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Abstract

Background: Pathologic complete response (pCR) after neoadjuvant chemotherapy for breast cancer is associated

with improved prognosis in aggressive tumor subtypes, including ERBB2- positive tumors. Recent adoption of pCR

as a surrogate endpoint for clinical trials in early stage breast cancer in the neoadjuvant setting highlights the need
for biomarkers that, alone or in combination, help predict the likelihood of response to treatment.

Methods: Biopsy specimens from 29 patients with invasive ductal carcinoma treated with trastuzumab-based therapy
prior to definitive resection and pathologic staging were evaluated by dual color bright field in situ hybridization
(dual ISH) using probes for MET, TOP2A, PTEN, and PIK3CA genes, each paired with centromeric probes to their
respective chromosomes (chromosomes 7, 17, 10, and 3). Ki-67 expression was assessed by immunohistochemistry
(IHQ). Various parameters describing copy number alterations were evaluated for each gene and centromere probe
to identify the optimal parameters for clinical relevance. Combinations of ISH parameters and IHC expression for
Ki-67 were also evaluated.

Results: Of the four genes and their respective chromosomes evaluated by ISH, two gene copy number parameters
provided statistically significant associations with pCR: MET gain or loss relative to chromosome 7 (AUC =0.791,
sensitivity = 92 % and specificity = 67 % at optimal cutoff, p = 0.0032) and gain of PTEN (AUC = 0.674, sensitivity =

38 % and specificity = 100 % at optimal cutoff, p = 0.039). Ki-67 expression was also found to associate significantly
with pCR (AUC = 0.726, sensitivity = 100 % and specificity = 42 % at optimal cutoff, p = 0.0098). Combining gain or loss
of MET relative to chromosome 7 with Ki-67 expression further improved the association with pCR (AUC =0.847,
sensitivity =92 % and specificity = 83 % at optimal cutoffs, p = 0.0006).

Conclusions: An immunogenotypic signature of low complexity comprising MET relative copy number and Ki-67
expression generated by dual ISH and IHC may help predict pCR in ERBB2-positive breast cancer treated with
neoadjuvant chemotherapy and trastuzumab. These findings require validation in additional patient cohorts.
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Background

Pathologic complete response (pCR) after neoadjuvant
chemotherapy for breast cancer is associated with
improved prognosis [1]. The prognostic value of a pCR
may be greatest in aggressive tumor subtypes, including
ERBB2-positive tumors [1]. The Food and Drug Adminis-
tration (FDA) has issued guidance on the use of pCR as a
surrogate endpoint for clinical trials in early stage breast
cancer in the neoadjuvant setting [2]. Pertuzumab, an in-
hibitor of heterodimerization of ERBB2 (erb-b2 receptor
tyrosine kinase 2, commonly known as HER-2 and HER-
2/neu) with other ERBB receptor family members, is the
first agent granted accelerated approval for the neoadju-
vant treatment of high-risk early stage breast cancer based
on pCR data [3]. Given the importance of pCR in prog-
nosis and clinical trial design, there is a need to identify
biomarkers that, alone or in combination, help predict
the likelihood of response to treatment. A variety of
genes, including PIK3CA, PTEN, TOP2A and MET are
candidate markers for prognosis and response to treat-
ment in ERBB2-positive breast cancer.

Genetic alterations in the phosphatidylinositol 3-kinase
(PI3K)/V-AKT murine thymoma viral oncogene homolog
(AKT)/mechanistic target of rapamycin (MTOR) pathway
are common events in breast cancer [4, 5]. Preclinical data
in cell lines indicate that mutations in the p110 alpha-
catalytic subunit of PI3K (PIK3CA) lead to resistance to
trastuzumab and lapatinib [6-9]. Several clinical studies
have examined the association between somatic mutations
in PIK3CA and benefit from ERBB2-targeted therapy [10—
14]. In the FinHer [10] and NSABP B-31 adjuvant trials
[11], there was no significant loss of trastuzumab efficacy
observed in patients with PIK3CA mutations. In the
NeoALLTO neoadjuvant trial which incorporated lapatinib
as well as trastuzumab, patients with PIK3CA mutations
were less likely to have a pCR, but there were no significant
differences in progression-free or overall survival [12].
Other neoadjuvant trials have shown similar results [13,
14]. Comparatively little is known about PIK3CA gene
copy number alterations and clinical outcomes in breast
cancer, irrespective of ERBB2 status [15]. Amplification of
mutant PIK3CA alleles appears to contribute to resistance
to PI3K inhibitors in preclinical breast cancer models [16].

Phosphatase and tensin homolog (PTEN) is the 3’ lipid
phosphatase for phosphatidylinositol-3,4,5-triphospate
(PIP3), thereby negatively regulating downstream signaling
by PIP3 after phosphorylation by PI3K [17, 18]. Patients
with ERBB2-positive, PTEN-deficient tumors may develop
resistance to ERBB2-targeted therapy [6, 9, 19-22]. Many
small, retrospective studies have shown that PTEN defi-
ciency or absence may be associated with reduced clinical
benefit from trastuzumab [19, 20, 23, 24]. However, the
recent data from a large prospective study of early stage
ERBB2-positive breast cancer indicate that patients with
and without PTEN deficiency by immunohistochemistry
derived benefit from treatment with trastuzumab [25].
PTEN status in most studies was determined by immuno-
histochemistry or gene sequencing and relatively little is
known about the significance of PTEN copy number alter-
ations in response to ERBB2-targeted therapy.

The topoisomerase 1I alpha (TOP2A) and ERBB2 genes
are located close to each other on the long arm of
chromosome 17 and may be co-amplified in breast cancer
[26-29]. Approximately 35 % of ERBB2-amplified tumors
show TOP2A gene amplification [30, 31] and deletions are
much less common [30, 32]. Alterations in TOP2A copy
number have mainly been associated with response to
anthracycline-based chemotherapy [30, 33]. The role of
TOP2A amplification or deletion in response to ERBB2-
targeting has not been thoroughly investigated.

Overexpression of MET proto-oncogene, receptor
tyrosine kinase (MET) occurs in 20 % — 30 % of invasive
breast cancers [34] and is associated with a poor prognosis
in lymph node-positive and lymph node-negative disease
and across all molecular subtypes [35-40]. In the meta-
static setting, increased MET copy numbers correlate with
trastuzumab therapy failure in ERBB2-positive breast
cancer [41] and clinical trials with anti-MET therapy in
advanced breast cancer are ongoing [42]. The signifi-
cance of MET amplification or deletion in the response
to adjuvant or neoadjuvant therapy for ERBB2-positive
breast cancer is not well established.

In this exploratory study using in situ hybridization
(ISH) and immunohistochemistry (IHC), we assessed
alterations in gene copy number for PIK3CA, PTEN,
TOP2A and MET, and their respective chromosomes,
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and expression of Ki-67 in a series of patients with
ERBB2-positive tumors who were treated with chemo-
therapy and trastuzumab in the neoadjuvant setting.
Various parameters representing gene and chromosome
copy numbers were evaluated for association with pCR
in an effort to identify parameters most effective for im-
proving prediction in the neoadjuvant treatment of
ERBB2-positive breast cancer.

Methods

This study was approved by the Cleveland Clinic Insti-
tutional Review Board. All patients who received trastu-
zumab at the Cleveland Clinic from January 2008 to
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December 2010 were reviewed for study inclusion (234
patients). Of the 234 cases, 29 satisfied inclusion criteria
which included a diagnosis of primary invasive breast
cancer, neoadjuvant trastuzumab therapy, and a pre-
treatment biopsy performed at the Cleveland Clinic. Path-
ology data was obtained from the Anatomic Pathology
information system CoPath Plus (Cerner Corporation,
Kansas City, MO). Clinical data was obtained from the
electronic medical record Epic (Epic Systems Corporation,
Verona, WI). The age, tumor size, pre-treatment clinical
stage, hormone receptor status by IHC, ERBB2 status by
ISH, post-treatment pathologic stage, and presence or ab-
sence of a pCR were recorded for all patients (Table 1).

Table 1 Clinical and pathologic characteristics of patients with ERBB2-positive breast cancer treated with neoadjuvant chemotherapy

and trastuzumab

Case ID  Size, largest (mm) Clinical TNM  Clinical stage ER IHC PR IHC HER2 copy number (Average) HER2/CEP17 Ratio Pathologic Stage pCR

1 49 cT2N2MO A pos pos
2 47 cT2NOMO A neg neg
3 37 cT2NOMO I1A neg neg
4 12 cTINTMO I1A pos neg
5 60 cT3NTMO A pos neg
[§ 63 cT3NTMO A neg neg
7 20 cT4NTMO 1B neg neg
8 36 cT2NTMO 1B neg®  neg’
9 18 cTTN2MO A pos pos
10 28 cTANTMO 1B pos pos
" 47 cT2NOMO IIA neg®  neg®
12 36 cT2NOMO IIA neg neg
13 37 cT4ANOMO 1B pos pos
14 42 cT2NTMO 11B pos neg
15 60 cT3NOMO 1B pos pos
16 20 cTINTMO I1A pos pos
17 60 cT4ANTMO 1B pos pos
18 64 cT3NOMO 1B pos pos
19 51 cT3NTMO A pos pos
20 40 cT2NTMO A pos pos
21 21 cT2NTMO A pos pos
22 35 CT4NTMO 1B pos neg®
23 86 cT3NTMO A pos pos
24 27 cT2NTMO A neg neg
25 43 cT2NTMO A pos pos
26 60 cT4N2MO 1B pos pos
27 29 cT2N2MO A pos pos
28 73 cT3NOMO 1B pos pos
29 41 cT2NOMO IIA neg neg

9.1 4.1 ypTONO yes
74° 3.7¢ ypTisNO yes
185 84 ypTisNO yes
19.2 96 ypTONO yes
8.1 3.7 ypTisNO yes
200 1.1 ypTONO yes
17.2 6.6 ypTONO yes
174 6.7 ypTONO yes
1.3 45 ypTONO yes
15.8 7.5 ypTONO yes
43 29 yPTONX yes
132 55 ypTONO yes
200 16.7 ypTONO yes
33 24 ypTONO yes
14.7 8.2 ypTONO yes
49 3.1 ypTisN1 no
5.0 3.1 ypT3NO no
16.1 14.6 ypT1miNO no
5.2 32 ypT1NO no
44 23 ypT2N1 no
16.6 83 ypT1NO no
53 29 ypT3NO no
50 32 ypT1IN1 no
159 7.2 ypT1N2 no
14.0 56 ypT1NO no
16.7 84 ypT3N1 no
16.2 10.1 ypT1N2 no
9.1 35 ypT2N1 no
36° 18° ypTINT no

Abbreviations: ER estrogen receptor, IHC immunohistochemistry, PR progesterone receptor, pCR pathologic complete response

Cases reported as negative, < 5 %, prior to the 2010 ASCO/CAP Guidelines
PERBB2 immunohistochemistry was 3+

“ERBB2 genetic heterogeneity present; average ERBB2 copy number and ERBB2/CEP17 ratio reported for amplified clone
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Patients and clinical assessment

Formalin-fixed paraffin-embedded (FFPE) needle biopsy
specimens from early stage breast cancer patients treated
in the neoadjuvant setting were obtained from the ar-
chives of the Cleveland Clinic (Cleveland, OH). Chart re-
view and study analyses were approved by the Cleveland
Clinic institutional review board. Eligibility criteria for
further evaluation included histologic confirmation of
clinical stage IIA to IIIB, ERBB2 amplification by in
fluorescent in situ hybridization (FISH), and neoadjuvant
treatment that included trastuzumab. Post-treatment
pathologic staging was obtained from pathology reports
and confirmed by histologic evaluation. For this study,
classification as pCR required the absence of any detect-
able invasive carcinoma in the breast specimen and the
axillary lymph nodes (i.e., ypTONO and ypTisNO).

With respect to treatment, of the 29 patients in the
cohort 11 were treated with anthracycline-based chemo-
therapy including cyclophosphamide, a taxane, and tras-
tuzumab (i.e. ACTH) and 18 received a taxane and
trastuzumab with or without carboplatin (TCH). Of the
15 patients with a pCR, 5 were treated with ACTH and
10 were given TCH. Of the 14 patients who did not have
a pCR, 6 received ACTH and 8 were treated with TCH.
A total of 12 patients presented with clinical stage IIA
or IIB disease and 8 of these patients had a pCR. Of the
8 patients with a pCR, 3 were treated with ACTH and 5
were given TCH. Of the 4 stage II patients who did not
have a pCR, 1 was treated with ACTH and 3 were given
ACTH. In this small exploratory study there may be
some imbalance in the distribution of stage II patients
in the two treatment groups. However, we believe the
distribution of patients treated with ACTH versus TCH
is relatively well-balanced among those who did or did
not have a pCR.

Immunohistochemistry

Ki-67 automated IHC was performed on 3-6 pm thick
sections of FFPE specimen blocks using primary antibody
30-9 with iVIEW detection on the VENTANA BenchMark
XT automated stainer instrument (all reagents and instru-
ment from Ventana Medical Systems, Tucson, AZ) using
the company recommended protocols.

Silver and chromogenic in situ hybridization (SISH and CISH)
Automated in situ hybridization (ISH) was performed on
3—6 pm thick sections of FFPE specimen blocks using
the Ventana Medical Systems dual ISH procedure (dual
color dual hapten DNA in situ hybridization) on the
BenchMark XT automated stainer. Probes were hybrid-
ized in the following pairs, each comprising a gene locus
probe, referred to by the name of a gene contained
within the targeted region (e.g. MET), and a centromere
(CEN) probe for the chromosome on which the gene
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locus lies (e.g. CEN7): MET + CEN7, TOP2A + CEN17,
PTEN + CEN10, and PIK3CA + CEN3. All gene probes
were detected using peroxidase-catalyzed silver stain-
ing (SISH) and centromeric probes were detected
using chromosome staining with alkaline phosphatase-
catalyzed fast red staining (CISH). ISH probes and as-
sociated detection reagents are commercially available
from Ventana Medical Systems.

Fluorescent in situ hybridization (FISH)

ERBB2 status determination was performed using an
FDA-approved interphase FISH assay (PathVysion®,
Abbott Molecular, Des Plaines, IL). Consistent with the
timeframe in which the patients were treated, ERBB2
scoring methods were applied to FISH samples in ac-
cordance with the 2007 ASCOCAP guidelines [43].
Briefly, ASCOCAP dual-probe scoring was applied as
follows: non-amplified (ERBB2CEP17 < 1.8), equivocal
(ERBB2CEP17 1.8-2.2), or amplified (ERBB2CEP17 > 2.2).
For the cases in which it was performed, ERBB2 ITHC
(4B5, Ventana Medical Systems Inc, Tucson, AZ) was
scored according to the 2007 ASCOCAP guidelines
[43] as 0, 1, 2, or 3.

Specimen evaluation

Hybridized and coverslipped specimens were viewed
with brightfield microscopy to enumerate the SISH
(metallic silver - black) gene locus signals and CISH
(red) centromere signals on a cell-by-cell basis. Only
invasive carcinoma tumor cells were selected for cell-
by-cell signal enumeration using a 40X objective in
combination with 10X eyepieces. In general, 50 inva-
sive tumor cells were enumerated per specimen except
in several specimens for which fewer than 50 cells with
good hybridization signals could be found (a minimum
of 20 cells were required for inclusion in the analysis).
Gene locus and centromere copy number statuses were
assessed using a number of different parameters,
including:

1) the average number of gene or centromere copies
per cell, designated as gene/cell (e.g. MET/cell) or
centromere/cell (e.g. CEN7/cell),

2) the percentage of cells with greater than 2 gene or
centromere signals, designated as gene gain (e.g.
MET gain) or centromere gain (e.g. CEN7 gain),

3) the percentage of cells with less than 2 gene or
centromere signals, designated as gene loss (e.g.
MET loss) or centromere loss (CEN7 loss),

4) the percentage of cells with either greater than 2
or less than 2 gene locus or centromere signals,
designated as gene gain or loss (e.g. MET gain or
loss), or centromere gain or loss (e.g. CEN7 gain
or loss),
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5) the average number of gene copies per
corresponding centromere copies, designated as
gene locus/centromere (e.g. MET/CEN7),

6) the percentage of cells with more copies of the gene
than the corresponding centromere, designated as
gene/centromere gain (e.g. MET/CEN7 gain),

7) the percentage of cells with fewer copies of the gene
than the corresponding centromere, designated as
gene/centromere loss (e.g. MET/CEN7 loss), and

8) the percentage of cells with either more copies of
the gene than the corresponding centromere or
fewer copies of the gene than the corresponding
centromere, designated as gene/centromere gain
or loss (e.g. MET/CENT7 gain or loss).

The average number of genes or centromeres per cell
was calculated by summing the number of gene or
centromere signals over all the cells enumerated within
a specimen, and dividing by the number of cells enu-
merated. The average number of genes per centromere
was calculated by summing the number of gene signals
over all the cells enumerated and dividing by the sum
of the centromere signals in all of the cells enumerated.

For Ki-67 IHC staining interpretation was performed
only for invasive tumor cells and was evaluated by
selecting the area of invasive carcinoma with the high-
est proliferation rate and then determining the percent-
age of approximately 50 invasive tumor cell nuclei that
were positive for Ki-67 expression. The cutoff for Ki-67
positively staining cells was determined empirically to
provide the best combined sensitivity and specificity
for pCR in this neoadjuvant setting. An additional data
file (.xIs) lists the values for each ISH and IHC param-
eter described above for each patient in the study
[Additional file 1].

For each parameter a range of cutoffs was evaluated
such that specimens with the parameter value greater
than or equal to a cutoff were considered ‘high’ for that
parameter and specimens with the parameter value less
than the cutoff were considered ‘low’ for that parameter.
Sensitivities and specificities for detecting patients with
pCR, based on either the high parameter being positive
for pCR or based on the low parameter being positive
for pCR, were calculated for each parameter and each
cutoff. Receiver Operating Characteristics (ROC) curves
were generated as sensitivity versus 1 - specificity over
all cutoffs tested, and Area Under the Curve (AUC) was
calculated for each curve as one measure of a parame-
ter’s ability to distinguish patients with pCR from pa-
tients without pCR, with AUC=1 being ideal and
progressively lower values being less favorable. AUC
values near 0.5 indicate no ability to distinguish between
patients. In addition to ROC analysis, 2X2 contingency
tables were evaluated at each cutoff and probabilities
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from Fischer’s Exact test were used to gauge the statis-
tical significance of the association between the binar-
ized parameter (high versus low values) and pCR. The
optimal cutoff for a parameter was the cutoff value pro-
viding the best combined sensitivity and specificity,
which typically provided the lowest p-value.

In addition to the various single parameters, a ROC
curve for the combinations of MET/CEN7 gain or loss
with Ki-67 expression was generated by using the cutoff
providing optimal sensitivity and specificity for MET/
CEN7 gain or loss while varying the cutoff for Ki-67
over a wide range, with the combined parameters con-
sidered positive if both parameters were equal to or
greater than the respective cutoff values, as described by
Shultz, 1995 [44].

Results

A total of 29 patients meeting inclusion criteria with tis-
sue available for IHC and ISH studies were identified
(Table 1). Of these patients, 27 had Ki-67 expression
data, 24 had MET and CEN7 ISH counts, 25 had PTEN
and CEN10 ISH counts, and 24 had both Ki-67 expres-
sion data and MET and CEN7 ISH counts. The mean
and median age at presentation was 53 and 52 years,
respectively. The mean and median pre-treatment tumor
size was 49 and 41 mm, respectively (range =12-86).
Patients who presented with Stage IV disease and who
underwent breast surgery were excluded. Overall, 15 of
29 (52 %) patients had a pCR, defined as ypTO0/ypTis
NO. Among the 14 patients who did not have a pCR, the
residual invasive tumor measured less than 1 mm in 1
patient and 1 patient had residual ductal carcinoma in
situ (DCIS) and a positive lymph node (ypTisN1).

Gene copy numbers for TOP2A, MET, PTEN, and
PIK3CA, and their corresponding chromosome copy
numbers were measured by ISH, and Ki-67 protein
expression was measured by IHC to identify associations
with pCR individually and in combination. Figure 1,
parts A, B, and C, show representative Ki-67 IHC, MET
(black) + CEN7 (red) ISH, and PTEN (black)+ CEN10
(red) ISH staining, respectively, on selected FFPE sec-
tions of biopsy specimens from the neoadjuvant breast
cancer cohort. Figure 1la shows Case #2 (see Table 1 for
characteristics of case #2) stained by IHC for Ki-67 and
was determined to express Ki-67 in greater than 90 % of
the cells. Figure 1b shows Case #2 stained for MET
(black) and CEN7 (red) by ISH and shows cells with a
lesser number of MET signals than CEN7 signals (48 %
of cells showed relative MET loss). The tumor had other
areas with a greater number of MET signals than CEN7
signals (34 % of cells showed relative MET gain) as well.
Figure 1c shows Case #3 stained for PTEN (black) and
CEN10 (red) with increased copy numbers for both loci
(86 % of cells are near-tetrasomy).
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Fig. 1 Representative images of immunohistochemistry and in situ hybridization studies from three tumors. a: Immunohistochemistry for Ki-67
showing positive staining in greater than 90 % of nuclei in a specimen from Case #2. b: ISH for MET + CEN7 showing reduced MET copy number
[silver (black) signals] relative to chromosome 7 [red signals] in a specimen Case #2. c: ISH for PTEN + CEN10 showing gains in PTEN copy number
[silver (black) signals] and chromosome 10 copy number [red signals] in a specimen from Case #3. (Original magnification x 600)

ISH signals were interpreted using several different pa-
rameters to express gene and chromosome copy numbers
in order to determine which parameters best associated
with pCR. Figure 2 shows plots of 5 ROC curves, each
representing a different parameter describing MET gene
copy number relative to chromosome 7 copy number (see
Methods section for a definition of each parameter). AUC
values for each curve are listed in Table 2, along with the
optimal cutoff values, whether the high parameter values
(equal to or above the cutoff) or low parameter values
(below the cutoff) were associated with pCR to generate
the ROC curve and contingency analysis, the sensitivity
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0.40 -
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Fig. 2 ROC curves for different parameters measuring MET gene
copy number relative to chromosome 7 copy number. Parameters
plotted include: MET/CEN7 gain or loss (solid line with solid
triangles), MET/CEN7 gain (dotted line with solid diamonds), MET/
CEN7 loss (short dashed line with open squares), MET/CEN7 (high
ratios associated with pCR; long dashed line with solid circles), and
MET/CEN7Y (low ratios associated with pCR; alternating dashed and
dotted line with open triangles)

0.20 1.00

and specificity obtained for those optimal cutoff values,
and p-values using Fischer’s Exact test for the 2x2 contin-
gency tables generated at those cutoffs. These ROC curves
show a large difference between the association of the
various MET/CEN7 parameters and pCR. The two ROC
curves representing average MET/CEN7 counts, one asso-
ciating ratios greater than the cutoff with pCR and the
other associating ratios lower than the cutoff with pCR,
show little if any association (AUC values near 0.5). The
parameters representing the percentages of cells with
more copies of MET than CEN7 (MET/CEN7 gain) and
the percentages of cells with less copies of MET than
CEN7 (MET/CEN7 loss) provided larger AUC values
(0.613 and 0.651, respectively), while the parameter based
on the sum of the percentage of cells with more copies
and less copies of MET than CEN7 (MET/CEN7 gain or
loss) provided the largest AUC value (0.791).

Other parameters showing associations with pCR in-
cluded Ki-67 expression (AUC = 0.726) and the percent-
age of cells with greater than the normal 2 PTEN copies,
PTEN gain (AUC = 0.674), the ROC curves of which are
plotted in Fig. 3, and whose AUC values, optimal cutoffs,
related sensitivities and specificities, and p-values are
included in Table 2. The parameter MET/CEN7 gain or
loss was further analyzed in combination with Ki-67 ex-
pression, the 2 parameters providing the largest AUC
values alone. This was done by generating an ROC curve
[44] in which the cutoff for MET/CEN7 gain or loss was
held at its optimal value of 50 % cells while varying the
cutoffs for Ki-67 expression (plotted in Fig. 3), requiring
both parameters in the combination to be equal to or
greater than their respective cutoffs for a positive desig-
nation. The additional AUC provided by the combin-
ation with Ki-67 was 0.056 over that of MET/CEN7
gain or loss alone. The optimal cutoff for Ki-67 expres-
sion in combination with MET/CEN7 gain or loss was
8 % cells, maintaining the sensitivity at 92 % while in-
creasing the specificity from 67 to 83 %, and improving
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Table 2 Contingency table and ROC analysis results for parameter associations with pCR

Parameter N, pCR N, non-pCR  pCR correlated state®  ROC AUC  Optim c/o Sens  Spec p
MET/CEN7 gain or loss 12 12 high 0.791 50 % cells 092 067 0.0094
MET/CEN7 gain 12 12 high 0613 32 % cells 0.58 0.67 041
MET/CEN7 loss 12 12 high 0651 24 % cells 050 083 0.19
MET/CEN7 12 12 high 0479 1.10 042 0.58 1.0
MET/CEN7 12 12 low 0.547 1.00 033 0.75 1.0
Ki-67 15 12 high 726 8 % cells 100 042 0.0098
MET/CEN7 gain or loss AND Ki-67 12 12 high/high 847° 50 % cells/8 % cells 092 0.83 0.0006
PTEN gain 13 12 high 674 58 % cells 038 1.00 0.039

Abbreviations: N number of specimens, pCR pathologic complete response, AUC area under curve, Optim c¢/o optimal cutoff (cutoff producing best combined
sensitivity and specificity), Sens sensitivity, Spec specificity, p probability calculated using Fischer’s Exact test on contingency tables generated using optimal

cutoff(s) as executed using JMP Statistical Software (SAS, Cary, NC)

“The parameter state that is associated with pCR in ROC curve and contingency table calculations, for which high state comprises specimens with parameter
values equal to or greater than the optimum cutoff and low state comprises specimens with parameter values less than the optimum cutoff

BThe AUC for the combined parameters equals the area under the ROC curve of MET/CEN7 gain or loss plus the additional area under the ROC curve of MET/CEN7
gain or loss, holding cutoff constant at 50 %, combined with Ki-67, varied across all possible cutoffs

the p-value to 0.0006 (see Table 2). PTEN copy number
was also evaluated in combination with Ki-67 expres-
sion but improvement in p-value and combined sensi-
tivity and specificity over the individual parameters was
less (data not shown).

Clinical and pathologic characteristics listed in Table 1
for each patient were compared to the ISH and IHC pa-
rameters in Table 2 that showed statistically significant
associations with pCR, as well as compared to pCR,
using contingency tables (stage, ER IHC, PR IHC) and
t-tests (age, tumor size, ERBB2/cell, and ERBB2/CEN17).
Results are listed in Table 3 and show few statistically

1.00 4 .
0.80
0.60

0.40

Sensitivity

0.20

0.00

0.00 0.20 0.40 0.60 0.80 1.00

1 - Specificity

Fig. 3 ROC curves for MET, Ki-67, PTEN, and MET combined with
Ki-67 parameters. Parameters plotted include: MET/CEN7 gain or loss
(solid line with solid triangles; repeated from Fig. 2), Ki-67 expression
(dotted line with solid diamonds), PTEN gain (long dashed line with
solid circles), and MET/CEN7 gain or loss held at a constant cutoff
of 50 % of cells while varying the cutoff for Ki-67 expression (short
dashed line with solid squares)

significant associations. MET/CEN7 gain or loss and
MET/CEN?7 gain or loss combined with Ki-67 expres-
sion were significantly associated with age (trend with
tumor size), Ki-67 expression was strongly associated
with both ERBB2/cell and ERBB2/CEN17, and pCR was
significantly associated with only PR expression (trends
with ER expression, ERBB2/cell, and age).

Discussion

In an effort to better identify patients more likely to
achieve pCR in patients with ERBB2-positive breast can-
cer, we have evaluated a series of additional gene and
centromere probes as well as Ki-67 expression. In our
cohort pCR was achieved in 52 % of patients. As part of
the analysis of ISH results we have evaluated different
parameters for describing abnormal gene and chromo-
some copy numbers. This is because there is no single
parameter that best describes copy number for all genes
and chromosomes for all tumors. For example, gene
amplification is often defined as the presence of two or
more copies of a gene per copy of the chromosome on
which the gene normally resides. This definition of gene
amplification was found to have strong clinical relevance
with respect to prognosis [45] in breast cancers but has
been applied widely to other genes and other cancers
with little or no justification. In the present study we
have also evaluated the ratio of various gene copy num-
bers to their respective chromosome copy numbers (as
represented by the centromere copy number) and evalu-
ated a wide range of cutoff values. As another measure
of relative gene copy number, the percentage of cells
with more gene than chromosome copies (gene/centro-
mere gain), or less gene than chromosome copies (gene/
centromere loss), or either more or less gene copies rela-
tive to their respective chromosomes (gene/centromere
gain or loss) were evaluated. Additionally, we have
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Table 3 Associations between clinical and pathologic characteristics (Table 1) and ISH parameters and pCR

Parameter® Mean Mean size, Stage ER IHC PR IHC Mean Mean
age+SD I(arl]rr]gnra]%)sti . I m pos neg pos neg ERBB2/cell ERBB2/CEN17

MET/CEN7 gain or loss high 593+134 394+166 8 7 9 6 5 10 106+58 49+23
low 470+£130 512186 3 6 7 2 7 2 119456 69+40
p 0.041 0.14 042 0.66 0.09 0.59 0.19

Ki-67 high 548+148  416+154 9 13 14 8 1 1 13.1+55 70+38
low 460+ 107  572+216 2 3 4 1 3 2 56+20 29+07
p 0.16 0.19 1.00 0.64 1.00 <0.0001 <0.0001

MET/CEN7 gain or loss AND Ki-67 high 615+129  372+149 7 6 7 6 4 9 112+60 51+24
low 465+118  51.7+187 4 7 9 2 8 3 1.1+54 6.2+39
p 0.0071 0.051 044 0.210 0.10 0.97 043

PTEN gain high 556+ 10.1 406+ 16.7 2 3 2 3 2 3 153+48 70+29
low 493 £14.1 468+ 177 9 11 15 5 13 7 103£5.7 58+4.1
p 0.28 049 1.00 0.28 0.36 0.83 0.50

pCR yes 56+15.0 3954155 8 7 8 7 5 10 133+57 68+38
no 489+136  464+200 4 10 12 2 11 3 99+56 52+37
p 0.19 031 0.26 0.11 0.025 0.11 0.38

“p probability calculated using Fischer’s Exact test on contingency tables (stage, ER IHC, PR IHC) or using t-test for comparison of age, tumor size, ERBB2/cell, and
ERBB2/CEN17, as executed using JMP Statistical Software. All calculations use parameter cutoffs specified in Table 2

looked at the percentages of cells with greater than two
gene or chromosome copies (gene or chromosome gain),
or less than two copies (gene or chromosome loss), or
the sum of these abnormal copy numbers (gene or
chromosome gain or loss). This series of parameters is
similar to those used in previous studies that compared
different copy number parameters for associations with
patient diagnoses and/or outcomes in melanoma [46],
esophageal cancer [47], lung cancer [48], and cervical
cancer [49]. This is the first application of these parame-
ters in cases with neoadjuvant treatment of ERBB2-
positive breast cancer.

The importance of evaluating different parameters can
be seen in Table 2 and Fig. 2 for the series of different
parameters describing MET copy number relative to
chromosome 7 copy number. In this series of parameters
both gain of MET relative to chromosome 7 (AUC = 0.613,
sensitivity = 0.58 and specificity = 0.67 at the optimal cutoff
of 32 % cells with relative gain) and loss of MET relative to
chromosome 7 (AUC = 0.651, sensitivity = 0.50 and specifi-
city = 0.83 at the optimal cutoff of 45 % cells with relative
loss) are associated weakly with pCR (p =0.41 and 0.19,
respectively at the optimal cutoffs). However, the sum of
cells with relative gain and loss (MET/CEN7 gain or loss)
is highly associated with pCR (AUC = 0.791, sensitivity =
0.92 and specificity = 0.67 at the optimal cutoff of 50 %
cells with abnormal relative copy number with p = 0.0032).
Furthermore, the average ratio of MET/CEN7 has no
association with pCR, either high ratios or low ratios
(p=1.0 for either relationship at the optimal cutoffs),

which is understandable since both MET/CEN7 gain
(equating to higher ratio) and MET/CEN7 loss (equating
to lower ratio) are associated with pCR and would tend to
cancel each other in a ratio calculation. Therefore, proper
parameter selection is very important since evaluation of
these neoadjuvant specimens using a MET-to-CEN? ratio,
the most common measure of relative copy number,
would have erroneously indicated a lack of prognostic
value while use of the relative gene-to-chromosome
imbalance parameter MET/CEN7 gain or loss provides
a high statistical association. Similar to MET and
chromosome 7, ISH data for the other genes and corre-
sponding chromosomes were evaluated in terms of the
various parameters defined in the Methods section of
this paper. Of the other 3 gene probes only PTEN
reached statistical significance and this was using PTEN
gain in which patient tumors having higher numbers of
cells with more than 2 copies of PTEN were associated
with pCR (AUC =0.674, sensitivity =0.38 and specifi-
city = 1.00 at the optimal cutoff of 58 % cells with PTEN
gain, p =0.039). Examining the actual ISH signals per
cell and the average PTEN/CEN1O0 ratios, gain of PTEN
was likely a result of chromosome 10 polysomy, with
CEN10/cell ranging between 1.5 and 4.2 and PTEN/
CENI10 not exceeding a ratio of 1.4 for any one speci-
men. Several specimens did exhibit PTEN deletion
(PTEN/CEN10<0.7) but these appeared in both the
pCR and non-pCR groups and no association was
found for deletion using the parameters of PTEN loss,
PTEN/CEN10 ratio, or PTEN/CEN10 loss.
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Ki-67 expression, as measured by IHC, was also highly
associated with pCR (AUC = 0.726, sensitivity = 1.00 and
specificity = 0.42 at the optimal cutoff of 8 % cells express-
ing Ki-67, p = 0.0098). The only Ki-67 parameter evaluated
was the percentage of cells expressing Ki-67, since this is a
standard parameter used by pathologists in the evaluation
of breast tissues. Since both MET/CEN7 gain or loss and
Ki-67 parameters were highly associated with pCR, the
two were analyzed in combination by holding MET/CEN7
gain or loss at its optimal cutoff of 50 % and varying the
Ki-67 cutoff over a wide range (Fig. 2 and Table 2). This
improved the AUC, and the optimal Ki-67 cutoff (8 %
cells) provided sensitivity and specificity of 92 % and 83 %,
respectively, and reduced the p-value below either single
parameter (p = 0.0006).

The association between pCR and MET/CEN7 gain or
loss may be an important finding since common clinical
and pathologic characteristics were not found to have
statistically significant associations with pCR (Table 3) in
the neoadjuvant setting tested here. Of interest, MET/
CEN7 gain or loss had little association with ERBB2
gene status but was associated with patient age and
trended with tumor size and PR expression.

Our observations do not provide a mechanistic under-
standing of the role of MET copy number alterations in
predicting pCR in HER2-positive breast cancer. And,
these findings need to be validated in a subsequent, lar-
ger study of MET copy number alterations in a similar
patient population. In an updated expansion cohort in-
cluding patients treated with pertuzumab, additional
studies with immunohistochemistry for MET and other
markers to interrogate related signaling pathways (e.g.,
PI3K/AKT pathway) could be informative. One hypoth-
esis is that any alteration of the MET signaling pathway
may have some relationship to developing a pCR in the
two treatment groups (ACTH and TCH) analyzed in this
study. Increased or decreased MET expression poten-
tially resulting from MET gene copy number change
might create a fragile condition sensitive to perturbation
by therapeutics.

Conclusions

Our results show that a predictive score based on MET
gene copy number relative to chromosome 7 and Ki-67
expression is strongly associated with pCR in patients
with ERBB2-positive tumors treated with neoadjuvant
chemotherapy and ERBB2-targeted therapy. Although
the use of pCR as a surrogate endpoint for event free
(EFS) and overall survival (OS) remains controversial,
the ability to predict which patients are most likely to
achieve a pCR remains important for individual pa-
tient treatment decisions and future clinical trial de-
sign. Patients with a sufficiently low likelihood of a
pCR who are not candidates for breast conservation at
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presentation may choose surgery followed by adjuvant
chemotherapy and ERBB2-targeted therapy. These data
from retrospective studies require validation in a larger,
prospective study.
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