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Abstract

Background: The radiopharmaceutical '*'I-meta-iodobenzylguanidine ("*'-MIBG) is an effective treatment for
neuroblastoma. However, maximal therapeutic benefit from *'I-MIBG is likely to be obtained by its combination
with chemotherapy. We previously reported enhanced antitumour efficacy of "*'I-MIBG by inhibition of the
poly(ADP-ribose) polymerase-1 (PARP-1) DNA repair pathway using the phenanthridinone derivative PJ34. Recently
developed alternative PARP-1 inhibitors have greater target specificity and are expected to be associated with
reduced toxicity to normal tissue. Therefore, our purpose was to determine whether the more specific PARP-1
inhibitors rucaparib and olaparib enhanced the efficacy of X-radiation or "*'I-MIBG,

Methods: Radiosensitisation of SK-N-BE(2¢c) neuroblastoma cells or noradrenaline transporter gene-transfected
glioma cells (UVW/NAT) was investigated using clonogenic assay. Propidium iodide staining and flow cytometry
was used to analyse cell cycle progression. DNA damage was quantified by the phosphorylation of H2AX (YH2AX).

Results: By combining PARP-1 inhibition with radiation treatment, it was possible to reduce the X-radiation dose or
*1I-MIBG activity concentration required to achieve 50 % cell kill by approximately 50 %. Rucaparib and olaparib
were equally effective inhibitors of PARP-1 activity. X-radiation-induced DNA damage was significantly increased

2 h after irradiation by combination with PARP-1 inhibitors (10-fold greater DNA damage compared to untreated
controls; p < 0.01). Moreover, combination treatment (i) prevented the restitution of DNA, exemplified by the
persistence of 3-fold greater DNA damage after 24 h, compared to untreated controls (p < 0.01) and (ii) induced
greater G,/M arrest (p < 0.05) than either single agent alone.

Conclusion: Rucaparib and olaparib sensitise cancer cells to X-radiation or '*'I-MIBG treatment. It is likely that the
mechanism of radiosensitisation entails the accumulation of unrepaired radiation-induced DNA damage. Our
findings suggest that the administration of PARP-1 inhibitors and "*'I-MIBG to high risk neuroblastoma patients may

be beneficial.
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Background

Despite an incidence rate of 6 % of all childhood cancers
[1], neuroblastoma is responsible for 15 % of all child-
hood cancer deaths [2]. Tumours originate from tissues
derived from primordial neural crest cells and subse-
quently can arise anywhere in the sympathetic nervous
system [3]. Fifty percent of all primary tumours manifest
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in the adrenal medulla [2]. Patients with high risk dis-
ease undergo multimodal treatment, involving intensive
chemo- and radiotherapy following surgical resection.
However, despite rigorous treatment, there is only a
40 % overall survival rate [2]. This could possibly be im-
proved with immunotherapy, which has proven an ef-
fective treatment for high-risk neuroblastoma patients in
remission [4], but further improvements are necessary to
limit adverse cytotoxic effects.

Ninety percent of neuroblastoma tumours express the
noradrenaline transporter (NAT) [5], allowing the active
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uptake of catecholamine neurotransmitters. Targeted radio-
therapy using radioiodinated meta-iodobenzylguanidine
(*'I-MIBG) exploits this characteristic of neuroblastoma
cells. The radiopharmaceutical '*'I-MIBG is a structural
analogue of noradrenaline, facilitating its selective accu-
mulation by neuroblastoma tumour cells. *'I-MIBG
has demonstrated efficacy as a single agent [6, 7]. How-
ever, the optimal use of *'I-MIBG has yet to be defined
[8], and increasingly it is administered in combination
with cytotoxic drug therapy [9-11]. Indeed, a Clinical On-
cology Group pilot study (NCT01175356/ANBL09P1) is
currently investigating the efficacy of "*'I-MIBG in com-
bination with intensive induction chemotherapy in high-
risk neuroblastoma patients.

Poly(ADP-ribose) polymerases (PARPs) mediate the
post-translational modification of target proteins follow-
ing hydrolysis of the PARP substrate, nicotinamide aden-
ine dinucleotide (NAD") [12, 13]. The first discovered
PARP enzyme, and hence the most comprehensively
studied, is PARP-1 [14, 15]. Upon detection of DNA
strand breaks, PARP-1 catalytic activity is increased 500-
fold [13], resulting in the ADP-ribosylation of target pro-
teins including histones, components of DNA repair
pathways and PARP-1 auto-modification [16]. PARP-1
inhibition was shown to exhibit synthetic lethality in
cells lacking BRCA-1 and BRCA-2 [17, 18], two import-
ant components of homologous recombination repair of
DNA double strand breaks [19]. Inhibition of PARP-1
function in BRCA-deficient cell lines, either by genetic
silencing of PARP-1 [18] or pharmacologically using a
PARP-1 inhibitor [17], prompted the accumulation of
DNA lesions that were not repaired by homologous
recombination.

PARP-1 inhibitors have shown great promise when
used in combination with treatments that cause substan-
tial DNA damage, including ionising radiation [20-23],
DNA alkylating agents [20, 24] and the topoisomerase-1
poisons topotecan or irinotecan [25, 26]. Indeed, we
have shown previously that the second generation
PARP-1 inhibitor PJ34 enhanced the efficacy of 3-way
modality treatment involving '*'I-MIBG and topotecan
[22]. However, it has been suggested that PJ34 may be
toxic to normal cells [27, 28]. Innovative PARP-1 inhibi-
tors, such as olaparib and rucaparib, have greater specifi-
city, enhanced target affinity, and have now progressed
to clinical evaluation [12, 16, 29]. Rucaparib was the first
PARP-1 inhibitor to enter clinical trials [30] and olaparib
was the first PARP-1 inhibitor to gain FDA approval for
the treatment of germline BRCA-deficient ovarian can-
cer. Both rucaparib and olaparib have shown promise in
phase II/III clinical trials, both as monotherapies in
BRCA-mutated breast cancer [31], ovarian cancer [32]
and prostate cancer [33], and in combination with cyto-
toxic drug therapy [34—-36].
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Therefore, PARP-1 inhibition is a promising approach
not only to the targeting of BRCA-deficient cancers
which are deficient in DNA repair capacity, but also to
the enhancement of the efficacy of DNA damaging
chemo- and radiotherapies. Indeed, increased PARP-1
expression has previously been associated with greater
neuroblastoma cell genomic instability, higher neuro-
blastoma stage and poor overall survival [37], suggesting
these tumours will be susceptible to PARP-1 inhibition.
PARP-1 inhibitors are also being evaluated clinically for
the treatment of children with refractory or recurrent
malignancies, such as solid neoplasms, acute lympho-
blastic leukaemia, central nervous system neoplasms and
neuroectodermal tumours (NCT02116777/ADVL1411).
In the present study, we determined the radiosensitising
potential of rucaparib and olaparib, two PARP-1 inhibi-
tors currently undergoing phase II/III clinical investiga-
tion, in combination with external beam X-radiation or
the neuroblastoma-targeting radiopharmaceutical *'I-
MIBG. We also examined the effect of combination
treatment on cell cycle progression and the persistence
of DNA damage.

Methods

Reagents

Rucaparib and olaparib were purchased from Selleckchem
(Suffolk, UK) and were reconstituted using phosphate
buffered saline (PBS) and dimethyl sulfoxide (DMSO), re-
spectively. Drugs were then diluted in culture medium,
maximum DMSO concentration was 0.2 % (v/v). Unless
otherwise stated, all other cell culture reagents were pur-
chased from Life Technologies (Paisley, UK) and all che-
micals were purchased from Sigma-Aldrich (Poole, UK).

Cell culture

Human neuroblastoma SK-N-BE(2c) cells were pur-
chased from the American Type Culture Collection. SK-
N-BE(2c) cells were maintained in high glucose Dulbec-
co’s Modified Eagle Medium (DMEM) containing 15 %
(v/v) foetal calf serum, 2 mM L-glutamine and 1 % (v/v)
non-essential amino acids. Human glioblastoma UVW
cells [38] were transfected with a plasmid containing the
bovine noradrenaline transporter (NAT) gene [39].
UVW/NAT cells were maintained in Minimum Essential
Medium (MEM) containing 10 % (v/v) foetal calf serum,
2 mM L-glutamine, 1 % (v/v) non-essential amino acids
and 1 mg/ml geneticin. Cells were incubated at 37 °C,
5 % CO, in a humidified incubator, and were passaged
every 3-4 days. Cell lines were cultured in this study for
less than 6 months after resuscitation.

Clonogenic assay
Monolayers were cultured at a density of 10° cells in
25 cm? flasks. Cells in the exponential growth phase
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were treated with fresh culture medium containing ruca-
parib or olaparib and were simultaneously irradiated
using an Xstrahl RS225 X-Ray irradiator (Xstrahl Lim-
ited, Surrey, UK) at a dose rate of 0.93 Gy/min. After
24 h incubation at 37 °C, cells were seeded in 21.5 cm?
petri dishes at a density of 500 (SK-N-BE(2c)) or 250
(UVW/NAT) cells per dish in triplicate. After 8 days
(UVW/NAT) or 14 days (SK-N-BE(2c)), colonies con-
taining >50 cells were fixed with 50 % (v/v) methanol in
PBS and stained with crystal violet. Stained colonies
were counted and expressed as a fraction of the un-
treated, unirradiated control. Radiation survival curves
were fitted assuming a linear-quadratic relationship be-
tween survival and radiation dose using GraphPad Prism
5.01 (GraphPad Software, San Diego, USA). The data
were used to calculate the dose required to sterilise 50 %
of clonogens (ICso), as well as the dose-enhancement
factor at IC5y (DEF5).

PARP-1 activity assay

Cells were seeded at a density of 1x10° (SK-N-BE(2c)) or
0.5x10° (UVW/NAT) cells on to glass coverslips in 6-
well plates. After 48 h, fresh medium was added contain-
ing rucaparib or olaparib, before incubating for 1.5 h at
37 °C. PARP-1 activity was stimulated by treatment with
20 mM hydrogen peroxide for 20 min at room
temperature in the dark. PBS or DMSO treatment of
0.09 % (v/v) in medium constituted negative controls.
Cells were fixed with ice cold methanol/acetone (1:1) on
ice for 15 min, before blocking with 2 % (w/v) bovine
serum albumin (BSA) in PBS for 30 min at room
temperature. Fixed cells were incubated for 1 h at room
temperature with a 1:200 dilution of mouse anti-PADPR
monoclonal antibody (Abcam, Cambridge, UK; Cat#
ab14459) in antibody buffer (10 mM Tris—HCl pH 7.5,
150 mM NaCl, 0.1 % (w/v) BSA in distilled water).
Bound anti-PADPR primary antibody was visualised
after 1 h incubation at room temperature using goat
anti-mouse Alexa Fluor 488-conjugated secondary anti-
body (Life Technologies, Paisley, UK; Cat# A11029), at a
dilution of 1:500 in antibody buffer. Cells were fixed by
treatment with 4 % (w/v) paraformaldehyde for 30 min
at room temperature in the dark, before mounting on to
microscope slides using Vectashield mounting medium
containing DAPI nuclear stain (Vector Laboratories,
Peterborough, UK). Fluorescence was visualised by
means of a Zeiss Axio Observer LSM 780 confocal
microscope, using identical laser power and gain settings
for all images.

'31-MIBG synthesis and treatment

No-carrier-added (n.c.a.) '*'I-MIBG was prepared using
a solid phase system wherein the precursor of *'I-MIBG
was attached to an insoluble polymer via the tin-aryl
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bond [40, 41]. The reaction conditions, HPLC purifi-
cation procedure, and radiochemical yield were as
described previously [42]. Cells were treated with
BI.MIBG for 2 h, by which time "*'I-MIBG uptake
was maximal [43].

Fluorescence Activated Cell Sorting (FACS) analysis

Cells were seeded at a density of 7x10° (SK-N-BE(2c)) or
4x10° (UVW/NAT) cells into 75 cm? flasks. After 48 h,
fresh medium was added containing rucaparib or ola-
parib and cells were simultaneously irradiated before in-
cubating for 1.5 h at 37 °C. Cells were trypsinised and
washed with PBS, before fixing with 70 % (v/v) ethanol
in water at -20 °C. Ethanol was removed by washing
with PBS. Cells were permeabilised by treatment with
0.05 % (v/v) Triton X-100 in PBS containing a 1:50 dilu-
tion of rabbit anti-phospho-Histone H2AX(Ser139)-
Alexa Fluor 647-conjugated monoclonal antibody. After
40 min incubation at room temperature, excess antibody
was removed by washing with PBST buffer (0.1 % (v/v)
Tween 20 in PBS). Finally, cell pellets were resuspended
in PBS containing propidium iodide (10 pg/ml) and
RNase A (200 pg/ml), before analysis using a BD FACS-
Verse flow cytometer (BD BioSciences, Oxford, UK).
FACS data were quantified using FlowJo 7.6.5 software.
For cell cycle analysis, cells were treated separately, and
were incubated with propidium iodide and RNase A only
as detailed above.

yH2AX immunofluorescent microscopy

Cells were seeded as for PARP-1 activity assay. Fresh
medium was added containing rucaparib or olaparib,
and cells were simultaneously irradiated, before incubat-
ing for 1.5 h at 37 °C. After treatment, cells were fixed
with 4 % (w/v) paraformaldehyde for 30 min at room
temperature before blocking with 2 % (w/v) BSA (in
PBS) for 30 min at room temperature. Fixed cells were
then incubated overnight at 4 °C with a 1:50 dilution of
rabbit anti-phospho-Histone H2AX(Ser139)-Alexa Fluor
647-conjugated monoclonal antibody (Cell Signalling
Technology, supplied by New England Biolabs, Hitchin,
UK, Cat# 9720), followed by overnight incubation with a
1:250 dilution of mouse anti-B-tubulin (Life Technolo-
gies, Paisley, UK) in antibody buffer (10 mM Tris—HCl
pH 7.5, 150 mM NaCl, 0.1 % (w/v) BSA in distilled
water). Bound anti-B-tubulin primary antibody was
visualised after 1 h incubation at room temperature
using goat anti-mouse Alexa Fluor 488-conjugated sec-
ondary antibody (Life Technologies, Paisley, UK; Cat#
A11029), at a dilution of 1:500 in antibody buffer. Cells
were mounted and fluorescence visualised as for PARP-1
activity assay.
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Statistical analysis

All statistical analyses were performed using GraphPad
Prism version 5.01 (GraphPad Software, California,
USA). The number of experimental repeats is provided
in figure legends. Data are presented as means + stand-
ard error of the mean (SEM). Statistical significance was
determined by either the unpaired Student’s two-tailed
t test, or the one-way ANOVA followed by post-hoc
testing using Bonferroni correction for multiple com-
parisons. A probability (p) value < 0.05 was considered
statistically significant and < 0.01 highly significant.

Results

Rucaparib and olaparib at concentrations <1 pM are not
cytotoxic

Neither rucaparib nor olaparib was cytotoxic at 1 pM.
Minor yet significant clonogenic cell kill was induced
by both drugs at 10 pM. Rucaparib at 30 pM was sig-
nificantly toxic to SK-N-BE(2c) and UVW/NAT cells
(Fig. la; p<0.01). Neither cell line survived 24 h
treatment with 50 uM rucaparib. In contrast, 30 uM ola-
parib, though highly toxic to UVW/NAT cells (p <0.01),
induced modest kill of SK-N-BE(2c) clonogens (Fig. 1b;
p<0.5).

Rucaparib and olaparib inhibited PARP-1 activity in SK-N-
BE(2c) and UVW/NAT cells

Incubation with 10 pM rucaparib or olaparib (termed
drug alone in Fig. 2) induced a 50 % reduction in en-
dogenous PARP-1 activity compared with cells which
were treated only with the drug vehicle. In contrast,
PARP-1 activity was significantly enhanced by treatment
with the DNA damaging agent hydrogen peroxide
(H,O,) at 20 mM - labelled no drug on Fig. 2. This
was demonstrated by a 3.5-fold (» <0.01) and 9.4-fold
(p<0.01) increase in PARP-1 activity compared to un-
treated SK-N-BE(2c) (Fig. 2b) and UVW/NAT cells
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(Fig. 2c), respectively. However, the H,O,-induced in-
crease in PARP-1 activity was reduced to levels compar-
able with untreated cells after treatment with 1 uM or
10 puM rucaparib or olaparib in both cell lines (p < 0.01).

PARP-1 inhibition sensitised cells to X-radiation and
'*1-MIBG treatment
To investigate the radiosensitising potential of rucaparib
and olaparib in SK-N-BE(2c) and UVW/NAT cells, clo-
nogenic survival was assessed following drug treatment
in simultaneous combination with external beam X-
irradiation or treatment with the NAT-targeting radio-
pharmaceutical "*'I-MIBG. In combination treatments,
PARP-1 inhibitors were administered at non-cytotoxic
(1 uM) or cytotoxic (10 uM and 30 pM) concentrations,
all of which inhibited PARP-1 activity in both cell lines.
Rucaparib and olaparib sensitised SK-N-BE(2c) cells
(Fig. 3a and b) and UVW/NAT cells (Fig. 3d and Fig. 3e)
to X-irradiation. This was indicated by the reduced X-
radiation dose required to achieve 50 % cell kill (ICs).
In the absence of PARP-1 inhibition, the ICs, value
corresponding to X-radiation treatment alone of SK-N-
BE(2c) cells was 3.57 + 0.15 Gy (Fig. 3c). This value was
decreased to 3.18 £0.18, 1.76 £ 0.41 (p <0.01) or 2.52 +
0.22 Gy by treatment with 1, 10 or 30 uM rucaparib, re-
spectively. Exposure to 1, 10 or 30 uM olaparib reduced
ICsp values to 3.42 + 0.60, 3.22 + 0.24 and 2.21 £ 0.18 Gy
(p < 0.001) respectively, in SK-N-BE(2c) cells. Likewise in
UVW/NAT cells, IC5o values observed after exposure
to X-radiation alone, or in the presence of 1, 10 or
30 uM rucaparib were 4.44 +0.21, 3.50 +0.53, 2.42 +
0.17 (»p <0.01) and 3.44 £ 0.28 Gy, respectively (Fig. 3f).
Similarly, treatment with 1, 10 or 30 pM olaparib re-
duced ICs, values to 3.54 +0.14, 1.89 + 0.09 (p < 0.001)
and 2.09+ 047 Gy (p<0.01), respectively. These results
suggest a plateau at 10 uM rucaparib or olaparib, with re-
spect to clonogenic kill.
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Fig. 1 The effect of rucaparib and olaparib on clonogenic survival. SK-N-BE(2¢) (a) and UVW/NAT cells (b) were treated with various
concentrations of rucaparib or olaparib. After 24 h treatment, clonogenic survival was assessed by clonogenic assay. Data are means + SEM,
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Fig. 2 The effect of rucaparib and olaparib on PARP-1 activity. Cells were treated with 20 mM hydrogen peroxide (H,
PARP-1 activity in the presence or absence of the PARP-1 inhibitors rucaparib and olaparib. Poly(ADP-ribose) (PAR) chain synthesis was detected
using an anti-PAR monoclonal Alexa Fluor 488-conjugated antibody (green). The nucleus was visualised using the nuclear counterstain DAPI
(blue). Representative images obtained from the analysis of anti-PAR staining of SK-N-BE(2¢) cells are shown (a). Fluorescence intensity for Alexa
Fluor 488 was quantified using ImageJ software and normalised to DAPI fluorescence intensity in SK-N-BE(2c) (b) and UVW/NAT (c) cells. Drug
vehicles were PBS and DMSO for rucaparib and olaparib, respectively. Untreated cells were exposed to 0.09 % (v/v) drug vehicle diluted in culture
medium. The designation ‘Drug Alone’ indicates that cells were treated with 10 uM PARP-1 inhibitor in the absence of H,0,. The designation’No
Drug’ indicates that cells were treated with 20 mM H,O, alone, in the absence of PARP-1 inhibitor. Data are means + SEM, n=3; *p < 0.05,

0,) in order to stimulate

The dose enhancement factor (DEFs5,) was calcu-
lated as the radiation dose required to achieve 50 %
kill in the absence of drug divided by the radiation
dose required to Kkill cells in the presence of drug.
Therefore, a DEF5, greater than 1 is indicative of
radiosensitisation. Both PARP-1 inhibitors radiosensi-
tised SK-N-BE(2c) and UVW/NAT cells. In the case
of SK-N-BE(2c) cells, the DEF5, values were 2.01 and
1.22 following 10 uM rucaparib and olaparib treat-
ment, respectively (Fig. 3c). In UVW/NAT cells, the
corresponding values were 1.76 and 2.27 for 10 pM
rucaparib and olaparib treatment, respectively (Fig. 3f).
Dose enhancement was not further increased by treat-
ment of cells with rucaparib or olaparib at concentra-
tions greater than 10 pM.

Rucaparib and olaparib also sensitised SK-N-BE(2c) and
UVW/NAT cells to treatment with **'I-MIBG (Fig. 4). In
SK-N-BE(2¢) cells, the *'1-MIBG activity concentration
corresponding to the IC;, was reduced from 0.78 +
0.06 MBq/ml to 0.35 +0.02 (p < 0.05) or 0.63 + 0.17 MBq/
ml after treatment with 10 pM rucaparib or olaparib,
respectively (Fig. 4c). Similarly, in UVW/NAT cells, the
corresponding ICsy values were 1.58 +0.14 MBq/ml for
BII_MIBG treatment alone and 1.20+0.22 and 0.71 +
0.24 MBq (p <0.05) in the presence of rucaparib or ola-
parib, respectively. DEF5, values were calculated as 2.36
and 1.17 in SK-N-BE(2c) cells treated with 10 pM ruca-
parib or olaparib respectively (Fig. 4c). In UVW/NAT
cells, DEF5q values obtained were 1.39 and 1.91 following
treatment with 10 pM rucaparib or olaparib, respectively.
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Fig. 3 The effect of PARP-1 inhibition in combination with external beam X-radiation. SK-N-BE(2¢) (a, b, ¢) and UVW/NAT cells (d, e, f) were
treated simultaneously with rucaparib (a, d) or olaparib (d, ) in combination with a range of doses of external beam X-radiation. Cells were
treated with rucaparib or olaparib, at concentrations of 1 uM, 10 uM or 30 uM, following exposure to a range of doses of X-radiation, for 24 h
prior to seeding cells for clonogenic assay. The X-irradiation dose associated with 50 % cell kill (ICs) and the dose enhancement factors
corresponding to 50 % clonogenic cell kill (DEFs) are presented for SK-N-BE(2¢) (€) and UVW/NAT (f) cells. Data are means + SEM, n=3;
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PARP-1 inhibition induces supra-additive cell kill in
combination with X-irradiation or "*'I-MIBG

The interaction between radiation treatment and PARP-
1 inhibitors was further determined using X-irradiation
doses (3 Gy) and activity concentrations (1 MBq/ml)
that were responsible for 50 % kill of SK-N-BE(2c) clo-
nogens. Combination treatment included rucaparib or
olaparib at 10 uM. The expected clonogenic cell surviv-
ing fraction, if the two treatments had an additive effect,
was calculated as the product of the surviving fractions
resulting from single agent treatments. This is desig-
nated as “combination expected” in Fig. 5. The “combin-
ation observed” was the experimental surviving fraction
following combination treatment.

Combined treatments produced significantly greater
cell kill than single modality treatments. This was indi-
cated by combination expected surviving fractions of
0.36+0.05 or 0.38 £0.05 following an additive inter-
action between rucaparib or olaparib with X-irradiation,
respectively, in SK-N-BE(2c¢) cells (Fig. 5a). The surviving
fraction of the observed combination of rucaparib (0.17
+0.04; p<0.05) or olaparib (0.20 £ 0.02; p <0.01) with
X-irradiation in SK-N-BE(2c) cells was less than that of
the expected combination, indicating supra-additivity.
Similarly, in UVW/NAT cells, the surviving fraction of
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the observed combination of rucaparib (0.25 +0.02) or
olaparib (0.14 + 0.02) with X-radiation was less than that
of the expected combination (rucaparib: 0.45 + 0.02; ola-
parib: 0.35 + 0.05) (Fig. 5b).

Supra-additive clonogenic cell kill also resulted from
combination treatments comprising PARP-1 inhibition
and '*'I-MIBG (Fig. 5c and d). The surviving fraction
resulting from combination treatments of UVW/NAT
cells (rucaparib: 0.44 +0.03; olaparib: 0.32 +0.08) was
less than of the expected combination (rucaparib: 0.61 +
0.03; olaparib: 0.50 +0.04) (Fig. 5d). These results in-
dicate that combination therapy produced greater cell
kill than the administration of either treatment modality
alone. Moreover, the observed surviving fraction following
combination therapy was less than that expected from an
additive interaction. No significant difference was ob-
served in surviving fraction between the two PARP-1 in-
hibitors following single agent or combination therapy.

PARP-1 inhibition in combination with X-irradiation
promoted G,/M arrest

Irradiation administered as a single agent promoted a
significant increase in the G,/M cell population 12 h
after irradiation, from 19+ 1 % in SK-N-BE(2c) cells at
0 h, to 35+1 % following 3 Gy irradiation (p <0.01;

Fig. 5 Clonogenic survival following the treatment of SK-N-BE(2c) and UVW/NAT cells with rucaparib or olaparib and X-radiation or '*'I-MIBG as
single agent modalities or in combination. SK-N-BE(2¢) (a, ¢) and UVW/NAT cells (b, d) were treated with 10 uM rucaparib (black bars), 10 uM
olaparib (white bars), 3 Gy X-radiation (a, b) or 1 MBg/ml BI-MIBG (¢, d), as single agents or in combination. The outcome of the latter treatment
is designated as ‘combination observed' in the figure. Cells were incubated for 24 h and survival was assessed by clonogenic assay. The expected
surviving fraction, if the two treatments had an additive effect with respect to clonogenic cell kill, was calculated as the product of the surviving
fractions resulting from single agent treatments. This is designated as ‘combination expected’ in the figure. Data are means + SEM, n=4;

a 1.0 4
B Rucaparib
0.8 - O Olaparib
c
1]
©
8 06 -
o
i I
H] ]
2 0.4
3
a o EE
0.2 4 i |j
0
No X-Radiation Drug  Combination Combination
Treatment Alone Alone Expected Observed
1.0 4
W Rucaparib
0.8 O Olaparib
c
2
ko]
g 0.6
s
g I
£
S ]
2 0.4
-
w
0.2 4
0
No BI-MIBG Drug  Combination Combination
Treatment Alone Alone Expected Observed
. - 131
**p <0.01, *** p <0.001 compared to 3 Gy X-irradiation (a, b) or T MBg/ml *'I-MIBG treatment (c, d)

b 1.0 4
W Rucaparib
0.8 - O Olaparib
c
k]
ko]
® 0.6 -
= I
="
£
H] i
E 0.4
5 *xk
wv
0.2 4 ok
0.0
No X-Radiation Drug  Combination Combination
Treatment Alone Alone Expected Observed
1.0 4
W Rucaparib
0.8 4 I O Olaparib
c
k]
T 06
P %
Eﬂ ok ok
'S 044
H
H]
v
0.2 4
0

No BI-MIBG Drug
Alone

Combination Combination

Treatment Alone Expected Observed




Nile et al. BMC Cancer (2016) 16:621

Fig. 6a). However, 24 h after irradiation, the proportion
of SK-N-BE(2c¢) cells in G,/M phase had decreased and
was no longer significantly elevated relative to 0 h. Simi-
larly, in UVW/NAT cells, the proportion of G,/M cells
significantly increased from 22+1 % at O h to 40+5 %
(p<0.05) and 32+3 % (p<0.05), 12 h and 24 h after
3 Gy irradiation, respectively (Fig. 6b). In contrast,
exposure to a radiation dose of 10 Gy caused a sig-
nificant increase in the proportion of cells in Gy/M
phase at 12 h, which persisted at 24 h in both cell
lines (Fig. 6a and b).

Rucaparib and olaparib single agent treatments signifi-
cantly increased the G,/M population of SK-N-BE(2c)
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cells, from 24 + 3 % in unirradiated controls, to 34+ 3 %
or 33 +3 % after administration of 10 uM rucaparib or
olaparib, respectively (p <0.05; Fig. 6¢). Although radi-
ation alone had no significant effect on cell cycle distri-
bution 24 h after exposure, the effect of combination
treatment was assessed at this time point to reflect the
time at which combination treatments were assayed for
clonogenic capacity. Combination treatment significantly
increased the G,/M arrest observed with drug alone.
This was indicated by an increase in the G,/M popula-
tion to 49+5 % (p<0.001) and 51+5 % (p<0.001)
following rucaparib or olaparib combination treatment,
respectively, in SK-N-BE(2c) cells. Rucaparib and olaparib,
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both as single agents and as components of combination
therapy, produced a similar level of G,/M arrest.

Similar treatment-induced, cell cycle redistribution
was observed in UVW/NAT cells (Fig. 6d). Single agent
rucaparib or olaparib treatment increased the G,/M
population of UVW/NAT cells from 22 + 1 % in unirradi-
ated controls, to 32+2 % (p <0.01) or 30+3 % (p <0.05),
respectively. Combination treatment significantly in-
creased the G,/M population from 22+1 % in unirra-
diated controls, to 55+1 % (p<0.001) and 61+2 %
(p<0.001) following rucaparib or olaparib combination
treatment, respectively. Representative histograms ob-
tained using SK-N-BE(2c) cells are shown in Fig. 6e.

PARP-1 inhibition prevented the restitution of radiation-
induced DNA damage

The generation of YH2AX foci at the site of DNA double
strand breaks follows phosphorylation of the H2AX his-
tone variant protein at serine residue 139 [44]. YH2AX
fluorescence intensity was proportional to the magnitude
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of DNA damage [45], and was detected with an anti-
YH2AX Alexa Fluor 647-conjugated antibody. yH2AX
foci co-localised with the DNA intercalating fluorescent
stain DAPI, thereby confirming the nuclear location of
YH2AX (Fig. 7a).

X-radiation treatment significantly increased DNA
damage 2 h after irradiation (Fig. 7b, ¢ and d). This was
indicated by an increase from 6 to 27 % (p <0.01) and
from 2 to 21 % (p<0.01) YH2AX positivity relative to
total cellular DNA for SK-N-BE(2¢) and UVW/NAT
cells, respectively. Twenty four hours after irradiation,
these values decreased to 14 % (SK-N-BE(2c)) and 6 %
(UVW/NAT), indicating DNA repair. Combination
treatment, consisting of rucaparib or olaparib with X-
irradiation, resulted in greater DNA damage compared
with irradiation alone. Combined X-irradiation with
rucaparib caused an increase in yH2AX positivity to
45 % (p <0.001) in SK-N-BE(2c) cells 2 h after treatment
and, compared with irradiation alone, the damage was
more sustained as indicated by 23 % yH2AX positivity

a b = S C .
*% B No Treatment — B No Treatment
0 . O X-Radiation 50 - —= O X-Radiation
1 O Rucaparib v O Rucaparib
O Olaparib ek O Olaparib
0Gy £ 40 B Rucap + X-Rad X 40 A B Rucap + X-Rad
Y @ Olap + X-Rad Y @ Olap + X-Rad
g ", 2
o 30 —— *** 5 30 A
2 *x 2
3 =
2 20 T 2 20 -
- T 3
2] o~
T 10 T 10
10 Gy
0 4 0 4
2h 24h 2h 24h
Time after X-irradiation (h) Time after X-irradiation (h)
d No Treatment Rucaparib Olaparib
S = o
1057 0605% 1.14% 171% 1057 530% 126% 141% |n5’ 224% 887% 917%
m" m" Io"
0 Gy o] o] ]
m: 11721 m3
o] o o
~ T T T T T T T T T T T
5 s w = =
3 10°q 155% 720% 133% 10° 104% 125% 119% 105 183% 127% 165%
T
3 10t
3 Gy < 103' 1ﬂ3‘ 103'
o sk ok 1ek 200k 260k o s e e oo e o sk w00k tsok a0k zak
Propidium lodide
Fig. 7 The effect of PARP-1 inhibition on the persistence of radiation-induced DNA damage. Immunofluorescent confocal microscopy confirmed
nuclear localisation of anti-yH2AX Alexa-Fluor 647-labelled antibody (a) following 10 Gy X-radiation treatment (blue, DAPI nuclear stain; green,
anti-B-tubulin cytoplasmic antibody visualised using Alexa Fluor 488-conjugated secondary antibody; red, anti-yH2AX Alexa Fluor 647-conjugated
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(p<0.05) 24 h after treatment. Similarly, combination
treatment of cells with X-irradiation and olaparib caused
37 % DNA damage (p <0.01) in SK-N-BE(2c) cells 2 h
after treatment, which remained unrepaired (27 % DNA
damage; p < 0.001) 24 h after treatment. Therefore, com-
bining rucaparib or olaparib with X-irradiation produced
a significantly greater amount of DNA damage, com-
pared with X-irradiation alone (p < 0.05).

Similar inhibition of DNA damage repair was observed
in UVW/NAT cells (Fig. 7c). Combining X-irradiation
with rucaparib produced the greatest increase in YH2AX
positivity compared with either single agent modality
alone, exemplified by an increase in yH2AX from 2
and 3 % in untreated cells, to 37 % (p<0.001) and
12 % (»p<0.01) 2 h and 24 h after treatment, respect-
ively. Likewise, olaparib in combination with X-irradiation
resulted in the greatest DNA damage 2 h after treatment
(36 % YyH2AX positivity; p <0.01) compared with single
agent treatments, which remained unrepaired 24 h after
treatment (14 % yH2AX positivity; p <0.001). Further-
more, combination treatment produced significantly
greater initial DNA damage compared with X-irradiation
alone (p < 0.05). These results indicate that PARP-1 inhib-
ition prevented the restitution of radiation-induced DNA
damage.

Discussion
Patients with high-risk neuroblastoma have an overall
survival rate of 40 % despite multi-modal treatment [2].
Therefore, they present a significant challenge to paedi-
atric oncologists. Single agent treatment with *'I-MIBG
is effective in the clinical management of high-risk
neuroblastoma. However, recent studies indicate that
maximal benefit will be achieved through its administra-
tion in combination with radiosensitising drugs [46—49].
In this study, we observed, in pre-clinical models of
neuroblastoma, that the third generation PARP-1 inhibi-
tors, rucaparib and olaparib, significantly enhanced the
efficacy of ionising radiation, in the form of external
beam X-rays or *'I-MIBG. Our results indicate that the
mechanism of radiosensitisation entails prolonged DNA
damage and accumulation of cells in G,/M phase of
the cell cycle. PARP-1 inhibitors rucaparib and ola-
parib were comparable with respect to their potenti-
ation of the lethality of X-irradiation or '*'I-MIBG.
Accordingly, both PARP-1 inhibitors may be considered
of benefit to high-risk neuroblastoma patients undergoing
targeted radiotherapy.

Since the discovery of the synthetic lethality of PARP-
1 inhibition in cells deficient in homologous recombin-
ation (HR) [17, 18], there has been much interest in the
therapeutic application of PARP-1 inhibitors. PARP-1
inhibitors have proven an effective monotherapy in
BRCA-mutated breast cancer [31], ovarian cancer [32]
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and prostate cancer [33]. However, tumours proficient in
HR repair may also be susceptible to treatment with
PARP-1 inhibitors if administered in combination with
cytotoxic drug therapy [34-36] and radiotherapy [50].
Here, we provide pre-clinical evidence supporting the use
of PARP-1 inhibition in combination with external beam
X-radiation or *'I-MIBG. The current study focused on
rucaparib and olaparib, the first PARP-1 inhibitors to
enter clinical trial [30-33, 36] and gain FDA approval,
respectively.

Although the radiosensitising capacity of PARP-1
inhibitors has previously been demonstrated in vitro
[22, 51-55], this is the first study to show synergism
between rucaparib or olaparib with **'I-MIBG. Simul-
taneous treatment with 10 uM rucaparib or olaparib
effectively halved the external beam X-radiation dose
or the "'I-MIBG activity concentration required to
kill 50 % of clonogens (ICsp) derived from human
neuroblastoma SK-N-BE(2c) cells, and human glioma
UVW cells genetically engineered to express the nor-
adrenaline transporter (NAT). Rucaparib or olaparib dis-
played similar radiosensitising potency. Furthermore,
combination treatment produced greater than additive cell
kill, indicating the potential for enhanced therapeutic
benefit.

The present study demonstrated that rucaparib, ola-
parib and X-irradiation monotherapies significantly in-
creased the proportion of cells in the G,/M phase of the
cell cycle, which would also include a small proportion
of cells in late S phase, and has been reported by others
[56]. This is associated with increased radiosensitivity
[57], due to the doubling of the amount of DNA suscep-
tible to radiation trajectory following DNA synthesis in
the preceding S phase. This indicates the importance of
determining the optimal scheduling of the components
of combination treatment to maximise therapeutic bene-
fit. For example, we previously reported that simultan-
eous delivery of PJ34 (a second generation PARP-1
inhibitor), the topoisomerase inhibitor topotecan and
BII_MIBG maximised the efficacy of this 3-way combin-
ation [22]. Notably, olaparib-induced radiosensitisation
was shown to be replication dependent [52], suggesting
that the effects of PARP-1 inhibition would have greater
effect in rapidly proliferating tumour cells [58].

The toxicity of PARP-1 inhibition is hypothesised to
involve the accumulation of single strand breaks in irra-
diated cells, which are subsequently converted to double
strand breaks upon collision with the advancing replica-
tion fork [52, 59]. Double strand breaks are quantified
following analysis of YH2AX foci [45]. In response to
genotoxic agents such as irradiation, the histone variant
protein H2AX becomes phosphorylated at serine residue
139 at the site of double strand breaks [45]. We demon-
strate here that, at cytotoxic concentrations, both PARP-1
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inhibitors increased the accumulation of radiation-
induced DNA damage and prevented the restitution
of this damage 24 h after irradiation. Our results are
supportive of others who also show that radiation-
induced DNA damage remains unrepaired up to 22 h
after irradiation following exposure to olaparib [55] or
rucaparib [51]. Interestingly, Senra et al. hypothesised
that olaparib-induced radiosensitisation was not only
the result of impaired DNA repair, but also the result
of olaparib-induced vasodilation [55]. The widening of
tumour-associated blood vessels could be of thera-
peutic benefit, resulting in increased efficiency of drug
delivery as well as well as re-oxygenation of hypoxic radio-
resistant regions of tumours [60, 61]. Significantly, ruca-
parib also causes vasodilation [60, 62].

The anti-tumour effect of PARP-1 inhibitors is not only
due to inhibition of PARP-1 catalytic activity. PARP-1 in-
hibitor toxicity has also been attributed to ‘PARP trapping,
whereby PARP-1 is confined at the site of DNA damage,
thus preventing DNA repair, replication and transcription,
culminating in cell death [63]. Indeed, clinical stage
PARP-1 inhibitors display a range of capacities to trap
PARP-1 at the site of DNA damage, which could influence
the selection of PARP-1 inhibitors for clinical use [64].

PARP-1 inhibitors are increasingly being considered for
the treatment of neuroblastoma. Rucaparib has been
shown to improve the efficacy of the alkylating agent tem-
ozolomide in neuroblastoma pre-clinical models [24]. The
alternative PARP-1 inhibitor niraparib (formerly MK-
4827) effectively sensitised a panel of neuroblastoma cells
to external beam radiation. The degree of radiosensitisa-
tion was shown to be independent of MYCN amplification
[65]. MYCN amplification occurs in 25 % of all primary
neuroblastomas and is used for neuroblastoma risk strati-
fication [2]. However, to our knowledge, this is the first
study to demonstrate the radiosensitising potential of
rucaparib and olaparib in combination with "*'I-MIBG.
Abnormalities in the non-homologous end joining repair
pathway, such as increased PARP-1 and DNA Ligase pro-
tein expression, have been implicated in neuroblastoma
cell survival and pathogenicity [37]. Indeed, increased
PARP-1 expression was shown to correlate with increased
genomic instability in neuroblastoma cell lines, including
SK-N-BE(2c¢), and was also associated with higher neuro-
blastoma stage and poor overall survival [37], suggesting
these tumours will be particularly susceptible to PARP-1
inhibition.

Conclusions

We have demonstrated that the third generation PARP-1
inhibitors rucaparib and olaparib sensitised tumour cells
to radiation treatment. This was manifest as a 50 % re-
duction in the X-radiation dose or '*'I-MIBG activity
concentration required to achieve 50 % cell kill. X-
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radiation-induced DNA damage was significantly in-
creased 2 h after irradiation by combination with PARP-1
inhibitors. Moreover, combination treatment (i) prevented
the restitution of DNA and (ii) induced greater G,/M cell
cycle arrest than single agent modalities. Finally, rucaparib
and olaparib were shown to be equipotent inhibitors of
PARP-1 activity and displayed analogous levels of radio-
sensitisation in neuroblastoma models. Our findings sug-
gest that the administration of PARP-1 inhibition and
BII_MIBG to high-risk neuroblastoma patients may be
beneficial.
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