events clustered in specific
chromosomal regions known to be associated with aggres-
sive disease such as deletions of 8p (PPP2R2A, NKX3–1)
[36–38], 16q22 (CDH1) [39], 16q23 (BCAR1, CTRB1,
CTRB2, WWOX and MAF) [15, 40, 41], 16q24 [42], 10q23
(PTEN) [43, 44], 17p13 and 18q21 (CCBE1) [45] as well as
amplification of 8q24 (MYC and LY6 family members
[15, 46, 47], Fig. 3 and Additional file 3: Table S2).

Since it was unclear whether genomic alterations oc-
curred specifically in CR/IDC structures or also in non-
cribriform prostate cancer glands adjacent to CR/IDC,
we excluded samples with <30% CR/IDC growth pattern.
Comparing GS ≥ 3 + 4 = 7 men with ≥30% CR/IDC
(n = 44) to those without (n = 84) resulted in a total
of 1299 significant deletions and 369 amplifications.
Additional deletions in cases with ≥30% CR/IDC in-
cluded the “Down syndrome critical region” located
between ERG and TMPRSS2 on 21q22 [48], 16q22

Table 1 Clinical and pathological patient characteristics of the TCGA and CPC-GENE cohorts

Entire cohort CR/IDC positive CR/IDC negative

TCGA CPC-GENE TCGA CPC-GENE TCGA CPC-GENE

Mean (IQR) or N (%) Mean (IQR) or N (%) Mean (IQR) or N (%)

Number 260 (100%) 199 (100%) 80 (31%) 76 (38%) 180 (69%) 123 (62%)

Age (years) 60 (56–66) 61 (57–66) 61 (57–66) 61 (58–66) 60 (55–70) 61 (57–64)

PSA (ng/mL) 10 (5.1–11) 7.6 (4.8–9.3) 12 (6.4–15) 8.1 (4.9–10) 9.5 (4.6–9.7) 7.3 (4.8–9.1)

GS

3 + 3 96 (37%) 69 (35%) 0 0 96 (53%) 69 (56%)

3 + 4 78 (30%) 95 (48%) 27 (34%) 44 (58%) 51 (28%) 51 (41%)

4 + 3 39 (15%) 25 (12%) 22 (27%) 22 (29%) 17 (10%) 3 (3%)

8 19 (7.3%) 9 (4%) 17 (21%) 9 (12%) 2 (1%) 0

9–10 28 (11%) 1 (1%) 14 (18%) 1 (1%) 14 (8%) 0

pT stage

T2 112 (43%) 84 (42%) 20 (25%) 20 (26%) 92 (51%) 64 (52%)

T3a 80 (31%) 58 (29%) 28 (35%) 26 (35%) 52 (29%) 32 (26%)

T3b 55 (21%) 15 (8%) 31 (39%) 10 (13%) 24 (13%) 5 (4%)

T4 4 (2%) 0 1 (1%) 0 3 (2%) 0

Tx 9 (3%) 42 (21%) 0 20 (26%) 9 (5%) 22 (18%)

GS Gleason score, PSA Prostate Specific Antigen

a b c d

e f g h

Fig. 1 Representative images of reference HE slides of GS 6 (a, e) without CR/IDC, and GS 3 + 4 = 7 (b, f), 4 + 3 = 7 (c, g) and 4 + 4 = 8 (d, h) with
CR/IDC growth
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(CTCF) [49], 13q14 (RB1) [50, 51], 17p13 (TP53) [52], and
parts of 6q [53, 54] (Additional file 4: Table S3). Although
genetic deletions of genes located between the TMPRSS2
promoter and ERG occurred more frequently in CR/IDC
cases, we were unable to find a significant difference in
ERG mRNA expression (Additional file 1: Figure S6). This
paradoxical finding might be explained by relatively more
frequent genomic translocation than deletion mechanism
for TMPRSS2:ERG corresponding to lower genomic in-
stability in cases without CR/IDC [55].
A trend towards lower q-values was observed when

excluding tumours with <30% CR/IDC pattern suggesting
that signal strength from CR/IDC specific events was di-
luted in cases with low CR/IDC quantity. Subsequent ana-
lyses were all performed using CR/IDC samples with at
least 30% cribriform architecture. In total 474 deleted and
328 amplified genes were validated in the CPC-GENE co-
hort (q < 0.1), located on chromosomes 8p, 10q23, 13q22,
16q23–24, 17p13, 21q22, as well as 8q24, respectively
(Additional file 5: Table S4 and Additional file 6: Figure
S7). We noticed that q-values were generally lower in
TCGA as compared to CPC-GENE, regardless of whether
a threshold on CR/IDC was applied or not, indicating
relatively lower statistical power of the latter cohort.
Since genomic instability and GS might act as confound-

ing factors in assessing CNA events, we performed logistic
regression analysis correcting for GS and PGA based on
the 1668 previously identified events. A total of 779 gene
deletions and 317 amplifications were independently asso-
ciated with CR/IDC (q < 0.1, Additional file 7: Table S5).
Deletions were mostly located on 8p21–23, 13q14, 16q21–
24 as well as 18q21–23, but also included the genomic loci
containing PTEN (10q23) [56], RYBP/FOXP1 (3p13) [16]
and CASP8AP2 (6q15) [57]. The PPP2R2A/BNIP3L/
PNMA2 locus (8p21) [36] featured the lowest q-value for

deletions (p = 0.00018, q = 0.02, OR = 10.2, 3.24–38), while
the MAFA/PTP4A3 locus on 8q24 did for amplifications
(p = 0.007, q = 0.08, OR = 7.77, 1.98–41.95) [58, 59]. For
CPC-GENE, logistic regression did not yield significant re-
sults after correcting for multiple comparisons, which can
be attributed to lower statistical power and significant dif-
ferences in pathological features.

Somatic SNVs are not main driver events for CR/IDC
growth
To identify genes affected by functional SNVs we used
TCGA exome sequencing data (https://tcga-data.nci.
nih.gov/) of samples with GS ≥ 7, and compared 88
samples with ≥30% CR/IDC against 143 without. Filtering
for genes that harboured SNVs in at least 5% of all sam-
ples, FOXA1 (15% versus 5%; p = 0.007), TP53 and SPOP
(both 19% versus 10%; p = 0.035) showed significantly
higher mutation rates in cases with CR/IDC compared to
those without (Boschloo’s exact test). Although SNV data
were available for CPC-GENE samples, the number of
cases, i.e. 8 with and 30 without CR/IDC was too low for
statistical analysis. We did not find significant differences
in overall frequency or total number of affected genes with
functional SNVs (data not shown), indicating that SNVs
are unlikely to be driver events for CR/IDC growth.
Finally, we investigated whether recently discovered

DNA repair-related phenomena were linked to CR/IDC
[60, 61]. We utilized available computational scores for
kataegis, a pattern of localized hypermutation, and chro-
mothripsis, a catastrophic event during which single
chromosome arms or entire chromosomes are rearranged
and/or lost. No statistically significant differences could be
identified between cases with and without CR/IDC albeit
sample numbers were low (data not shown).

a b

Fig. 2 Boxplot of patient-wise PGA stratified by CR/IDC percentage and Gleason score in the TCGA (a) and CPC-GENE (b) cohort
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Discussion
Recent studies have indicated the clinical importance of
both invasive cribriform and intraductal carcinoma of
the prostate [6, 13, 14]. In the current study, we hypoth-
esized that CR/IDC represents a morphologic substrate
of genomic alterations associated with aggressive disease.
We found that CR/IDC was associated with increased
genomic instability together with chromosomal deletions

of 3p13, 6q15, 8p21–23, 10q23, 13q14, 16q21–24,
18q21–23, and amplification of 8q24. The genetic losses
and amplifications included several genes related to ag-
gressive prostate cancer such as loss of PTEN, RB1,
TP53 and amplification of MYC. Altogether, these
findings support our hypothesis that CR/IDC is a spe-
cific morphologic substrate of genomic alterations asso-
ciated with aggressive disease.

Fig. 3 Overview heatmap of CNA in TCGA cohort. Clinical variables are displayed on the left, while PGA is displayed on the right. Samples are ordered by
CR/IDC percentage, with two thresholds chosen to discriminate between negative (0%), intermediate (1–30%) and high (>30%) CR/IDC growth pattern
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Our study is in line with previous studies on genetic
abnormalities related to CR/IDC growth. Dawkins et al.
[62] and Bettendorf et al. [63] observed more frequently
loss of heterozygosity (LOH) in IDC than in the inva-
sive prostate cancer component. Qian et al. showed
gain of chromosomes 7, 12, and Y, loss of chromosome
8, and amplification of c-MYC in cribriform cancer
compared to other Gleason grade 3 and 4 patterns [64].
In a meta-analysis on recurrent CNAs, Williams et al.
[33] compared 568 primary prostate cancer tumour
samples from 8 previous studies [16, 19, 20, 65–69]
with 115 metastatic prostate cancer samples from 5 stud-
ies [16, 22, 67, 70, 71]. Strikingly, the prevalence of recur-
rent CNAs in metastatic prostate cancers corresponded
with several of the CNAs found enriched in CR/IDC, such
as PTEN and NKX3–1. Recently, Chua et al. studied dif-
ferences in RNA expression in prostate cancer with and
without CR/IDC. They found that the long non-coding
RNA SChLAP1, which has been associated with tumour
progression, was significantly higher in CR/IDC, and that
CR/IDC growth was associated with hypoxia [72–74]. To-
gether these findings further support a strong relation of
CR/IDC with molecular tumour progression. On the other
hand, we did not find a statistically significant difference
between GS 3 + 4 = 7 without CR/IDC and GS 6 cases,
which further supports the question whether it is clinically
relevant to distinguish CR/IDC-negative GS 3 + 4 = 7 from
GS 6 prostate cancer cases.
Although prostate cancer with CR/IDC showed in-

creased genomic instability, it is not yet clear to what ex-
tent these molecular alterations are exclusively present in
CR/IDC tumour glands or whether these alterations can
also be found in surrounding non-cribriform tumour
glands. Using RNA in situ hybridization, we previously
found that SChLAP1 was not only over-expressed in CR/
IDC structures but also in adjacent non-cribriform cancer
glands suggesting that it represents a field effect during
tumour progression and not a specific characteristic of
CR/IDC growth [72, 75]. In our study, CR/IDC was more
frequently present in cases with higher GS. To exclude
that genomic alterations were merely relating to higher
GS and not to CR/IDC per se, we performed PGA sub-
group analysis and logistic regression for CNAs, which in-
deed revealed an independent associated with CR/IDC in
the TCGA cohort. Further comparisons of microdissected
growth patterns within individual patients are mandatory
to determine what events are specific for CR/IDC and
which represent general effects of progression.
Elucidation of the molecular alterations associated to

CR/IDC is not only of interest for molecular-biology, but
might also have future impact for prostate cancer diagno-
sis and management. Prostate biopsies only sample a
limited volume of the entire tumour and might be false-
negative for CR/IDC due to sampling artefact. Since IDC

represents an extensive proliferation of neoplastic cells
within pre-existent acini which connect with the urethra,
we postulate that these cells and/or their DNA can be
shed into urine. Identification of molecular alterations as-
sociated with CR/IDC in voided urine could form the base
of non-invasive tests for detection of aggressive CR/IDC.
The current study has several limitations. While we set

out to validate our findings in an independent cohort, we
noticed that many events originally found in the TCGA
cohort could not be confirmed in the CPC-GENE dataset.
This may be explained by differences in cohort compos-
ition, since the TCGA was enriched for tumours with ad-
verse pathologic features. In addition, the statistical power
of the CPC-GENE cohort was lower than of the TCGA, as
its study population was smaller, included samples with
lower and more variable tumour percentage, and was
strongly enriched for CR/IDC in GS 8–10. Nevertheless,
both datasets independently revealed the association of
CR/IDC with increased genomic instability and the dele-
tions of various specific genomic regions and genes. Fur-
thermore, tumour heterogeneity and sampling artefacts
may have also influenced the outcome of this study, as
our current data was based on DNA derived from a
freshly frozen section per patient. Hence, there may have
been, for instance, CR/IDC growth in an adjacent region
that was not sampled for genomic analysis that may have
been detected due to a field effect. This might be the cause
of the relatively small effect sizes in the current study.
Lastly, we did not independently analyse CR/IDC growth
in relation to adjacent tumour glands using, for instance,
laser-capture microdissection or in situ hybridization.

Conclusion
We found that pathologic CR/IDC growth pattern is as-
sociated genomic instability including deletions of 8p,
10q23, 13q22, 16q22–24, 17p13 and 21q22, as well as
smaller 8q24 amplification. These results indicate that
CR/IDC is a histopathological substrate of molecular
tumour progression and present a rationale for its ag-
gressive clinical behaviour.
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Additional file 1: Figure S1. Comparison of tumour cell percentage in
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chromosome arm for GS≥ 3 + 4 = 7 with and without CR/IDC. Figure S3.
PGA for amplification events in the TCGA cohort per chromosome arm for
GS≥ 3 + 4 = 7 with and without CR/IDC. Figure S4. PGA for deletion events
in the CPC-GENE cohort per chromosome arm for GS≥ 3 + 4 = 7 with and
without CR/IDC. Figure S5. PGA for amplification events in the CPC-GENE
cohort per chromosome arm for GS≥ 3 + 4 = 7 with and without CR/IDC.
Figure S6. Overview of ERG expression in TCGA [log10(TPM)] stratified by CR/
IDC status (A) and deletion of the genomic region between TMPRSS2 and
ERG (B). (PDF 3140 kb)

Böttcher et al. BMC Cancer  (2018) 18:8 Page 7 of 11

dx.doi.org/10.1186/s12885-017-3976-z


Additional file 2: Table S1. Overview of genomic instability of individual
chromosome arms in both TCGA and CPC-GENE datasets. Genomic instability
was calculated based on a modified PGA formula (see methods). P-values are
based on a Wilcon–Mann–Whitney test while log2FC represents the log2 ratio
of the average PGA scores for CR/IDC positive samples and CR/IDC negative
samples. PGA scores for deletions and amplifications were calculated and
tested separately. (XLS 139 kb)

Additional file 3: Table S2. Gene-wise copy number alterations
associated with CR/IDC growth using any CR/IDC presence for patient
stratification. Columns contain: Symbol – official gene symbol, Chromosome /
Start / End – genomic coordinates of gene locus, FDR – Boschloo’s exact test
p-value after correcting for multiple tests using the Benjamini–Hochberg
procedure. amplifications_case – number of CR/IDC positive samples with an
amplification spanning gene locus, amplifications_control – number of control
samples with an amplification spanning gene locus, cases – total number of
CR/IDC positive samples, controls – total number of control samples. All entries
are sorted by genomic location. Deletions are presented in the same format
and listed separately. (XLS 226 kb)

Additional file 4: Table S3. Gene-wise copy number alterations
associated with CR/IDC growth using a≥ 30% CR/IDC threshold to stratify
samples. Columns contain: Symbol – official gene symbol, Chromosome / Start
/ End – genomic coordinates of gene locus, FDR – Boschloo’s exact test p-
value after correcting for multiple tests using the Benjamini–Hochberg
procedure. amplifications_case – number of CR/IDC positive samples with an
amplification spanning gene locus, amplifications_control – number of control
samples with an amplification spanning gene locus, cases – total number of
CR/IDC positive samples, controls – total number of control samples. All entries
are sorted by genomic location. Deletions are presented in the same format
and listed separately. (XLS 161 kb)

Additional file 5: Table S4. Gene-wise copy number alterations
detected in the TCGA cohort and validated in the CPC-GENE cohort using
a≥ 30% CR/IDC threshold to stratify samples. Columns contain: Symbol –
official gene symbol, Chromosome / Start / End – genomic coordinates of
gene locus, FDR – Boschloo’s exact test p-value after correcting for
multiple tests using the Benjamini–Hochberg procedure for specified dataset.
amplifications_case – number of CR/IDC positive samples in specified dataset
with an amplification spanning gene locus, amplifications_control – number of
control samples in specified dataset with an amplification spanning gene
locus, cases – total number of CR/IDC positive samples in specified dataset,
controls – total number of control samples in specified dataset. All entries are
sorted by genomic location. Deletions are presented in the same format and
listed separately. (PDF 12328 kb)

Additional file 6: Figure S7. Overview heatmap of copy number
alterations in CPC-GENE cohort. Clinical variables are displayed on the left,
while percent genome altered (PGA) is displayed on the right. Samples are
ordered by CR/IDC percentage, with two thresholds chosen to discriminate
between negative (0%) and intermediate (< 30%) CR/IDC status. (XLSX 14 kb)

Additional file 7: Table S5. Significant CNAs identified by logistic
regression analysis accounting for genomic instability as confounding
factor in the TCGA dataset. Columns contain: Symbol – official gene
symbol, Chromosome / Start / End – genomic coordinates of gene locus,
p-alue / FDR – p-value of logistic regression before and after correction
for multiple tests via FDR, odds ratio / 95% CI – odds ratio and 95% confidence
interval based on logistic regression. Deletions and amplifications are
presented in the same format and listed separately. All entries are sorted by
genomic location. (XLS 266 kb)
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