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Abstract

Background: Burkitt lymphoma (BL) is characterized by overexpression of the c-myc oncogene, which in the vast
majority of cases is a consequence of an IGH/MYC translocation. While myc is the seminal event, BL is a complex
amalgam of genetic and epigenetic changes causing dysregulation of both coding and non-coding transcripts.
Emerging evidence suggest that abnormal modulation of mRNA transcription via miRNAs might be a significant
factor in lymphomagenesis. However, the alterations in these miRNAs and their correlations to their putative mRNA
targets have not been extensively studied relative to normal germinal center (GC) B cells.

Methods: Using more sensitive and specific transcriptome deep sequencing, we compared previously published
small miRNA and long mRNA of a set of GC B cells and eBL tumors. MiRWalk2.0 was used to identify the validated
target genes for the deregulated miRNAs, which would be important for understanding the regulatory networks
associated with eBL development.

Results: We found 211 differentially expressed (DE) genes (79 upregulated and 132 downregulated) and 49 DE
miRNAs (22 up-regulated and 27 down-regulated). Gene Set enrichment analysis identified the enrichment of a set
of MYC regulated genes. Network propagation-based method and correlated miRNA-mRNA expression analysis identified
dysregulated miRNAs, including miR-17~95 cluster members and their target genes, which have diverse oncogenic
properties to be critical to eBL lymphomagenesis. Central to all these findings, we observed the downregulation of ATM
and NLK genes, which represent important regulators in response to DNA damage in eBL tumor cells. These tumor
suppressors were targeted by multiple upregulated miRNAs (miR-19b-3p, miR-26a-5p, MiR-30b-5p, MiR-92a-5p
and miR-27b-3p) which could account for their aberrant expression in eBL.

Conclusion: Combined loss of p53 induction and function due to miRNA-mediated regulation of ATM and
NLK, together with the upregulation of TFAP4, may be a central role for human miRNAs in eBL oncogenesis.
This facilitates survival of eBL tumor cells with the IGH/MYC chromosomal translocation and promotes MYC-
induced cell cycle progression, initiating eBL lymphomagenesis. This characterization of miRNA-mRNA interactions in
eBL relative to GC B cells provides new insights on miRNA-mediated transcript regulation in eBL, which are potentially
useful for new improved therapeutic strategies.
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Background
Endemic Burkitt lymphoma (eBL) is a germinal center
(GC) B-cell cancer occurring at a high incidence in sub-
Saharan Africa. This pediatric cancer was first described
by Denis Burkitt in association with rainfall and later
linked with increased P. falciparum malaria prevalence
[1, 2]. What became recognized as an ubiquitous child-
hood virus, Epstein-Barr Virus (EBV) was also first de-
scribed within an eBL tumor, and thus became the first
virus associated with a human malignancy [3, 4]. While
generally sensitive to cytotoxic chemotherapies, some tu-
mors remain or become refractory, which contributes to
poor outcomes for these children [5, 6]. It is therefore
critical to elucidate all mechanisms involved in eBL
pathogenesis in order to identify molecular targets for
both early detection, prognostic indicators, and more ef-
fective therapy to improve outcomes for these children.
BL is subdivided into an EBV-associated endemic form
(eBL) in Africa (also in New Guinea), a sporadic form
(sBL) that is most prevalent in developed countries, and
an HIV-associated or immunodeficiency-related BL form
(id-BL). All forms of BL are characterized by overexpres-
sion of the MYC gene, a transcription factor and proto-
oncogene, that has roles in cell cycle progression, apop-
tosis and central to B cell transformation [7]. This
overexpression is most often a consequence of a trans-
location involving chromosomes 8 and 14 approximating
the IGH enhancer to an intact MYC locus [8, 9]. Less
common translocations can involve either of the light
chain enhancers positioned next to MYC or the direct
mutation of the gene leading to its overexpression
[10-12]. Simple overexpression of MYC is not in and
off itself transformative in normal cells as multiple mecha-
nisms and checkpoints exist that counteract aberrant
MYC expressions triggering apoptosis [13, 14]. This sug-
gests that there are likely additional genetic and epigenetic
changes to fully potentiate the oncogenic transformation.
This multi-factorial concept has been strongly supported
by a number of studies demonstrating further driver mu-
tations and epigenetic changes [15-19], that play import-
ant roles in tumor proliferation, maintenance and
abrogating checkpoints in the face of MYC overexpression
[16, 17]. However, the exact pattern and combinations of
driver mutations and epigenetic changes necessary or suf-
ficient for lymphomagenesis has not been fully elucidated.
Endemic BL, like all other forms of BL, is thought to
originate from GC B cells based on the expression of V-
region genes diversified by somatic mutations in con-
junction with its extra-nodal presentation [20]. A GC
program is supported by the detection of somatic muta-
tions in the rearranged V region genes that are charac-
teristic of GC B-cell differentiation [20, 21]. While it is
unclear if BL cells truly traverse the GC, it is clear that
GC B cells are their best normal counterpart and that
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BL is likely an oncogenically altered GC program [22] in
which GC-restricted transcription factors have powerful
oncogenic influence. The expression of protein coding
genes and polyadenylated transcripts have provided ini-
tial key insights into tumor dysregulation. However,
transcriptome expression differences that would facili-
tate oncogenesis have not been fully explored in eBL.
MicroRNAs, being one of the key transcriptome compo-
nents that have not been carefully examined in primary
tumors, may contribute significantly to altered gene ex-
pression and initiate lymphomagenesis.

MicroRNAs (miRNAs) are a recently discovered class
of small noncoding RNAs with 18 to 24 nucleotides, that
regulate gene expression post-transcriptionally by bind-
ing to mRNAs with complementarity [23, 24]. They have
been described as managers of gene expression by
targeting mRNAs for degradation or translational re-
pression and play a fundamental role in many cellular
processes including proliferation, apoptosis, and cell
survival that are often key in oncogenesis [25]. Dysregu-
lation of miRNAs have been found to initiate malignant
phenotypes, resulting in development of various cancers
[26, 27]. MiRNA expression profiling studies can be es-
pecially rich in biological information, as variations in
expression of hundreds of protein-coding genes may be
captured in the expression patterns of one or a few miR-
NAs that regulate them [26, 27]. To date, the global
miRNA and mRNA expression patterns of eBL have not
been interrogated. An evaluation of aberrant miRNA
and mRNA expression changes in eBL, compared to its
normal counterpart, could provide an insight into mech-
anisms involved in eBL genesis and progression. The
identification of oncomirs and tumor suppressor miRs,
would be of potential value in the development of novel
therapeutic agents targeting miRNAs via mimics or
antagomirs.

Although there are studies on mRNA/miRNA profiling,
and reports on BL and other non-Hodgkins lymphomas
[28-34], a combined analysis of mRNA and miRNA ex-
pression patterns of eBL has not been performed using
more sensitive and specific next-generation deep sequen-
cing. An integrative analysis of differentially regulated
miRNA and mRNA expression in eBL tumors compared
to GC B cells will help us better understand the mecha-
nisms involved in oncogenesis and identify key miRNAs
and miRNA-mRNA interactions that may underlie eBL
lymphomagenesis.

Methods

Sample collection and ethical approval

We collected Fine Needle Aspirates (FNA) of the pri-
mary tumors from children aged between 5 and 12 years
diagnosed with endemic BL. The biopsy samples were
prospectively collected between 2009 and 2012 prior to
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chemotherapy treatment at Jaramogi Oginga Odinga
Teaching and Referral Hospital (JOOTRH) located in
Kisumu City, a regional referral hospital for pediatric
cancer cases in western Kenya. Touch prep slides were
made from the FNA biopsies and stained using May-
Griinwald Giemsa (MGG) staining for morphologic
diagnosis. A portion of the biopsy was transferred into
RNAlater equilibrated for a day at 4 °C and stored long-
term at -20 °C.

Ethical review and approval for this study was ob-
tained from the Institutional Review Board at the Uni-
versity of Massachusetts Medical School, USA and the
Scientific and Ethics Review Unit (SERU) at the Kenya
Medical Research Institute (KEMRI), Kenya. Parents and
legal guardians of the study participants provided writ-
ten informed consent.

In order to compare eBL to their presumed normal
counterpart, GC B cells, we reanalyzed published publicly
available miRNAseq and mRNAseq GC B-cell datasets
from three previous publications [35-37] and databases
(https://ega-archive.org/datasets/EGAD00001002452). The
raw miRNAseq and mRNAseq fastq read files of the sorted
GC B-cells samples were downloaded through the Gene
Expression Omnibus (GEO) archive through accession
GSE22898 and the Blueprint consortium, dataset ID:
EGAD00001002452.

RNA and small RNA isolation

Total RNA and Small RNA molecules were extracted
from eBL FNA samples in RNAlater using the AllPrep
DNA/RNA/miRNA Universal kit (Qiagen) according to
manufacturer’s instructions. Small RNA abundance and
integrity were determined after isolation using Nanodrop-
ND-1000 spectrophotometer (Thermo Fisher Scientific,
Waltham, Massachusetts, USA) and an Agilent 2100 Bioa-
nalyzer (Agilent Technologies, Santa Clara, CA), respect-
ively. Only samples with a miRNA concentration > 10 ng/
ul and total RNA RIN (RNA integrity number) > 8.0 were
considered for small RNA library preparations and se-
quencing, as a result, of the 28 samples only 17 were con-
sidered for miRNA library preparation. All isolated
nucleic acids were stored at —-80 °C.

MicroRNA sequencing

Seventeen indexed miRNA libraries were prepared using
the Illumina Truseq Small RNA Library Preparation Kit
(Ilumina Inc., San Diego, CA, USA) following the man-
ufacturer’s protocol. The purified small RNA libraries
were quantified using the Agilent High Sensitivity DNA
Kit (Agilent Technologies, Colorado Springs, CO, USA)
and their size distribution was also confirmed. The
miRNA libraries were pooled in equimolar concentra-
tions and sequenced on one lane of an Illumina HiSeq
2000 platform (Illumina Inc., San Diego, CA, USA). The
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fastq files were produced using the CASAVA pipeline
v2.0 (Illumina Inc., San Diego, CA, USA) and all gener-
ated sequence data can be accessed in NCBI dbGAP ac-
cession number: phs001282.v2 [18].

Preliminary quality control analysis of the 17 fastq files
from the eBL patients and the 4 fastq files from GC B
cells obtained from Gene Expression Omnibus (GEO)
archive, were carried out with FASTQC software v0.10.0
[38]. Cutadapt v1.1 [39] was then used to trim off the
3’-adaptor sequences from the sequencing reads. Novo-
barcode [40] was then used to de-multiplex the 17 eBL
samples based on the 6-nucleotide barcode that was
added to the smallRNA sequencing library of each sam-
ple. Reads shorter than 18 nucleotides after adaptor
trimming and barcode removal were discarded. Reads
passing all the above filters were aligned to human gen-
ome (hgl9) using bowtie [41]. The resulting sequences
were subjected to our computational pipeline, which
consists of a number of in-house made scripts using
miRDeep2 [42] to determine the miRNA counts for each
of the samples.

RNA sequencing

Briefly, starting with 1-5 pg total RNA, we prepared
strand-specific RNAseq libraries following the protocol
from Zhang et al. [43] combined with mRNA enrich-
ment with oligo-dT using Dynabeads mRNA purification
kit (Life Technologies). Final library qualities were con-
firmed with Bioanalyzer High sensitivity DNA kit (Agi-
lent) and sequenced with paired end read (2x100bp)
using multiple lanes of Illumina HiSeq 2000 (Illumina
Inc.,, San Diego, CA, USA). Data can be accessed at
dbGAP with accession number phs001282.v1.

Differential gene expression analysis

After quality assessment and preprocessing the raw se-
quencing reads, we aligned mRNA read pairs to a tran-
scriptome index built by RSEM [44] using Gencode v19
protein coding transcript annotations and hgl9 genomic
sequence. To perform differential gene expression test
between 28 eBL tumors and 5 GC B-cells, we used
edgeR [45] in R computing environment. To be able to
account for the batch variables and unknown factors
while testing for the differential expression between the
eBL tumors and GC B-cell RNA expression data from an-
other dataset, we estimated the number of latent factors
for every comparison separately using svaseq [46] while
preserving the variation of interest (Additional file 1). We
then incorporated these surrogate variables into the test-
ing model for edgeR. P-values were adjusted for multiple
testing with the Benjamini and Hochberg (1995) approach
for adjusting the false discovery rate (FDR) and adjusted
p-values were filtered at 0.01. Significantly differentially
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expressed (DE) mRNAs had Benjamini-Hochberg (BH)
multiple test corrected P-values < 0.01.

Gene set enrichment analysis

We performed a standard gene set enrichment analysis
(GSEA) using the GSEA module implemented by Broad
Institute, Cambridge, MA. GSEA was performed on nor-
malized expression data and on data after surrogate vari-
able analysis as described by Kaymaz Y. et al [18]. For a
ranking metric, we used signal to noise value of each gene,
and performed a permutation test for FDR by permuting
sample phenotypes (eBL tumor cells and GC B cells). The
analysis included standard gene sets of hallmark and
oncogenic signatures as well as the curated C2 gene sets
from the Molecular Signatures Database (v5.0 MSigDB).

Differential miRNA expression analysis

Differential miRNA expression was performed between
the 17 eBL tumor cells and 4 GC B cells. This expres-
sion analysis of miRNA-Seq data was also performed
using the R/Bioconductor package edgeR [45]. First, we
counted the number of reads uniquely mapped to
miRNA regions according to the reference database
miRBase [47]. Only miRNAs that had at least 10 counts
per million in at least half of the samples were analyzed
for evidence of differential gene expression. The bio-
logical reason for this is that a miRNA must be
expressed at some minimal level before it is likely to
affect gene regulation. The statistical reason was that
very low counts would provide little statistical informa-
tion to distinguish between the null and the alternative
hypothesis [47]. We also applied svaseq [46] to account for
the batch variables and unknown factors while preserving
the variation of interest for the differential expression ana-
lysis. We then incorporated these surrogate variables into
the testing model for edgeR. P-values were also adjusted
for multiple testing with the Benjamini and Hochberg
(1995) approach for adjusting the FDR and adjusted p-
values were filtered at 0.01. Significantly DE miRNA also
had BH multiple test corrected P-values <0.01.

Network propagation method to infer the perturbed
miRNA regulatory network using differential gene
expression data

The network propagation based method (NP-method)
[48], was used to infer the key miRNA regulatory net-
works whose perturbation is most likely to induce the
observed gene expression changes in eBL compared to
their normal counterpart. By integrating eBL differential
gene expression data with prior biological knowledge of
miRNA-target interactions [49] and the TF (Transcrip-
tion factor)-gene regulatory network (HTRIdb) [50], a
network-based random walk with restart (RWR) plus
forward searching algorithm [51] was carried out to
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calculate the network perturbation effect score (NPES)
of miRNAs and extract their leading-edge target genes.
To avoid bias towards miRNAs with a large target set,
gene set permutation based analysis repeated 1000 times
was performed to normalize the score and estimate the
p-value for each miRNA.

MicroRNA target identification

miRNAs regulate expression of specific genes via
hybridization to mRNA transcripts to promote RNA
degradation, inhibit translation or both [52]. Identifica-
tion of target genes of the aberrantly expressed miRNAs
is important for understanding the regulatory networks
associated with eBL development. To investigate the bio-
logical relevance of the identified DE miRNAs, we iden-
tified all the validated target genes for the DE miRNAs
using the validated target module of the miRWalk2.0
[53, 54] database.

MicroRNA-mRNA pairs of interest

To identify miRNA-mRNA pairs of interest, we first iden-
tified the DE validated target genes of the DE miRNAs,
that exhibited an inverse expression change to the miRNA
(Pearson correlation, P = 0.05). We tested if the miRNA-
mRNA pairs are of potential biological significance or by
chance. To achieve this, we performed a permutation test
of significance repeated 10,000 times. The permutation
tested whether the number of miRNA-mRNA pairs were
more than would be expected by chance.

GO and KEGG pathway enrichment analysis

For functional analyses of the miRNA targets, Gene
ontology (GO) term analysis was applied to organize
genes into categories based on biological processes, cel-
lular components and molecular functions. Biological
pathways defined by Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis were identified by DAVID
(Database for Annotation, Visualization and Integrated
Discovery) software [55]. DAVID online was used to
provide a set of functional annotations of a large number
of genes. P-values of each pathway were adjusted using
the Benjamini-Hochberg method to control the FDR. In
the current study, GO terms and signaling pathways
were selected with the threshold of significance being
defined as P < 0.01 and FDR < 0.05.

Results

Expression of germinal center (GC) B cell differentiation
genes in eBL tumors

Using publically available miRNA and mRNA data from
our published eBL [18, 56] and published normal GC B
cells [35—37], we first examined the mRNA gene expres-
sion to ensure proper signatures consistent with the de-
scribed tumor and GC B cell expression phenotype. The
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expression levels of B cell differentiation genes in eBL
tumor cells were at comparable levels to the GC derived
B cells. RNA expression counts of key GC transcription
factors (BCL6 and PAX5) were well expressed while
plasma cell genes (BLIMP1 and IRF4) were at low levels.
Overall, this supports a GC B-cell like tumor phenotype
and the validity of further comparisons between these
malignant and normal GC B cells (Additional file 2).

Gene expression profiling comparing germinal center B
cells and endemic BL

To identify genes that may contribute to the oncogenic
phenotype of eBL, gene expression profiling was con-
ducted on 28 eBL of our newly sequenced tumor samples
[18] and 5 previously published GC B cells [35-37]. As
shown in Fig. 1, hierarchical clustering of most variant
genes revealed a clear separation of the two groups where
the eBL samples are clearly differentiated from their nor-
mal counterparts. Performing differential expression ana-
lysis between eBL and normal GC B cells, we identified
211 differentially expressed (DE) genes using stringent
thresholds (logFC > 2, p-value < 0.01 and FDR < 0.01)
(Fig. 2, Additional file 3). Of these, 132 genes were down-
regulated and 79 were upregulated in eBL compared to
their normal GC counterparts (Additional file 3). Among
the upregulated genes was MYC, whose over-expression is
central to BL oncogenesis (logFC = 3.07, p-value = 5.50E-
24 and a FDR = 1.15E-22). Also among the upregulated
genes were mitochondrial protein coding genes (MT-ND3,
MT-ND4L, MT-ND4, MT-ND2, MT-CYB, MT-ND1, MT-
COI etc), which may be as a result of the elevated
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metabolism characteristic of cancer cells to sustain their
survival. We observed the upregulation of TFAP4 (Tran-
scription factor activating enhancer-4)/AP4, a direct tran-
scriptional target of MYC to induce cell cycle progression,
(logFC = 2.12, p-value = 1.18E-35 and FDR = 6.35E-34).
We also observed the downregulation of the protein ki-
nases ATM (ataxia-telangiectasia mutated) (logFC = -2.46,
p-value < 0.0001 and FDR < 0.00001), an activator of the
DNA damage response in the face of DNA double strand
breaks (DSBs), and NLK (nemo-like kinase) (logFC = -2.55,
p-value < 0.0001 and FDR < 0.0001), a p53 activator, in
eBL tumor cells.

To identify more subtle changes in overall pathways and
functional sets of genes, we also performed gene set en-
richment analysis (GSEA). The analysis, using a FDR < 0.25,
detected only one enriched gene set. This was the gene set
HALLMARK_MYC TARGETS_VI1 (a set of genes regu-
lated by MYC) (Fig. 3; Additional file 4), which again high-
lights MYC’s pivotal role in eBL oncogenesis. This
comparison confirms that our eBL dataset is consistent
with expected differences between normal and cancerous
B cells.

MiRNA expression profiling in endemic BL

Next, to identify differences in miRNA-mRNA regula-
tory networks, we profiled the miRNA expression of 17
eBL tumor samples compared to 4 GC B cells. Hierarch-
ical cluster analysis on the expression profile of the most
variant miRNAs separated the GC B cells from the eBL
tumor cells (Fig. 1). We identified 49 miRNAs to be sig-
nificantly DE (logFC > 2, p-value < 0.01 and FDR < 0.01)
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between eBL and GC B cells. Of these, 27 miRNAs were
downregulated and 22 were upregulated in eBL samples
compared to GC B cells (Fig. 4, Table 1). For these 49
DE miRNAs, we used miRWalk2.0 to identify their vali-
dated mRNA targets (Additional file 5). Gene ontogeny
and pathway enrichment analysis of the validated tar-
gets, revealed the enrichment of Pathways in Cancer
(p-value < 0.01 and FDR < 0.01) as the top enriched
KEGG pathway, and other cancer associated KEGG
pathways (such as hsa05205:Proteoglycans in cancer,
hsa05203:Viral carcinogenesis, hsa05220:Chronic mye-
loid leukemia) (Additional file 6). Of the DE miRNAs,
there was a marked number targeting critical tumor
suppressors (PTEN, AXINI, ATM, NLK) and critical
proto-oncogenes and tumor promoting genes such as
MYC [57] (Additional file 5). For instance, the down-
regulated miRNAs included let-7 family members (let-
7a-5p, let-7b-5p, let-7c, let-7d-5p, let-7e-5p, let-7f-5p,
let-7 g-5p) (logFC < -2.5), which all target MYC gene
for post-transcriptional regulation [58—62]. Among the
upregulated miRNAs in eBL were members of the miR-
17~92 cluster (miR-19b-3p, and miR-92a-3p) (logFC > 3),
which target tumor suppressor genes such as TP53 [63]
and ATM (ataxia telangiectasia mutated) kinase [59, 64],
respectively.
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Prediction of miRNAs influencing aberrant gene
expression in eBL using network propagation-based
method

A miRNA could regulate gene expression in eBL cells ei-
ther by directly targeting genes dysregulated in eBL or
by targeting regulatory elements (such as transcription
factors), whose impact may propagate across the whole
regulatory network to influence eBL development. Thus,
we used the mRNA expression data in a network propa-
gation model [48] to identify miRNAs, whose expression
change may contribute to the observed gene expression
alterations in eBL tumor cells compared to their normal
counterparts. MiRNA-target regulation information [49]
and the transcription regulatory database (HTRIdb) was
used to model the network effects of the miRNA dysreg-
ulation in eBL. The correlation between network effect
of the miRNA perturbation and gene ranking was evalu-
ated. This identified 12 eBL-related miRNA families sig-
nificantly enriched (network perturbation effect score
(NPES) >2, adjusted p-value < 0.05 and FDR < 0.1) in
regulation of the aberrant gene expression profile in eBL
(Additional file 7). The top ranked miRNAs (NPES > 2.8,
p = 0.001 and FDR < 0.02) included, miR-19b-3p (miR-
19ab family) and miR-92a/b-3p (miR-25/32/92abc/363/
363-3p/367 family), were significantly upregulated in
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Table 1 Differentially expressed miRNAs between eBL tumor cells and GC B cells (logFC > 2, p-value < 0.01 and FDR < 0.01)

miRNA name Log FC eBL versus GC B cells BH adjusted p-value FDR Regulation eBL versus GC B cells

Upregulated miRs
hsa-miR-486-5p 10.6609 1.38E-20 1.19E-19 Up
hsa-miR-182-5p 89478 455E-26 463E-25 Up
hsa-miR-10a-5p 6.1349 3.60E-09 1.19E-08 Up
hsa-miR-183-5p 5.7463 2.02E-15 1.19E-14 Up
hsa-miR-22-3p 5.5587 7.96E-17 495E-16 Up
hsa-miR-19b-3p 4.7807 3.32E-13 143E-12 Up
hsa-miR-186-5p 43815 343E-19 2.56E-18 Up
hsa-miR-92b-3p 4.0673 3.01E-12 1.16E-11 Up
hsa-miR-769-5p 3.9268 7.24E-12 2.70E-11 Up
hsa-miR-27b-3p 3.8964 4.25E-14 2.07E-13 Up
hsa-miR-30b-5p 35192 9.55E-11 345E-10 Up
hsa-miR-146b-5p 34102 8.07E-10 2.74E-09 Up
hsa-miR-532-5p 3.1493 2.26E-10 7.93E-10 Up
hsa-miR-660-5p 3.1183 6.35E-09 2.03E-08 Up
hsa-miR-26a-5p 3.0639 2.38E-07 6.65E-07 Up
hsa-miR-130a-3p 3.0018 3.50E-05 7.13E-05 Up
hsa-miR-21-3p 27137 2.29E-06 5.58E-06 Up
hsa-miR-92a-3p 26837 2.11E-08 6.58E-08 Up
hsa-miR-148a-3p 26221 261E-07 7.14E-07 Up
hsa-miR-99b-5p 24566 1.97E-04 3.74E-04 Up
hsa-miR-3615 22328 1.23E-05 2.65E-05 Up
hsa-miR-340-5p 2.1321 2.30E-04 4.30E-04 Up

Downregulated miRs
hsa-miR-423-5p —6.82082 6.92E-38 2.59E-36 Down
hsa-miR-331-3p —6.22424 4.78E-28 6.70E-27 Down
hsa-miR-222-3p —5.76142 3.31E-29 6.18E-28 Down
hsa-miR-140-3p —5.67778 1.03E-52 1.16E-50 Down
hsa-let-7d-5p —5.54828 1.29E-27 1.61E-26 Down
hsa-miR-320a =5.12011 3.82E-38 2.14E-36 Down
hsa-miR-29a-3p —4.80203 4.01E-36 1.12E-34 Down
hsa-let-7 g-5p —4.78494 3.71E-18 2A46E-17 Down
hsa-let-7f-5p —4.52246 4.60E-23 4.29E-22 Down
hsa-miR-221-3p —4.50804 1.18E-33 2.64E-32 Down
hsa-let-7e-5p —444258 6.34E-27 7.10E-26 Down
hsa-let-7b-5p —3.90908 2.16E-15 1.21E-14 Down
hsa-miR-28-5p —3.85689 6.16E-29 9.86E-28 Down
hsa-let-7a-5p —3.79827 1.52E-20 1.22E-19 Down
hsa-miR-1260a —3.32632 761E-14 3.55E-13 Down
hsa-miR-103a-3p —3.23483 3.74E-18 246E-17 Down
hsa-miR-1260b —3.16842 142E-12 591E-12 Down
hsa-miR-30e-3p —3.00521 8.00E-15 427E-14 Down
hsa-let-7c —2.98489 3.79E-14 1.93E-13 Down
hsa-miR-29¢-3p —2.90631 248E-13 1.11E-12 Down
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Table 1 Differentially expressed miRNAs between eBL tumor cells and GC B cells (logFC > 2, p-value < 0.01 and FDR < 0.01)

(Continued)
miRNA name Log FC eBL versus GC B cells BH adjusted p-value FDR Regulation eBL versus GC B cells
hsa-miR-107 —2.89683 2.00E-12 8.00E-12 Down
hsa-miR-1275 —2.52971 1.30E-05 2.74E-05 Down
hsa-miR-15b-5p —2.17524 4.93E-08 1.45E-07 Down
hsa-miR-423-3p —2.15549 7.20E-07 1.92E-06 Down
hsa-miR-378i —2.13256 1.86E-06 4.64E-06 Down
hsa-miR-155-5p -2.07727 8.29E-06 1.82E-05 Down
hsa-miR-21-5p —2.02446 4.01E-08 1.22E-07 Down

Abbreviations: eBL endemic Burkitt lymphoma, GC germinal center, BH Benjamini & Hochberg, FC Fold Change, FDR False discovery rate

eBL tumor cells, and targets tumor suppressor genes
such as ATM and NLK, which are observed to be
downregulated in eBL. Overall, the enriched miRNAs
(Additional file 7) are more likely to cause the observed
differential gene expression in eBL, to supplement the
aberrant molecular mechanisms involved in lymphoma
development.

Integration of miRNA and mRNA expression data

We next considered miRNA-mRNA pairs to be of po-
tential biological significance if the change in the
miRNA expression produces a change in mRNA expres-
sion in the opposite direction and the magnitude of
change is higher than that by chance. We first identified
genes targeted by the DE miRNAs in eBL using miR-
Walk2.0, and of these target genes, we identified the DE
validated targets of the aberrantly expressed miRNAs
(Additional file 8). 220 miRNA-mRNA pairs were identi-
fied. To test if the observed miRNA-mRNA pairs were
significant and not due to chance, we performed a per-
mutation test repeated 10,000 times. 181 miRNA-mRNA
pairs were then identified, to be of potential biological
significance (p-value < 0.05) (Additional file 8). Fig. 5 il-
lustrates potential miRNA-mRNA pairs that would influ-
ence ATM and NLK function in response to DNA
damage to facilitate eBL lymphomagenesis.

Functional enrichment analysis of the inversely-
expressed target genes of the DE miRNAs provided us
with an overall clue of their functional roles in eBL de-
velopment. The KEGG pathway analysis demonstrated
that the DE targets were significantly associated with
transcriptional misregulation, NF-Kappa B signaling,
EBV infection, phosphotidlyinisitol signaling and viral
carcinogenesis pathways (Fig. 6).

Discussion

MicroRNAs regulate the expression of approximately
30% of all genes in the human genome [65]. In a normal
cell, the interaction of miRNAs and target mRNAs is
tightly regulated, whereas this regulation is often lost in
cancer cells. A growing body of evidence suggests that

miRNAs are aberrantly expressed in many human can-
cers and that they play significant roles in the initiation
and development of these cancers [66]. Therefore, to
better understand the specific molecular characteristics
of eBL, we identified differentially expressed miRNAs
and mRNAs in eBL tumor cells compared to GC B cells
based on high-throughput sequencing datasets. This is
the first attempt to simultaneously analyze mRNA and
miRNA expression profiles in eBL tumor cells compared
to their normal counterpart. We identified 211 mRNAs
and 49 miRNAs DE with fold changes >2 and P-
values < 0.01 in eBL tumor cells compared to GC B
cells. Of these, 181 miRNA-mRNA pairs, which ap-
peared to be of genuine biological significance and not
by chance, showed an inverse direction of expression
change. With the aim of understanding the transcrip-
tome expression changes pivotal to eBL development,
we identified the aberrant expression of genes (such as
ATM and NLK) and miRNAs (such as let-7 family mem-
bers and miR-17~92 cluster members) that could en-
dorse eBL lymphoma development and sustain survival
of tumor cells in the presence of myc translocation.
Members of the MiR-17~92 cluster gene are the first
miRNAs to be implicated in cancer development [67, 68].
This miRNA gene cluster encodes for six distinct miRNAs
(miR-17, miR-18a, miR-19a, miR-19b, miR-20a and miR-
92) that share the same seed sequence [68]. These miR-
NAs are frequently over-expressed in other cancers
(including multiple B and T cell lymphoid malignancies as
well as colorectal cancer, breast cancer, pancreatic cancer,
ovarian cancer, lung cancer, and hepatocellular carcinoma)
[67, 69] and in BL compared with other non-Hodgkin
lymphomas (NHLs) [28, 35, 68, 70]. MYC overexpression,
because of its translocation to the immunoglobulin locus
in BL, enhances the expression of miR-17~92 cluster miR-
NAs by binding directly to its genomic locus [22, 71] to
accelerate carcinogenesis. MiR-17~92 overexpression has
been observed previously in sBL tumors [16]. This is con-
sistent with levels in our eBL study. By observing elevated
expression of MYC, miR-19b-3p, miR-92a-3p and miR-
92b-3p in eBL tumor cells compared to GC B-cells, we
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confirm that elevated expression of the miR-17~92 cluster
miRNAs is a critical feature facilitating eBL lymphoma-
genesis. Human let-7 family members were also observed
to be abnormally expressed in eBL. These related miRNAs
act as tumor suppressors, regulators of differentiation and
apoptosis, and have been observed to be downregulated in
most cancers [72]. Let-7 regulates many transcription fac-
tors and oncogenes that play important roles in cell cycle
regulation, cell proliferation and apoptosis. These miRNAs
have been shown to repress MYC [29] controlling prolifer-
ation and tumor development. We observed seven let-7
family members (let-7a, let-7b, let-7c, let-7d, let-7e, let-7f,
and let-7 g) to be downregulated in eBL tumor cells com-
pared to GC B-cells consistent with their functional role
in the genesis and maintenance [29] of eBL tumor cells in
the presence of MYC deregulation.

Constitutive MYC activity is necessary for all forms of
BL [22, 73], however, overexpression of this proto-
oncogene also induces apoptotic stress responses which
are overcome during lymphomagenesis. Following MYC
translocation and deregulation in eBL, apart from

genetic alterations and mutations that would facilitate
escape from myc-mediated apoptosis [73-75], aberrantly
expressed miRNAs may also enable a cell to tolerate
such oncogene-induced apoptotic stress. MYC is known
to activate the p53 tumor suppressor pathway to initiate
the apoptotic stress response, however tumor cell survival
prevails. The observed downregulation of ATM gene and
NLK (Nemo-like Kinase) in eBL, possibly due to small-
interfering RNA mediated regulation, would impair P53
induced by MYC, initiating lymphoma occurrence.

Loss of ATM has been observed in gastric cancer
[76, 77]. This checkpoint kinase, transduces genomic
stress signals to halt cell cycle progression in response
to DNA damage. It is critical in the regulation of the P53
apoptotic pathway and lymphomagenesis in c-myc induced
lymphomas [78, 79]. ATM could be a pivotal tumor sup-
pressor in response to the translocation occurrence charac-
teristic of eBL tumor cells. It is possible that during
tumorigenesis a number of GC B cells have low ATM levels
due to small interfering RNA-mediated regulation, as a re-
sult of irregular expression of miR-27b-3p, miR-26a-5p,
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miR-30b-5p and myc-dependent activation of miR-17~92
cluster miRNAs. In turn the levels fall below the threshold
to halt cell cycle progression in response to DNA damage
and maintain P53 activation. Downregulation of ATM gene
in eBL tumor cells, implies a defective response to DNA
damage and P53 activation to suppress tumor development
initiated by the #(8:14) chromosomal translocation. Upregu-
lation of miRNAs (miR-27b-3p, miR-26a-5p, miR-30b-5p,
miR-19b-3p, and miR-92b-3p) in eBL targeting ATM sug-
gests abnormal miRNA mediate regulation of this gene
which would lead to ATM loss. The observed NLK down-
regulation in eBL tumor cells could also be critical to aid in
tumor cell escape from certain death initiated by DNA
damage (that results in the c-myc-Igh chromosomal trans-
location) and oncogene-induced apoptotic stress. NLK has
been shown to be an important P53 regulator in response
to DNA damage and is critical to P53 stability and function
[80, 81]. Based on our results, we hypothesize that low
NLK levels in eBL tumors, probably due to miRNA (upreg-
ulated miR-92a-3p and miR-27b-3p expression) mediated
regulation, would reduce the stability and activation of P53
in suppressing eBL lymphomagenesis. ATM and NLK genes
were also observed to be significantly down-regulated in
established BL cell lines (Namalwa, Raji Ramos, Daudi,
Thomas, BL41, BL2, BL30, BL70, CA46, and Gumbus)
compared to GC B cells (Additional file 9), supporting the
notion that loss of these genes are critical to eBL lympho-
magenesis and tumor cell survival.

Our data also revealed the upregulation of TFAP4/AP4
(transcription factor AP-4) in eBL tumor cells. Interest-
ingly, AP4 is a c-MYC inducible transcription factor that
has been shown to be elevated in many types of tumors
[79, 82-85] and it has been shown to also harbor an
oncogenic potential [86]. Therefore, it is likely that the
upregulation of AP4 expression also mediates cell cycle
progression, probably in response to MYC activation,
coupled with P53 loss of function due to miRNA regula-
tion of ATM and NLK, would facilitate the survival of
cells harboring the c-myc-Igh translocation initiating eBL
tumor development (Fig. 5).

EBV is highly associated with eBL diagnosed in Africa
and thus the observed enrichment of infection and viral
carcinogenesis pathways was not unexpected. Presence
of EBV encoded proteins such as EBNA-1, EBNA-3C
and LMP-1 promote genomic instability [87], which
could contribute to eBL pathogenesis. Genomic instabil-
ity, which would be initiated by EBV latent proteins
coupled with loss of ATM as observed and impaired P53
activity (as a result of the observed NLK loss) due to
miRNA repression, would favor the proliferation and
survival of eBL tumor cells. EBV miRNA (ebv-miR-
bart5), which is expressed in eBL tumor cells [56], and
LMP-1 gene can also inhibit ATM expression [87]. How-
ever the observed down-regulation of ATM in EBV
negative BL cell lines (BL2, BL30, BL41, BL70, CA46,
Gumbus, and Ramos) (Additional file 9) supports the
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notion that, irrespective of EBV’s association with eBL,
other genetic aberrations could lead to ATM loss in eBL.
Genomic aberrations such as abnormal upregulation of
host miRNAs (miR-27b-3p, miR-26a-5p, miR-30b-5p,
miR-19b-3p, and miR-92b-3p) targeting ATM would
favor proliferation, tumor cell survival and occurrences
of mutations that would favor oncogenesis.

Conclusion

In summary, this study represents the first integrative
analysis of miRNA and mRNA expression in eBL tu-
mors. We identified a number of mRNAs and miRNAs
that are DE in eBL compared to GC B-cells, the postu-
lated progenitor cell type. The differentially regulated
miRNAs and mRNAs identified in eBL contribute to our
understanding of the multifactorial nature of eBL lym-
phomagenesis. We speculate that the combined loss of
p53 function in response to DNA damage and oncogene
(MYC) induced stress may be due to miRNA-mediated
regulation of ATM and NLK together with upregulation
of TFAP4. Combined, this facilitates survival of eBL
tumor cells with the c-myc-Igh chromosomal transloca-
tion and promotes MYC induced cell cycle progression
initiating eBL lymphomagenesis.

Additional files

Additional file 1: Principal Component analysis (PCA) using mRNA
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