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Abstract

Background: Although the most serious consequence of neuronal ischemia is acute neuronal death, mounting
evidence suggests similarities between stroke and neurodegenerative disease. Brain atrophy visualized on structural
MRI and pathological cerebrospinal fluid (CSF) concentrations of microtubule-associated protein tau (T-tau) and
phosphorylated microtubule-associated protein tau indicate neurofibrillary degeneration. We aimed to explore the
association between CSF T-tau and brain atrophy 1 year post-stroke.

Methods: We included 210 patients with first-ever ischemic stroke or transitory ischemic attack without pre-existing
cognitive impairment. After 12 months, subjects underwent MRI, and CSF biomarkers were assessed. Using SIENAX
(part of FSL), ventricular CSF volume and total brain volume were estimated and normalized for subject head size.
The association between T-tau as explanatory variable and ventricular and total brain volume as outcome variables
were studied using linear regression.

Results: One hundred eighty-two patients completed the follow-up. Forty-four had a lumbar puncture. Of these, 31
had their MRI with identical scan parameters. Mean age was 70.2 years (SD 11.7). Ventricular volume on MRI was
significantly associated with age, but not with gender. In the multiple regression model, there was a significant
association between T-tau and both ventricular (beta 0.44, 95% CI 376.3, 394.9, p = 0.021) and global brain volume
(beta −0.50, 95% CI −565.9, −78.3, p = 0.011). There was no significant association between CSF T-tau 1 year post-
stroke and baseline volumes.

Conclusion: T-tau measured 1 year post-stroke is associated with measures of brain atrophy. The findings indicate
that acute stroke may enhance or trigger tau-linked neurodegeneration with loss of neurons.

Trial registration: Clinicaltrials.gov NCT00506818, July 23, 2007.
Inclusion from February 2007, randomization and intervention from May 2007 and trial registration in July 2007.
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Background
Although the most serious consequence of neuronal ische-
mia is acute neuronal death, mounting evidence suggests
similarities between stroke and neurodegenerative diseases
such as Alzheimer’s disease (AD) [1–4]. Stroke considerably
increases the risk of dementia, up to 50% will develop de-
mentia post-stroke and stroke is more common in patients
with dementia [5–7]. Stroke, vascular dementia and AD
have many shared risk factors, and there seems to be an

interaction between ischemia, amyloid deposition and neu-
roinflammation, resulting in overlapping processes [8].
Established biomarkers of AD are cerebrospinal fluid

(CSF) amyloid-β peptide (Aβ)-42 from amyloid plaques,
CSF total microtubule-associated protein tau (T-tau) and
phosphorylated microtubule-associated protein tau (P-tau).
CSF Aβ-42 is the central biomarker of amyloid plaque for-
mation, whereas T-tau and P-tau reflect neurofibrillary
pathology. Whereas P-tau is considered more specific for
AD, CSF T-tau is considered a more unspecific marker of
axonal degeneration [9]. CSF T-tau is significantly increased
the first days after ischemic stroke, peaking after 1–3 weeks
with an apparent normalization after 3–5 months, and the
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magnitude of the increase correlates with infarct volume
[10]. Atrophy (as measured by structural MRI) and T-tau
are generally considered to indicate neurofibrillary degener-
ation, whereas decreased concentrations of CSF Aβ-42 are
considered to represent amyloid deposition [11]. Hippo-
campal and cortical atrophy is well-described in both AD
and pure cerebrovascular disease [12–14].
Most conditions predisposing for stroke, such as

hypertension, diabetes, smoking and carotid stenosis,
alter cerebral blood vessels and can cause inflammation,
and the stroke itself further enhances this process [15].
In acute stroke the infarct core suffers acute cell death,
whereas the penumbra is tissue at risk if the reperfusion
remains insufficient. Cerebral hypoxia is associated with
lower CSF levels of amyloid precursor protein (APP)
metabolites [16]. Hypoxia is also shown to upregulate β-
secretase activity associated with amyloid deposition and
neuritic plaque formation [17]. Ischemia further affects
the cytoskeleton by disrupting the normal function of
microtubule associated proteins, notably tau phosphoryl-
ation, the normal regulating mechanism of microtubule
associated protein tau [18–22]. Excitotoxicity is a com-
mon mechanism in many CNS diseases, referring to glu-
tamate receptor overstimulation, secondarily disrupting
intracellular calcium homeostasis. Excitotoxicity is cen-
tral to the pathophysiologic mechanism of both ischemia
and various neurodegenerative disorders [23]. Changes
in the phosphorylation of tau would be only one of sev-
eral effects of the calcium homeostasis disturbance [20].
Not only chronic ischemia, but also transient ischemic

incidents with subsequent reperfusion are likely to lead
to delayed cell damage. Experimental animal studies
demonstrate immediate [24] and long-term disturbances
in tau phosphorylation, causing axonal changes and
neurofibrillary tangles (but not detectable amyloid pla-
ques) in the ischemic areas [25]. Neurofibrillary tangles
are first seen in the parahippocampal areas before
appearing in the hippocampus proper [26]. Indeed, one
recent study in young subjects found that first-ever
stroke was associated with remote long-term hippocam-
pal injury [27]. Biomarkers for post-stroke cognitive im-
pairment overlap with biomarkers for neurodegeneration
and ideally reflect disease-related pathological processes.
It has been difficult to determine the impact of stroke

on cognitive decline, and the pathophysiological mecha-
nisms involved in cognitive decline post-stroke remain
incompletely understood. Because multiple lines of evi-
dence indicate that acute and chronic ischemia may dis-
rupt tau function and lead to neurodegeneration with
ensuing cerebral atrophy, we hypothesized an association
between CSF T-tau 1 year post-stroke and measures of
brain atrophy. Thus, we aimed to explore the association
between T-tau and brain atrophy, measured as ventricu-
lar volume and total brain volume, 1 year post-stroke.

Methods
Participants
We included all patients consecutively with first-ever
ischemic stroke or transitory ischemic attack (TIA) without
pre-existing cognitive decline in a randomized controlled
trial (RCT) with change in cognition as the primary end-
point [28]. The study was registered in Clinicaltrials.gov
(NCT00506818). The RCT was negative and the present
study is analysed as a cohort. All patients were admitted to
the stroke unit at Bærum Hospital, Vestre Viken Hospital
Trust, and recruited between 2007 and 2008. Follow-up ex-
aminations were performed through 2009. Exclusion criteria
were intracerebral haemorrhages, mild cognitive impair-
ment or dementia diagnosed before the stroke onset, a his-
tory of cognitive decline as indicated by a score of ≥3,7 on
the Informant Questionnaire on Cognitive Decline in the
elderly (IQ-CODE) [29], previous stroke or TIA. Patients
not fluent in Norwegian and patients with a remaining life
expectancy of less than 1 year were not included. Details
can be found in a previous published paper [28].

Assessment
Baseline
Baseline examination included assessment of vascular
risk factors (hypertension, hyperlipidemia, diabetes, body
mass index, smoking and atrial fibrillation). Neurological
impairment was assessed using the National Institutes of
Health Stroke Scale (NIHSS) [30]. Activities of daily liv-
ing were assessed by the Barthel ADL index [31], and
global functioning was evaluated by the modified Rankin
Scale [31], both at hospital admission and discharge.
Cognitive function was measured between day 3 and 7
after admittance with the Mini Mental State Examin-
ation (MMSE) [32], Clock Drawing Test [33], Trail Mak-
ing Test (TMT) A and B [34] and the immediate and
delayed recall parts of the 10 word memory test (mini-
mum score zero and maximum 40) [35]. Stroke classifi-
cation was made according to The Trial of Org 10,172
in Acute Stroke Treatment (TOAST) [36] and the Ox-
fordshire Community Stroke Project classification
(OCSP) [37] by a stroke physician. CT and/or MRI of
the brain were performed in the acute phase, but not
lumbar puncture.

12-month follow-up
At follow-up after 12 months, the patients underwent
MRI of the brain. MRI scans were acquired on a Philips
Intera system (Philips Medical Systems, Best, The
Netherlands). At 1.5 T, an axial 2D spin echo sequence
with the following sequence parameters was acquired:
repetition time/echo time/inversion time (TI)/flip angle
(FA) = 540 ms/14 ms/ms/90°, matrix =256 × 256, 22
slices, thickness = 5 mm, spaced at 6 mm. The MRI was
performed according to the standards of the Radiological
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Department. There was a change of protocol during the
inclusion period. Only subjects scanned with the protocol
described below were included in the present study.
Ventricular CSF volume and total brain volume were es-

timated and normalized for subject head size with SIE-
NAX [38, 39], part of FSL [40]. Firstly, SIENAX extracts
brain and skull images from whole-head input data [41].
The brain-extracted image is further affine-registered to
MNI152 space [42, 43], using the whole-head image to de-
termine the registration scaling. This is primarily in order
to obtain the volumetric scaling factor, to be used for head
size normalization. Then, tissue-type segmentation with
partial volume estimation is performed [44], calculating
total volume of brain tissue. Separate estimates of tissue
types are available; herein only ventricular CSF volume
was used in addition to total brain volume.
Samples of CSF were collected by lumbar puncture

through the L3-4 or L4-5 intervertebral space, in accord-
ance with a standardized procedure, 12 months post-stroke.
The lumbar puncture was performed at a standardized time
of day (around noon), collected in polypropylene tubes and
immediately transported to the local laboratory.

Statistics
The associations between T-tau as explanatory variable and
ventricular and total brain volume as outcome variables
were estimated with linear regression analyses. As second-
ary analyses, we examined the relationships between CSF
Aβ-42 and the volume variables. First, unadjusted analyses
were performed. In the subsequent adjusted analyses, we
included age and gender to the models, and, finally, Apoli-
poprotein E genotype (ApoEε4). We made plots for the
prediction of the volume variables based on the linear re-
gression models adjusted for age. The impact of individual
observations was investigated by calculating the Cook’s D
measure. A Cook’s D value above 1.0 may indicate an ob-
servation with great influence. In our models, the max-
imum value was 0.62, and we concluded that no
observation had an undue influence on the results. The
statistical analyses were performed with Stata 14 (StataCorp
LP, College Station, TX).

Results
In all, 210 patients were included, and 182 patients com-
pleted the 1-year follow-up. Of these, 44 underwent
lumbar puncture at follow-up and 31 underwent MRI
with identical scan parameters (Figure 1). Mean age of
the 31 included patients was 70.2 years (SD 11.7). Base-
line characteristics are listed in Table 1.
MRI volume variables on ventricular volume 1 year

post-stroke were significantly associated with age (beta
0.39, 95% CI 87.1,1718, p = 0.031), but not with gender
(beta −0.61, 95% CI −23,871, 17,294, p = 0.75). MRI vol-
ume variables on global brain volume was not significantly

associated with age (beta −0.31, 95% CI −8524, 665.1,
p = 0,091), or gender (beta −0.04, 95% CI −123,912,
101,187, p = 0.84). In the multiple regression model, there
was a significant correlation between T-tau and both ven-
tricular volume (beta 0.44, 95% CI 376.3, 394.9, p = 0.021)
and global brain volume (beta −0.50, 95% CI −565.9,
−78.3, p = 0.011) 1 year post-stroke. Predictive margins of
T-tau on volume variables are shown in Figs. 2 and 3. The
analyses that included ApoEε4 in the regression models
did not change the results (data not shown).
Twenty eight (63%) of the patients underwent MRI dur-

ing the acute phase. There was no significant association
with MRI volume at baseline and T-tau 1 year later. In
addition, there were no correlations between CSF T-tau
(controlling for age) and measures of cognition (all at
follow-up).
For the secondary analysis on CSF Aβ-42 and ven-

tricular or global volume, no significant associations
were found ((beta −0.17, 95% CI −47.2, 17.3, p = 0.35)
and (beta −0.01, 95% CI −190.9, 178.1, p = 0.95)).

Discussion
One year after first-ever stroke, we found a significant asso-
ciation between T-tau and measures of brain atrophy like
ventricular and total brain volume. There was no significant
association between CSF T-tau (1 year post-stroke) and
baseline ventricular and brain volume. The present results
suggest that acute stroke may trigger or enhance neurode-
generation with accompanying increased T-tau.
The microvasculature in neurodegeneration and

cerebrovascular disease present with several distinct
pathological changes. Endothelial cells and surrounding

Fig. 1 Flow diagram
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pericytes degenerate and become atrophic, the capillary
basement membrane thicken and protrude into the capil-
lary lumen and result in gradually decreased cerebral
blood flow [4, 45]. The present results may be construed
to represent the stroke triggering mechanisms leading to
atrophy. Alternatively, there may be an interaction be-
tween the acute event and the preexisting vulnerability, or
even a combination. The reperfusion injury may be en-
hanced by microvascular changes, leading to a further de-
crease in oxygen availability.
Twenty subjects were scanned with the same protocol at

baseline and follow-up. Numerically, the MRI volume vari-
ables were smaller at follow-up, but there was no significant
change from baseline to follow-up. Not controlling for age,
there were highly significant correlations between volume
change and CSF T-tau at follow-up. When controlling for
age, however, there was a significant correlation between
increase in ventricular volume and CSF T-tau, but no sig-
nificant correlation between whole brain volumes and CSF
T-tau. The limited number of subjects scanned at both

Table 1 Baseline characteristics of the 31 patients

Demographics Baseline Follow-up

Male, n 19 (61%)

Mean age + −SD, years 70.2 (SD 11.7)

< 9 years of education 5 (16%)

Stroke subtype

Cerebral infarction 29 (94%)

TIA 2 (6%)

Risk factors, n

Hypertension 20 (65%)

Hyperlipideamia 23 (74%)

Diabetes 6 (19%)

Current smoking 7 (23%)

Atrial fibrillation 3 (10%)

BMI 18 (58%)

TOAST classification, n

Large-vessel disease 2 (7%)

Cardio-embolic disease 2 (6%)

Small vessel disease 17 (55%)

Stroke of undetermined
aetiology

10 (32%)

OCSP classification, n

TACI 0

PACI 13 (42%)

LACI 15 (48%)

POCI 3 (10%)

Assessments

NIHSS, day 1, mean (IQR) 3.06 (1.0-4.0) 0.58 (0.0-1.0)

BI, mean(IQR) 18.5 (19.5-20.0) 19.48 (20.0-20.0)

mRS, mean (IQR) 1.35 (0.0-3.0) 1.06 (1.0-1.0)

Total TAU, mean (IQR) 363 (227–382)

Apoɛ4 9 (29%)

TMT A (seconds) (SD) 86.0 (±97.0) 61.6 (±48.4)

MMSE (points) (SD) 26.0 (±3.8) 26.7 (±3.9)

10 word test (words) 20.1 (±6.8) 24.5 (±6.1)

Ventricular volume
(mm^3)(SD)

60,796 (±17,339) 60,334 (±25,118)

Global brain
volume(mm^3) (SD)

1,404,660 (±63,160) 1,368,194 (±142,856)

TIA = Transient Ischemic Attack; Hyperlipidemia = total cholesterol >5 mmol/l or
LDL-cholesterol >3 mmol/l; LDL = Low Density Lipoprotein; BMI = body mass
index; TOAST = The Trial of Org 10,172 in Acute Stroke Treatment classification;
OCSP = Oxfordshire Community Stroke Project classification; TACI = Total Anterior
Circulation Infarction; PACI = Partial Anterior Circulation Infarction; LACI = Lacunar
Circulation Infarction; POCI = Posterior Circulation Infarction; NIHSS = National
Institute of Health Stroke Scale; IQR = Interquartile range; BI = Barthel Activities of
Daily Living Index; mRs = modified Rankin scale; Apoɛ4 = apo lipoprotein E allel
4; TMT A = trail making test A; SD = standard deviation); MMSE = mini metal
test examination

Fig. 2 The relationship between T-tau and ventricular volume.
Predictive margins with 95%

Fig. 3 The relationship between T-tau and global volume. Predictive
margins with 95%
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baseline and follow-up preclude conclusions based on these
observations, but putatively first-ever stroke may initiate or
enhance an ongoing neurodegenerative process.
Biomarkers of neurodegeneration (e.g. increased CSF

T-tau and cerebral atrophy) are expected to appear be-
fore functional deficits [11], and the baseline cognitive
measurements tested here are crude and with a signifi-
cant expected variability. The baseline cognitive testing
was performed during acute illness and hospitalization,
likely to affect these results. The cognitive variables
showed a general improvement from baseline to follow-
up. Accordingly, we did not examine the relationship be-
tween change in cognitive variables from baseline to
1 year follow-up and CSF T-tau or atrophy.
Our study has several limitations. Small sample size,

younger population and milder strokes compared with
the general stroke patients are some. In addition, it is
difficult to motivate patients in a stable phase after the
stroke to undergo lumbar puncture. Patients with atrial
fibrillation on oral anticoagulation were excluded due to
safety concerns. Therefore, patient with possible more
severe stroke with cardio embolic etiology and higher
risk for cognitive impairment are not included in the
analyses. The MRI protocol was changed during the
study, resulting in further exclusions.

Conclusions
In order to start interventions that may improve cognition
or prevent progression at an early stage, we need more
knowledge regarding mechanisms involved in post-stroke
brain changes. The results from this study raise the hy-
pothesis that tau-linked neurodegeneration may be of cru-
cial pathophysiological importance after stroke. This study
also implicates that MRI with measurements of atrophy
may be of importance in post-stroke follow-ups, regarding
sustained neurodegeneration.
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