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Abstract

Background: The Special AT-rich Sequence Binding Protein 1 (SATB1) regulates the expression of many genes by
acting as a global chromatin organizer. While in many tumor entities SATB1 overexpression has been observed and
connected to pro-tumorigenic processes, somewhat contradictory evidence exists in brain tumors with regard to
SATB1 overexpression in glioblastoma and its association with poorer prognosis and tumor progression. On the
functional side, initial data indicate that SATB1 may be involved in several tumor cell-relevant processes.

Methods: For the detailed analysis of the functional relevance and possible therapeutic potential of SATB1
inhibition, we employ transient siRNA-mediated knockdown and comprehensively analyze the cellular and
molecular role of SATB1 in glioblastoma.

Results: In various cell lines with different SATB1 expression levels, a SATB1 gene dose-dependent inhibition of
anchorage-dependent and –independent proliferation is observed. This is due to cell cycle-inhibitory and pro-
apoptotic effects of SATB1 knockdown. Molecular analyses reveal SATB1 knockdown effects on multiple important
(proto-) oncogenes, including Myc, Bcl-2, Pim-1, EGFR, β-catenin and Survivin. Molecules involved in cell cycle, EMT
and cell adhesion are affected as well. The putative therapeutic relevance of SATB1 inhibition is further supported
in an in vivo tumor xenograft mouse model, where the treatment with polymeric nanoparticles containing SATB1-
specific siRNAs exerts antitumor effects.

Conclusion: Our results demonstrate that SATB1 may represent a promising target molecule in glioblastoma
therapy whose inhibition or knockdown affects multiple crucial pathways.
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Background
Malignant glioblastoma is the most common primary
adult brain tumor in Western nations [1]. Despite ag-
gressive treatment regimens including surgery, chemo-
and radiotherapy, the prognosis for patients with the
highest grade tumor, glioblastoma multiforme (GBM),
has remained very poor. In fact, the overall survival rate
is 12–15 months and the 5-years survival rate is only
5%. Limitations in complete resection and resistance to-
wards adjunct radio- and chemotherapy account for this
failure of treatment strategies and demonstrate the need

for other therapeutic approaches based on novel targets.
An optimal candidate should be overexpressed in the
tumor tissue, with less expression and relevance in nor-
mal tissue, and its inhibition should ideally lead to mul-
tiple cellular and molecular effects harmful to the tumor
cell.
The Special AT-rich Sequence Binding Protein 1

(SATB1) has been shown to regulate the expression of a
large number of genes by acting as a global chromatin
organizer [2]. More specifically, SATB1 interacts with
the altered sugar-phosphate backbone of the DNA, that
is specific for double-stranded base-unpairing regions
(BURs) often found in matrix attachment regions
(MARs) at the base of chromatin loops [3]. In the nuclei
of thymocytes, SATB1 has a cage-like network distribution
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and tethers specialized DNA sequences onto its network
[4]. Additionally, SATB1 binds and connects so-called
“chromatin-remodeling complexes” to DNA and thus
functions as a “landing platform” for chromatin remodel-
ing enzymes [5]. In this way, SATB1 folds chromatin into
loops and allows SATB1 to control the expression of a
multitude of genes in a manner that is dependent on cell
type and cell function [4, 6–9]. SATB1 is required in some
physiological processes including the development of thy-
mocytes [7] and the activation of Th2 cells [6]; it further-
more participates in the development of epidermis and
epidermal differentiation [10], in X-chromosome inactiva-
tion [11], cortical development [12] and in the differenti-
ation of mouse embryonic stem cells [13].
More importantly, SATB1 has been found to be over-

expressed in various tumors and associated with progno-
sis and clinicopathological features. Examples include
aggressive breast cancer [2], gastric cancer [14, 15],
prostate cancer [16], liver cancer [17], laryngeal squa-
mous cell carcinoma [18], ovarian carcinoma [19, 20],
cervical carcinoma [21], pancreatic carcinoma [22],
colorectal cancer [23–27] and malignant melanoma
[28]. In different tumor entities including breast can-
cer, small cell lung cancer, liver cancer, osteosarcoma,
prostate cancer and colorectal cancer, the stable
RNAi-mediated knockdown of SATB1 has revealed
multiple effects on the cellular level, including cell
cycle [17, 22, 26], cell proliferation [2, 17, 22, 25, 26, 29],
apoptosis [17, 25, 29], epithelial-mesenchymal transition
(EMT) [17], invasiveness [2, 16, 22, 25, 26, 29] and/or
tumor growth [2, 16, 17, 26, 27, 29].
In brain tumors, the situation appears so far to be more

complex. A significant association of SATB1 levels with
histological grade and poor survival has been described in
low and high grade astrocytoma including glioblastoma
[29, 30]. According to the recent WHO classification, glio-
blastoma is defined as grade IV astrocytoma. Chu et al.
demonstrated that SATB1 mRNA and protein expression
was low in normal brain and in grade I-II astrocytoma
specimens but highly upregulated in grade III-IV astrocy-
toma patients [31]. SATB1 expression was positively cor-
related with astrocytoma pathological grade, while a
negative correlation with patients’ overall survival was
found [31]. In contrast, another study found an inverse
correlation between SATB1 expression and tumor grade/
patient survival, and identified only phospho-SATB1 as
relevant [32]. Likewise, a Rembrandt/TCGA database
analysis (http://www.betastasis.com/glioma/rembrandt/
gene_expression_in_glioma_subtypes/) did not support
the notion of SATB1 overexpression in brain tumors. In
another study, initial results in one cell line indicated a
possible role of SATB1 in some cellular and molecular
processes [29]. Despite opposite findings with regard to
SATB1 expression in glioblastoma and tumor grade/

prognosis, another study found inhibitory effects of a
SATB1 decoy on cell proliferation and invasion [32].
Taken together, this clearly warrants a more detailed

analysis of the molecular and cellular consequences of
SATB1 inhibition in glioblastoma, in order to establish
the functional relevance of different levels of SATB1 ex-
pression in this tumor and to evaluate the putative
therapeutic value of SATB1 inhibition, beyond a thera-
peutically less relevant stable knockdown. In fact, in
order to avoid possible adaptive processes upon consti-
tutive knockdown or overexpression, we employed a
transient siRNA-mediated knockdown strategy in this
paper. We comprehensively analyze the cellular and mo-
lecular role of SATB1 in various glioblastoma cell lines
with different SATB1 expression levels, establishing in
vitro and in vivo the functional relevance of SATB1 in
glioblastoma, and the possible therapeutic potential of
SATB1 inhibition.

Methods
Cell lines, primary cultures and cell culture conditions
Glioblastoma cell lines T98G, U-87 MG, U373 and LN-
229 were obtained from the American type culture collec-
tion (ATCC). MZ-54 and MZ-18 cell lines were kindly
provided by Dr. Donat Kögel (Experimental Neurosurgery,
Frankfurt University Clinic, Frankfurt, Germany) [33], and
the G55T2 cell line was a kind gift from Dr. Katrin
Lamszus (Dept. of Neurosurgery, University Medical
Center Hamburg-Eppendorf, Hamburg, Germany) [34].
U343 cells were established by B. Westermark [35]. All
cell lines were cultivated under standard conditions
(37 °C, 5% CO2) in Iscove’s Modified Dulbecco’s
Medium (IMDM; Sigma-Aldrich, St. Louis, MO), sup-
plemented with 10% fetal calf serum (FCS) and 2 mM
stable L-Alanyl-L-Glutamine (Biochrom GmbH, Berlin,
Germany) unless stated otherwise. Depending on the cell
lines and the experimental setup, appropriate plate sizes
and cell densities were chosen to reach 80 to 90% cell con-
fluency at the end of the experiment. Cell lines were regu-
larly tested for (absence of) mycoplasma, using the Venor
GeM kit (Biostep, Berlin, Germany) based on very sensi-
tive PCR detection.
Primary cell cultures from surgically removed glio-

blastoma tissues were established as described [36].
Briefly, freshly removed tumor tissue was washed with
PBS (phosphate buffered saline) and minced with a scal-
pel blade. After mincing, small tissue pieces were trans-
ferred to a 25 cm2 culture flask (TPP, Trasadingen,
Switzerland) sprinkled with AmnioMax complete medium
(Thermo Fisher Scientific, Darmstadt, Germany). Cells
were incubated for 30 min at room temperature and fi-
nally, 1 ml AmnioMax complete medium was added. In-
cubation was then performed at 37 °C, 5% CO2 and
humidified air in an incubator. Medium was changed after
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72 h. As soon as a confluent layer was obtained, cells were
removed from culture flasks by use of accutase (PAA,
Pasching, Austria) and transferred to 75 cm2 culture flasks
(TPP). AmnioMax Medium with AmnioMax Supplement
was used for the first 2–3 weeks of cultivation. Thereafter,
and in the experiments described, DMEM Medium sup-
plemented with 2 mM Glutamax, streptomycin and peni-
cillin and 10% fetal calf serum (Biochrome, Berlin,
Germany) was used for cultivation.

Analysis of SATB1 expression in primary glioblastoma
and normal brain tissue
For the RNA isolation from primary tissue, fresh surgi-
cally obtained tumor tissue was transferred into
RNAlater (Qiagen, Hilden; Germany) immediately after
removal in order to stabilize RNA. Then, total RNA
from 40 to 80 mg of stabilized tissue was extracted using
the miRNeasy kit (Qiagen) and the RNA was stored at
−80 °C until further use. For the isolation of mRNA
from cultured cells and cell lines 0.5 × 106 cells were
used and also prepared using the miRNeasy kit accord-
ing to manufacturer’s instructions. All patients provided
written informed consent according to the German laws,
as confirmed by the local ethics committee. Surgery was
performed between 2010 and 2013 at the University of
Leipzig, Medical Faculty, Department of Neurosurgery.
The samples were histopathologically confirmed as
glioblastoma multiforme. For cDNA synthesis the
ImProm-II™ Reverse Transcription System (Promega,
Mannheim, Germany) was employed according to man-
ufacturer’s protocol, using 500 ng of total RNA. qRT-
PCR was performed on a Rotor-Gene 3000 system
(Qiagen) with SYBR Green (Maxima SYBR Green/ROX
qPCR Master Mix, Thermo Scientific, Germany). Data
analysis was performed using the Rotor-Gene 6 software
(Version 6.1/Build 93; Corbett Research) and relative
mRNA expression was calculated by the 2-ΔCt method
using TBP (TATA box binding protein) as housekeeping
gene. cDNA from normal brain tissue was obtained from
BioCat (Heidelberg, Germany).

Transient transfection
SiRNAs were purchased from Sigma-Aldrich (Taufkirchen,
Germany) or Eurofins MWG Operon (Ebersberg,
Germany); see Additional file 1: Table S1 for se-
quence information. SiRNAs targeting luciferase
(pGL3) were used as negative control. Prior to trans-
fection, cells were seeded in appropriate cell culture
plates and maintained overnight under standard condi-
tions. 2.5 nM siRNA were transfected using INTERFERin™
(Polyplus, Illkirch, France), at 1 μl INTERFERin™/pmol
siRNA (U-87 MG) or 0.5 μl INTERFERin™/pmol siRNA
(G55T2, U343, MZ-18) according to the manufacturer’s
protocol.

RNA preparation and qRT-PCR in cell lines
Total RNA was isolated using TRI Reagent® (Sigma-
Aldrich) according to manufacturer’s instructions. The
RevertAid™ H Minus First Strand cDNA Synthesis Kit
(Fermentas, St. Leon-Roth, Germany) was used to re-
versely transcribe 1 μg of total RNA with random
hexamer primers. For quantitative PCR, a LightCycler®
2.0 (Roche, Mannheim, Germany) and the Absolute™
QPCR SYBR® Green Capillary Mix (Thermo Scientific)
were used as described previously [37]. Quantification
of gene expression was performed based on the ΔΔCt

method, with β-actin as reference housekeeping gene.
Control experiments revealed that very similar results
were obtained for β-actin vs. TBP as housekeeping
genes, indicating the usefulness of both primer sets for
normalization. Primers were purchased from Eurofins
MWG Operon (for sequences, see Additional file 2:
Table S2).

Western blotting
5x104 G55T2 or U-87 MG cells were seeded in 6-well
plates and transfected as described above. 72 h (G55T2)
or 96 h (U-87 MG) after transfection, cells were washed
with PBS and lysed as described previously [37]. 50 μg
(U-87MG) or 10–20 μg (G55T2) total protein was
separated by SDS-PAGE, prior to transfer onto a 0.2 μM
or 0.45 μM PROTRAN® nitrocellulose membrane
(Whatman, Dassel, Germany). Membranes were blocked
with 5% (w/v) non-fat dry milk in TBST (10 mM Tris/
HCl, pH 7.6, 150 mM NaCl, 0.1% Tween 20), washed
with TBST and incubated overnight with primary anti-
bodies at 4 °C as detailed in Additional file 3: Table S3.
After washing with TBST, membranes were incubated
with horseradish peroxidase-coupled secondary anti-
bodies (Additional file 3: Table S3) for 1 h at room
temperature. Bound antibodies were visualized using the
chemiluminescence ECL kit from Thermo Scientific. For
parallel detection of phosphorylated proteins and their
corresponding unphosphorylated counterpart, mem-
branes were incubated in stripping buffer (0.2 M glycin,
3.5 mM sodium dodecyl sulfate, 1% (v/v) Tween-20,
pH 2.2) for 30 min at room temperature, washed with
TBST and blocked again with 5% (w/v) non-fat dry milk
in TBST, prior to further processing as described above.

Anchorage-dependent and -independent proliferation
Anchorage-dependent proliferation was analyzed using a
WST-1 colorimetric assay (Roche). 200 cells/well were
seeded in 96-well plates and transfected as described
above. At the time points indicated in the Figures, viable
cells were quantified in triplicate wells using WST-1 col-
orimetric assay according to manufacturer’s protocol. To
measure anchorage-independent proliferation, U-87 MG
cells were seeded in 6-well plates and transfected as
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described above. 48 h after transfection, soft agar assays
were performed as described previously [37]. Soft agars
were run in triplicate wells and incubated under standard
conditions. At the time points indicated, colonies > 50 μm
were counted by at least two blinded investigators.

Cell cycle analysis
For cell cycle analysis, 1×104 U-87 MG or G55T2 cells
were seeded into 24-well plates and transfected as
described above. 72 h after transfection, cells were
treated with 100 ng/ml nocodazole (Merck-Calbiochem®,
Darmstadt, Germany) in IMDM/10% FCS for 8 h to in-
duce a G2/M arrest. The cells were harvested by trypsi-
nization, washed with PBS and fixed with 70% ethanol at
4 °C overnight. Prior to addition of 50 μg/ml propi-
dium iodide (Sigma-Aldrich), cells were incubated
with 50 μg/ml RNase A for 30 min at 37 °C and subse-
quently analyzed by flow cytometry using an Attune®
Acoustic Focusing Cytometer (Life Technologies,
Darmstadt, Germany).

Apoptosis assays
To quantify the activity of caspases 3 and 7, the biolumin-
escent Caspase-Glo® 3/7 assay (Promega, Mannheim,
Germany) was used. 300 cells (U-87 MG) or 750 cells
(G55T2) were seeded per well in 96-well plates, trans-
fected as described above and maintained under standard
conditions for 96 h. The Caspase-Glo® assay was per-
formed according to the manufacturer’s protocol. Lumi-
nescence was measured using a POLARstar Omega
reader (BMG Labtec, Jena, Germany) after 1 h of incuba-
tion at room temperature in the dark. A WST-1 assay was
performed in parallel on the same plate as described
above, to normalize for slight variations in cell densities.

Mouse xenograft model
To investigate the effects of RNAi-mediated SATB1-
knockdown on tumor growth in vivo, 3 ×106 U-87 MG
cells in 150 μl PBS were injected into both flanks of 6–8
weeks old athymic nude mice (Crl:CD1-Foxn1nu,
Charles River Laboratories, Sulzfeld, Germany). When
solid tumors were established, mice were randomized
into treatment and control groups. The tumors were
treated with intratumoral injections of 2 μg siRNA com-
plexed with 10 μg PEI F25-LMW [38] in a total volume
of 30 μl. The tumors were treated every 2 to 3 days and
tumor growth was monitored as indicated in Fig. 4a.
Animal studies were conducted according to the national
regulations of animal welfare and approved by the local
authorities (Regierungspräsidium Giessen, Germany).

Statistics
Statistical analysis was performed by Student’s t-test
and significance levels are * = p < 0.05, ** = p < 0.01,

*** = p < 0.001, # = not significant as compared to
siCtrl, unless indicated otherwise. Values are shown
as means +/− s.e.m.

Results
Determination of SATB1expression in primary glioblastoma
tissue and cells, compared to normal brain tissue
In contrast to other tumor entities where SATB1 upreg-
ulation as compared to normal tissue has been well
established, the situation in glioblastoma appears less
clear (see Background). Therefore, we first analyzed
SATB1 mRNA levels of ten different primary tumor
samples. While all tumors showed SATB1 expression,
levels varied considerably between different samples,
with a maximum ~10-fold difference (Additional file 4:
Figure S1, center). The same was true for primary tumor
cells derived from these tumors, with values often, but
not in all cases being comparable between a primary
tumor and its corresponding primary cell line (Additional
file 4: Figure S1, center). Notably, in comparison to nor-
mal brain tissue no SATB1 upregulation was observed in
tumors, with tumor levels rather being even lower
(Additional file 4: Figure S1, left). From these data,
we conclude that SATB1 expression levels may only
poorly predict its functional relevance, thus requiring
more detailed analyses in a panel of cell lines with
different SATB1 expression levels.

Expression of SATB1 in various glioblastoma cell lines and
comparison to SATB2
Based on the heterogeneous situation with regard to
SATB1 expression levels in glioblastoma, we screened a
set of eight commercially available and well-established
glioblastoma cell lines for SATB1 levels. qRT-PCR re-
sults demonstrated substantial expression of SATB1 in
7/8 cell lines, with the only exception being T98G
cells that showed almost no SATB1 (Additional file 4:
Figure S1, right). Some variations between positive
cell lines were observed with a maximum ~9-fold dif-
ference in SATB1. SATB2, which is considered as a
functional counterpart of SATB1, was analyzed as
well. Here, expression was observed in all 8 cell lines
(Additional file 5: Figure S2). The comparison be-
tween SATB1 and SATB2 levels revealed no correl-
ation in expression levels.
The expression of SATB1 in almost all glioblastoma

cell lines provided the basis for subsequent functional
studies. To this end, four glioblastoma cell lines (U-87
MG, MZ-18, G55T2 and U343) with high or low SATB1
levels, thus covering the broad range of SATB1 expres-
sion, were selected for transient RNAi-mediated knock-
down. To exclude false-positive results due to off-target
effects and to allow the establishment of gene-dose ef-
fects, two siRNAs validated previously for specific
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SATB1 knockdown to different degrees were employed
and compared to untreated as well as to negative control
transfected cells (siRNA targeting the luciferase gene
which is not expressed in glioblastoma cells). In all cell
lines, qRT-PCR after single transfection with the less po-
tent SATB1-specific siRNA (si989) revealed a ~ 50%
SATB1 knockdown in comparison to negative con-
trols (wt and siCtrl). A > 60% knockdown was ob-
served with the more potent si467 (Fig. 1a and
Additional file 6: Figure S3A), with only minor differ-
ences between the four selected cell lines. Knockdown
results were confirmed on the protein level by Western
blots, showing a concomitant reduction of SATB1 with
bands upon si467 transfection being close to the limit
of detection (Fig. 1b). This was also true at later time
points (e.g., 120 h, 144 h after transfection; data not
shown). We thus concluded that the transient siRNA

transfection provides an efficient tool for specific
SATB1 downregulation.

Inhibitory effects of SATB1 knockdown on cell
proliferation
To initially explore the effects of SATB1 knockdown on
overall cell proliferation and viability, WST-1 prolifera-
tion assays were performed. Growth curves revealed a
marked reduction of cell proliferation upon transfection
with si989 in all cell lines (Fig. 1c and Additional file 6:
Figure S3B). Except for G55T2 cells, no nonspecific
transfection effects were observed. Using the more po-
tent si467, cell proliferation was reduced by > 80%, indi-
cating very profound effects of the SATB1 knockdown
on the number of viable cells. These results were con-
firmed in a soft agar assay, which resembles more closely
the in vivo situation. Upon siRNA transfection of U87
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MG cells, a reduction in the anchorage-independent col-
ony formation was observed, which was again dependent
on the siRNA efficacy and reached a > 60% decrease in
colonies in the case of si467 (Fig. 1d).

Cell cycle inhibition and induction of apoptosis upon
SATB1 knockdown
To further explore the underlying cellular mechanisms
of the reduction of the number of viable cells upon
SATB1 knockdown, we next analyzed effects on cell
cycle. Here and in subsequent experiments, we selected
the two cell lines, U-87 MG and G55T2. Cells were
transfected with the respective siRNAs and 72 h later
nocodazole treatment was started in order to implement
a G2/M block. When cells were propidium iodide-
stained and analyzed by flow cytometry upon 8 h

nocodazole treatment, 40% (U87 MG) or 70% (G55T2)
of the cells were in G2/M (Fig. 2a). In contrast, upon
transfection with SATB1-specific siRNAs si989 and es-
pecially si467 this percentage was reduced, indicative of
cell cycle deceleration/arrest in G0/G1 with a smaller
number of cells reaching the block within the selected
time frame. Consequently, a larger fraction of cells was
determined in the G0/G1 phase (Fig. 2a, right panels). In
both cell lines, the degree of cell cycle inhibition was
dependent on the siRNA efficacy and thus the residual
SATB1 levels, with si467 showing more profound
effects.
In addition to cell cycle deceleration, SATB1 knock-

down led to the induction of apoptosis as indicated by
increasing caspase-3/-7 activity. More specifically, while
the transfection with si989 led to little or no effects
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depending on the cell line, the more potent si467 re-
sulted in a profound up to 2-fold increase in caspase
activity.

Molecular consequences of SATB1 knockdown
The siRNA-mediated knockdown of SATB1 revealed ef-
fects on the expression levels of a broad spectrum of
(proto-) oncogenes and various molecules involved in
cell cycle, EMT, signal transduction and cell adhesion, as
detected on the mRNA level by quantitative RT-PCR
and on the protein level by Western blotting in G55T2
cells. Although the other family member, SATB2, is con-
sidered as a potential functional counterpart with oppos-
ite roles, qRT-PCR revealed it was downregulated by
siRNAs 467 and 989 in parallel with SATB1 (Fig. 3a). By
analyzing the siRNA sequences with regard to sequence

homologies, it was firmly excluded that this observation
was due to unwanted off-target effects of SATB1-specific
siRNAs on SATB2 based on any partial sequence hom-
ology [39]. Additionally, the observed absence of de-
creased SATB2 levels upon SATB1 knockdown in cells
from another tumor entity further substantiates the no-
tion of SATB2 reduction as a specific effect downstream
of SATB1. In line with the observed cell cycle deceler-
ation, cell cycle proteins Cyclin B1 and D1 that are often
overexpressed in tumor cells were downregulated upon
SATB1 knockdown. Again, the transfection with the
more potent si467 led to a more profound reduction of
Cyclin mRNAs with a > 50% decrease in the case of
Cyclin B1. Rather mild effects were observed on TGFβ
or the transcription factors Slug and Twist, with slightly
increased mRNA levels upon SATB1 knockdown. In

a b

Fig. 3 Analysis of molecular consequences of SATB1 knockdown in G55T2 cells. The siRNA-mediated knockdown of SATB1 affects the expression
levels of a broad spectrum of (proto-) oncogenes and various molecules involved in cell cycle, EMT, signal transduction and cell adhesion, as
determined on the mRNA level by quantitative RT-PCR at 48 – 72 h after transfection (a) and on the protein level by Western blotting (b). For
details, see text. In (a), differences that reached significance are indicated (n = 5–6 experiments determined at 72 h after transfection; Slug and
Twist: n = 9 experiments determined at 48 – 72 h after transfection)
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contrast, profound inhibitory effects were detected on
the cell adhesion and gene transcription regulating
proto-oncogene β-catenin and on N-Cadherin which
were again dependent on the siRNA efficacy and led to
~50% reduced levels in the case of si467. While si989
exerted effects as well, albeit to a lesser degree, in the
case of Myc and Bcl-2 downregulated mRNA levels were
only observed with si467, indicative of a threshold of
minimally required SATB1 knockdown. The same was
true for the (rather mild) reduction in mRNA levels of
the pro-angiogenic VEGF, while in the case of the proto-
oncogenes Pim1 and HER1 si989 slightly reduced
mRNA expression while si467 led again to a more pro-
found decrease up to 60–70% residual level. Opposite to
HER1, the SATB1 knockdown led to an increase in
HER2 expression which was again gene-dose dependent
and thus most profound upon si467 transfection. Finally,
profound inhibitory effects on the mRNA level were also
observed on STAT3 and Survivin (Fig. 3a). The latter
finding correlated well with decreased protein levels of
the anti-apoptotic protein Survivin as determined in
Western blot experiments, with si467 showing the most
profound effects (Fig. 3b, upper panel). Interestingly, the
same siRNA led to an increase, rather than decrease, in
Pim1 protein levels. Consequences of SATB1 knock-
down were also explored with regard to downstream sig-
naling. While the total expression of p42/44 (ERK1/2)
remained unchanged, ERK phosphorylation was reduced
(Fig. 3b, center panel). Again, this effect was only ob-
served upon si467 transfection indicative of the require-
ment of sufficiently profound SATB1 knockdown. Quite
in contrast, effects of SATB1 knockdown on STAT3
were already observed on the level of protein expression
(Fig. 3b, lower panel), thus being in line with the qRT-
PCR data, with a concomitant and parallel decrease of
phospho-STAT3.

Tumor inhibitory effects of SATB1 knockdown in vivo
The consequence of siRNA-mediated SATB1 knock-
down was finally tested in a more relevant in vivo situ-
ation by exploring tumor-inhibitory effects in an s.c.
xenograft model. Rather than using stably transfected
cells, which may well interfere with tumor xenograft for-
mation, the SATB1 knockdown was performed in
already established tumors. To this end, mice were
treated with siRNAs formulated in polymeric, polyethy-
lenimine (PEI)-based nanoparticles, which mediate
siRNA protection, cellular delivery and intracellular re-
lease. As shown previously by our group, PEI/siRNA
nanoparticles allow for the knockdown of the respective
target gene (see e.g. [40, 41]). Indeed, a ~ 40% inhib-
ition of the growth of established tumors was ob-
served as compared to untreated or PEI/negative
control siRNA-treated mice (Fig. 4a). Results from

tumor size measurements were paralleled and con-
firmed by a reduction of tumor mass, as detected
upon termination of the experiment by excision of the
tumor xenografts for weight determination (Fig. 4b).

Discussion
In the light of conflicting results regarding a positive
[29–31] or negative [32] correlation between SATB1 ex-
pression and clinicopathological features of glioblastoma,
and thus the relevance of SATB1 in these tumors, a dee-
per understanding of the cellular and molecular roles of
SATB1 in glioblastoma cells is required. Indeed, our
qRT-PCR screening data presented here do not support
the notion of SATB1 overexpression in glioblastoma.
While a recent analysis in colorectal cancer [42] has
identified divergent expression patterns of SATB1 on the
mRNA and protein level versus normal tissues, which
may offer an explanation for rather low mRNA levels in
tumors, only in-depth functional studies allows for
evaluating the relevance of SATB1 in glioblastoma.
Here, the approach of transient RNAi, avoiding issues

related to stable cell transfection with constitutive
knockdown or overexpression, offers an excellent av-
enue. Notably, we found proliferation inhibitory effects
of SATB1 knockdown in all glioblastoma cell lines
tested, thus being independent of initial SATB1 expres-
sion levels. This emphasizes the general relevance of
SATB1 beyond differences in mRNA levels and suggests
SATB1 inhibition as a promising therapeutic avenue.
Subsequent cellular analyses also revealed that this
tumor cell inhibition upon SATB1 knockdown is based
on the induction of apoptosis, as indicated previously
[29], but also on cell cycle deceleration. This supports
the notion that SATB1 acts on several pathways and its
inhibition thus exerts multiple effects in parallel. In line
with this, various key players are affected by SATB1
knockdown on the molecular level. This includes the
downregulation of Cyclins B1 and D1 (deceleration of
cell cycle in the transition from G2 to M and from
G1 to S, respectively), the activation of caspase-3/-7
(induction of apoptosis) and the decrease in the pro-
survival protein Survivin. The latter finding supports
our previous studies in colon carcinoma [39, 43] sug-
gesting a SATB1 – Pim1 – Survivin axis that leads to
a parallel Survivin decrease upon SATB1 knockdown.
However, we found Pim1 protein levels being even el-
evated instead. This indicates that Pim1 expression is
not merely determined on the level of transcription, but
that the Pim1 protein is also post-transcriptionally regu-
lated and subject to degradation/stabilization as described
previously ([44] and references therein).
Our results furthermore support the previous hypoth-

esis [29] that SATB1 knockdown may also affect the
anti-apoptotic proto-oncogene Bcl-2. Here like in the
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case of another important proto-oncogene, Myc, it
should be noted that, when comparing siRNAs with dif-
ferent SATB1 knockdown efficacies, a knockdown below
a certain threshold is required for altering on Myc or
Bcl-2 mRNA levels. Thus, while our knockdown studies
reveal a ‘SATB1 gene dose effect’ on the expression of
many genes (e.g., Cyclin B1, Cyclin D1, N-Cadherin, β-
catenin, Survivin, HER2), other mRNAs (Myc, Bcl-2,
VEGF, HER1) are only affected by very profound SATB1
inhibition (si467). Alterations are also seen in the tran-
scription factor STAT3. At first glance, the observed dif-
ferences in STAT3 phosphorylation could be attributed
to HER1 (EGFR) downregulation with subsequently de-
creased EGFR-STAT3 signaling (as previously shown to
be relevant for example in peripheral nerve sheath tu-
mors [45]). It should be noted, however, that here differ-
ences in band intensities actually reflect differences in
STAT3 expression, as shown on mRNA and protein
level. To the contrary, the observed decrease in
phospho-p42/44 (p-ERK 1/2) rests on reduced phos-
phorylation rather than differences in expression. The
downregulation of HER1 (EGFR) upon SATB1 knock-
down is in line with previous studies in other tumor en-
tities [2, 39]. Interestingly, however, this is not true for
another member of the EGFR family, HER2, where up-
regulation rather than downregulation is observed, thus
suggesting activation rather than inactivation of an
oncogene upon SATB1 knockdown. Since previously dir-
ect effects of SATB1 on HER2 have been shown [2], one
explanation for this discrepancy may be mutual effects
of one HER receptor (here: EGFR) on the expression of
other family members (here: HER2), as found in other
tumor entities (Gutsch and Aigner, unpublished). This

also demonstrates that the functional relevance and mo-
lecular effects of a given target gene (in this case SATB1)
need to be evaluated in the precise tumor context.
The EGFR pathway is one of the most significant sig-

naling pathways in glioblastoma, and EGFR is among
the major genetic factors affecting the pathogenesis and
prognosis of GBM. This emphasizes the relevance of
SATB1 knockdown on reducing EGFR expression. An-
other central player in glioblastoma is β-catenin which
has been found overexpressed for example in astrocytic
tumors and correlated with poor prognosis and short pa-
tient survival [46, 47]. Here we describe β-catenin down-
regulation upon SATB1 knockdown. While activating
mutations are not prevalent in glioblastoma, it was
shown previously that proliferation of several glioblast-
oma cells could be significantly inhibited by siRNA-
mediated targeting of β-catenin [48]. Thus, β-catenin
downregulation may well contribute to the observed in-
hibitory effects of SATB1 inhibition. Our findings are
also in line with a recent study in colorectal cancer,
where SATB1 was found to be a target of Wnt/β-catenin
signaling while in turn simultaneously regulating β-
catenin expression [27]. Taken together, this establishes
a SATB1 knockdown effect on two central factors in
glioblastoma, EGFR and β-catenin.
Finally, inhibitory effects of SATB1 knockdown were

also observed on two molecules relevant in other im-
portant processes. While the very profound effect on in
N-Cadherin expression connects SATB1 expression with
tumor cell motility and invasiveness, it should be noted
that in high grade glioblastomas N-Cadherin has been
found to be inversely correlated with invasive behavior
[49]. This suggests that the N-Cadherin decrease observed

Fig. 4 Inhibition of tumor growth in vivo upon SATB1 knockdown. a Subcutaneous U-87 MG tumor xenografts were established in athymic nude
mice. Upon randomization, mice were treated by i.t. injection of 2 μg siRNAs specific for SATB1 (si467) vs. negative control siRNAs (siCtrl). For
siRNA delivery, siRNAs were formulated in polymeric nanoparticles based on a low-molecular weight polyethylenimine (PEI F25-LMW). Untreated
mice (‘wt’) served as additional negative control for the absence of non-specific treatment effects. Right: representative pictures of mice (n = at
least 13 tumor xenografts per group). b The determination of masses of the tumor xenografts explanted upon termination of the experiment
confirmed the tumor growth inhibition
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here upon SATB1 knockdown may rather enhance inva-
sive properties. On the other hand, albeit downregulated
to a lesser extent, the reduction of VEGF provides a mo-
lecular explanation for the previous finding that SATB1
inhibition leads to anti-angiogenesis [29].

Conclusion
The transient knockdown approach chosen here reflects
a therapeutic situation and, by using an siRNA delivery
system based on polymeric nanoparticles developed in
our lab, can also be employed in vivo. This allowed to
study SATB1 knockdown in established tumors, thus
clearly distinguishing inhibitory effects of SATB1 knock-
down on tumor growth from just reducing tumor cell
grafting. In light of this, and considering the multiple ef-
fects of targeting SATB1, the observed tumor-inhibitory
effects are very promising with regard to future thera-
peutic implications. Our findings, also in the context of
previous studies, provide a basis for the explanation of
the observed antitumor effects on the cellular and mo-
lecular level.
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