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Abstract

Background: Inherited cystic kidney disease is a spectrum of disorders in which clusters of renal cysts develop as
the result of genetic mutation. The exact methods and pipelines for defining genetic mutations of inherited cystic
kidney disease are not clear at this point. This 3-year, prospective, multicenter, cohort study was designed to set up
a cohort of Korean patients with inherited cystic kidney disease, establish a customized genetic analysis pipeline for
each disease subtype, and identify modifying genes associated with the severity of the disease phenotype.

Methods/design: From May 2020 to May 2022, we aim to recruit 800 patients and their family members to identify
pathogenic mutations. Patients with more than 3 renal cysts in both kidneys are eligible to be enrolled. Cases of
simple renal cysts and acquired cystic kidney disease that involve cyst formation as the result of renal failure will be
excluded from this study. Demographic, laboratory, and imaging data as well as family pedigree will be collected at
baseline. Renal function and changes in total kidney volume will be monitored during the follow-up period. Genetic
identification of each case of inherited cystic kidney disease will be performed using a targeted gene panel of
cystogenesis-related genes, whole exome sequencing (WES) and/or family segregation studies. Genotype-phenotype
correlation analysis will be performed to elucidate the genetic effect on the severity of the disease phenotype.

Discussion: This is the first nationwide cohort study on patients with inherited cystic kidney disease in Korea. We will
build a multicenter cohort to describe the clinical characteristics of Korean patients with inherited cystic kidney disease,
elucidate the genotype of each disease, and demonstrate the genetic effects on the severity of the disease phenotype.

Trial registration: This cohort study was retrospectively registered at the Clinical Research Information Service
(KCT0005580) operated by the Korean Center for Disease Control and Prevention on November 5th, 2020.

Keywords: Cohort study, Cystic kidney disease, High-throughput nucleotide sequencing, Genotype, Phenotype,
Genetic association studies, Glomerular filtration rate
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Background
Inherited cystic kidney disease (iCKD) is a hereditary
disorder in which clusters of cysts develop within the
kidneys [1, 2]. Approximately 100 genes involved in
renal cystogenesis are known to result in dysfunction of
a hair-like organelle called the cilium [3]. Therefore,
iCKD is otherwise called ciliopathy [4, 5]. iCKD encom-
passes autosomal-dominant polycystic kidney disease
(ADPKD), tuberous sclerosis complex [6], von Hippel-
Lindau disease, autosomal-dominant tubulointerstitial
kidney disease (ADTKD) [7], and pediatric diseases such
as autosomal recessive polycystic kidney disease (ARPK
D) [8] and nephronophthisis (NPHP) [9]. There are still
many other disorders in which causative mutations have
not been found by molecular diagnosis.
Although iCKDs are caused by genetic derangement,

most are diagnosed by clinical impressions other than
molecular diagnosis. However, clinical diagnosis is not
always easy because iCKDs often share common clinical
manifestations. Therefore, genetic testing is important to
establish a correct diagnosis and treatment. A recent re-
port by Bullich et al. demonstrated that they could con-
firm diagnosis in 32% of cases with unspecified clinical
diagnosis by establishing a kidney gene panel [10]. They
also showed that genetic testing changed the clinical
diagnosis in 2% of cases. Therefore, genetic testing
should be the most important venue to confirm diagno-
sis and establish precision medicine.
Moreover, the exact methods and pipelines to find

genetic mutations in iCKDs are not clear at this point. It
may be reasonable to perform targeted exome sequen-
cing or Sanger sequencing of PKD1 and PKD2 to define
pathogenic mutations in well-known clinical phenotypes
such as ADPKD. However, our previous study demon-
strated that approximately 20% of patients with typical
ADPKD did not reveal causative germline mutations by
targeted exome sequencing of PKD1 and PKD2 [11]. In
addition, extrarenal manifestations often do not follow
renal manifestations. For example, the severity of poly-
cystic liver accompanying ADPKD does not always cor-
relate with the severity of renal disease [12]. Therefore,
modifying genetic effects or gene dosage effects may play
a role in determining the severity of renal and extrarenal
phenotypes in ADPKD [13]. In addition, apart from typ-
ical ADPKD, there are patients with atypical polycystic
kidney disease who either do not show concordant fea-
tures within the family, do not have typical imaging fea-
tures of ADPKD, or have discordant disease severity
between renal volume and renal function [14]. Muta-
tions in GANAB and DNAJB11 are known to cause a
mild phenotype of polycystic kidney and liver disease
[15, 16]. However, the exact prevalence and prognosis of
atypical polycystic kidney disease is unknown at this
point. Last, iCKDs in the pediatric population are

typically rare diseases, and their molecular diagnoses are
even more difficult. Therefore, building a cohort of
iCKDs is necessary to reveal their genetic characteristics.
Therefore, we designed a 3-year prospective, multicen-

ter, cohort study to establish a cohort of Korean iCKD
patients, establish a customized genetic analysis pipeline
that can genotype each iCKD and identify the modifying
genes associated with the severity of the disease
phenotype.

Methods/design
Study design and settings
This is a 3-year prospective, multicenter, cohort study to
elucidate genotype-phenotype associations among iCKD
patients. A total of 11 medical centers from 9 tertiary
hospitals in Korea will participate in this study. Seven
centers will enroll and collect data from adult patients,
and 4 centers will enroll pediatric patients. We estab-
lished a research team, statistical analysis team, database
team, sequencing and biobanking team, and genetic ana-
lysis team to perform this large nationwide project. The
research team is composed of 26 clinicians and 15 clin-
ical research coordinators from 11 medical centers. The
role of the research team is to recruit eligible patients
and collect clinical data. The statistical analysis team
supports the calculation of sample size, distribution of
enrollment according to iCKD subclasses, and statistical
analysis. The database team collects clinical and genetic
data from each patient and builds an electronic case re-
port form to store and manage the dataset. The database
team also performs imaging analysis quantitatively and
qualitatively from nonenhanced computed tomography
(CT) or sonography. The team for sequencing and bio-
banking is outsourced to Macrogen, Inc. to collect whole
blood from each medical center and perform initial gen-
etic analysis to produce sequencing data. The residual
DNA samples will be prepared for biobanking after
quantity and quality checks. Finally, the genetic analysis
team is composed of bioinformaticians to interpret the
results of sequencing data and to determine the patho-
genicity of each variant.

Study participants
A total of 800 participants are planned to be enrolled
from May 19, 2019 to May 18, 2022. Patients with ≥3
renal cysts in both kidneys are eligible to be enrolled.
Those who are not able to give informed consent or are
pregnant will be excluded from enrollment. Cases of
simple renal cysts and acquired cystic kidney disease that
involve cyst formation as the result of renal failure will
also be excluded from this study. However, patients with
end-stage kidney disease who are receiving renal replace-
ment therapy due to iCKD can be enrolled.
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The patients will be classified into typical ADPKD,
atypical polycystic kidney disease, and other iCKDs after
enrollment. Typical ADPKD is defined according to Pei-
Ravine criteria as previously described [17]. Atypical
polycystic kidney disease is defined either when the case
is typical ADPKD but the patient does not have a family
history of polycystic kidney disease or when the imaging
phenotype is atypical as follows: unilateral, asymmetric,
segmental, lopsided, bilateral or unilateral atrophic kid-
neys [18]. Other iCKDs are rare disease entities in chil-
dren and adolescents. The other iCKDs include but are
not limited to the tuberous sclerosis complex, von
Hippel-Lindau disease, ADTKD, ARPKD, HNF-1β-re-
lated disease and NPHP. Among the 800 participants,
approximately 650 patients with typical ADPKD, 90 pa-
tients with atypical polycystic kidney disease, and 60 pa-
tients with other iCKDs will be enrolled.
The parents, siblings, or children of the enrolled pa-

tients are recommended to participate in the study by
giving whole blood samples for a segregation study. We
will collect family samples when genetic diagnosis is
undetermined, genotype-phenotype severity is not
matched, and when the extrarenal manifestation is se-
vere. We will also collect family samples from the fam-
ilies with more than 3 affected individuals to define gene
penetrance and modify gene effects.

Data collection at enrollment
Demographic data, including age, sex, height and weight,
will be collected. The age of diagnosis of iCKD and asso-
ciated symptoms at initial diagnosis will be collected.
Medical history of diabetes, hypertension, cardiovascular
disease, and stroke will be investigated. Family history of
iCKD, diabetes, hypertension, chronic kidney disease,
dialysis, and death will be evaluated. In particular, a gen-
etic tree will be drawn upon enrollment including 3
generations (affected and unaffected individuals). The
presence of renal and extrarenal complications and their
types will be recorded. Medication data, including on an-
tihypertensive drugs and glucose-lowering therapy, will
be collected. Blood pressure will be checked upon en-
rollment in the office. All patients will be asked to fill
out the following questionnaires upon enrollment: 5
Level version of European Quality of Life 5 Dimensions
questionnaire (EQ-5D-5L, adult subjects) and Pediatric
Quality of Life Inventory TM (PedsQL 4.0 Generic Core
Scales, pediatric subjects) to assess the quality of life of
the affected patients, Patient Health Questionnaire-9
(PHQ-9) to evaluate depressive symptoms, and the
modified Subjective Global Assessment (mSGA) to as-
sess the nutritional status of the subjects.
Laboratory assessment included complete blood cell

counts (white blood cells, hemoglobin, platelets), blood
urea nitrogen and serum creatinine, total calcium and

phosphorus, serum sodium, potassium, chloride, total
carbon dioxide, total cholesterol, serum albumin, uric
acid, highly sensitive C-reactive protein, urinalysis with
microscopy, spot urine protein to creatinine ratio, ran-
dom urine uric acid, calcium, phosphorus, sodium, po-
tassium, chloride, and osmolality. Genetic samples will
be collected once during the study period for genetic
analysis. Approximately 18 mL of whole blood will be
collected in 3 EDTA bottles for each adult participant, 6
mL for each family member and 4–5 mL for each child
participant. The collected blood samples will be refriger-
ated at 4 °C until delivery to the sequencing company.
The sequencing company will extract DNA from the
whole blood and aliquots in several tubes to store at −
70 °C before sequencing or biobanking.
Kidney imaging will be performed at enrollment. If the

patients have already undergone imaging studies within
1 year, the patients can undergo other imaging studies
within a 2-year interval. Adult patients will undergo a
nonenhanced kidney CT, and children and adolescents
will undergo kidney sonography.

Data collection, monitoring, and follow up
The total study scheme and annual assessment plan are
depicted in Table 1. Annual laboratory assessment will
be performed after enrollment for 2 years. The labora-
tory assessment includes the complete blood cell counts,
blood urea nitrogen and serum creatinine, serum cal-
cium and phosphorus, serum uric acid, urinalysis with
microscopy, and spot urine protein to creatinine ratio.
Kidney imaging will be performed every 2 years to calcu-
late the rate of total kidney volume growth.
Electronic case report forms will be developed, includ-

ing demographic sheets, laboratory assessments, volume-
try, and genetic analysis information. The electronic case
report form will be opened to the participating re-
searchers and clinical research coordinators to fill out
and modify patient information. A family tree will be
drawn and stored in electronic case report form by scan-
ning the sheet.

Evaluation of renal function
Renal function will be evaluated upon enrollment and
every year thereafter. For the adult patients, renal func-
tion will be measured using the estimated glomerular fil-
tration rate calculated by the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) equation [19]. If
the patients are in end-stage renal disease or receive
renal replacement therapy upon enrollment, renal func-
tion will be evaluated retrospectively to calculate the
renal function decline rate. For children, renal function
will be measured using the estimated glomerular filtra-
tion rate calculated by the Schwartz equation [20].
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Imaging analysis
The patients will be classified into typical and atypical
cystic kidney disease. Nonenhanced kidney CT will be
performed in adult patients. The patients will be encour-
aged to take water before the CT exams to accurately
distinguish the liver and stomach anatomically. All
image files from the nonenhanced CT will be retrieved
to a workstation and inspected to confirm complete
coverage of both kidneys and liver. Images will be recon-
structed into 5mm sections in axial images and 3mm
sections in both coronal and sagittal sections before vol-
ume measurements. The total kidney volume will be
measured by a professionally educated radiologist. Total
kidney volume will be measured by 2 methods: the
stereologic method by using semiautomatic volumetry

software (ImageJ version 1.5a, https://imagej.nih.gov/ij/)
[21] and the manual method by using the Mayo ellipsoid
method [18, 22]. Expanded imaging classification will be
applied to typical and atypical polycystic kidney cases
[23]. The sonographic images and their interpretations
will be collected from pediatric patients. The number
and distribution of cysts and their characteristics will be
reported in our case report form. The radiologist will
also measure the muscle area to assess the nutritional
status as previously reported [24].

Genetic pipeline
We will use a stepwise approach to confirm genetic
diagnosis. First, we will use a targeted gene panel for the
screening method. We designed a targeted gene panel
(Twist Bioscience, San Francisco, CA, USA) encompass-
ing 0.5 megabases, including 89 genes related to cysto-
genesis or ciliopathy as well as genes that are associated
with extrarenal phenotypes such as liver cysts (Table 2).
Twist technology has provided high-quality target en-
richment probes to cover target genes uniformly and ef-
ficiently [25]. Targeted exon capture will be performed
on genomic DNA samples using a Twist custom panel
kit followed by 101 base paired-end sequencing on an
Illumina NovaSeq6000 platform (Illumina, San Diego,
CA, USA). Sequence reads will be aligned to the human
reference genome (GRCh37/hg19) using BWA-MEM
and further processed to call single nucleotide variants
and indels following the GATK Best Practices workflow
[26]. All variants covered by independent sequence reads
with a depth of 8x or greater will be annotated with
ANNOVAR. All variants will be visualized in silico to
eliminate false positives. Additional genetic testing will
be performed if the pathogenic mutations were not
found using a targeted gene panel or if the patients have
severe renal or extrarenal phenotypes compared to other
family members. If the patients are clinically classified as
having typical ADPKD but pathogenic mutations are not
found using a targeted gene panel, the patients will
undergo targeted resequencing with long-range poly-
merase chain reaction (PCR) combined with multiplex
ligation-dependent probe amplification (MLPA) to de-
tect large deletions. WES will take place in the following
cases: 1) if the patients are clinically classified as typical
ADPKD but no pathogenic mutations are found using a
previous method, 2) if the patients are clinically classi-
fied as atypical polycystic kidney disease or other iCKD
but pathogenic mutations are not found using a targeted
gene panel, 3) if the patients present with a severe
phenotype and variants cannot explain the severity, or 4)
if the patients show extremely different phenotypes com-
pared to other family members. Familial segregation
analysis will also take place to define the pathogenicity

Table 1 Study schedule

Parameter Screen B0 1y 2y

Informed consent v

Demographic information v

Medical history v

Eligibility confirmation v

Recent events v v

Medications v v v

Quality of life questionnaires (EQ-5D-5L (adult),
PedsQL 4.0 Generic Core Scales (pediatric))

v

Depression assessment (PHQ-9) v

Nutritional assessment (mSGA) v

Systolic and diastolic blood pressure v v v

Complete blood cell count (white blood cells,
hemoglobin, platelet count, hematocrit,
reticulocyte count, neutrophil count)

v v v

Serum calcium/phosphorus v v v

Serum uric acid v v v

Serum protein/albumin v v v

Serum blood urea nitrogen/creatinine/estimated
glomerular filtration rate

v v v

Plasma sodium/potassium/chloride/total
carbon dioxide

v v v

Serum total cholesterol v

Highly sensitive C-reactive protein v

Urinalysis with microscopy v v v

Spot urine protein/creatinine ratio v v v

Spot urine uric acid v

Spot urine sodium/potassium/chloride v

Spot urine calcium/phosphorus v

Spot urine osmolality v

Kidney CT (adult) or abdomen sonography
(pediatric)

v

Abbreviations: CT Computed tomography, PedsQL Pediatric Quality of Life
inventory, PHQ-9 Patient Health Questionnaire-9, mSGA Modified Subjective
Global Assessment
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Table 2 Coverage of cystogenesis-related targeted gene panel
Target gene Previously reported disease Coverage

AHI1 Joubert syndrome 100%

ALG8 Polycystic liver disease 88.61%

ARL13B Joubert syndrome 98.72%

ATF6B ER candidate gene (polycystic liver) 100%

ATXN3 ER candidate gene (polycystic liver) 97.97%

AVP Polycystic kidney disease 100%

AVPR2 Polycystic kidney disease 100%

C5ORF42 Joubert syndrome 100%

CAPN2 ER candidate gene (polycystic liver) 99.1%

CC2D2A Joubert syndrome 98.13%

CEP120 Joubert syndrome 97.02%

CEP164 NPHP 100%

CEP290 NPHP/MKS 100%

COL4A1 Hereditary angiopathy with nephropathy,
aneurysms, and muscle cramps

100%

COL4A3 Alport syndrome 99.29%

COL4A4 Alport syndrome 100%

COL4A5 Alport syndrome 100%

CSPP1 Joubert syndrome 97.3%

CYS1 Cilia-associated cystic genes 100%

DNAJB11 Atypical polycystic kidney disease 100%

DYNC2H1 Cilia-associated cystic genes 100%

EDEM3 ER candidate gene (polycystic liver) 100%

EYA1 Branchiootorenal dysplasia syndrome 100%

FAN1 Karyomegalic interstitial nephritis 100%

GANAB ADPKD 100%

GLIS2 NPHP 100%

GLIS3 Neonatal diabetes, hypothyroidism, and
cystic kidney disease

100%

HNF1B Renal cysts and diabetes syndrome 100%

HSP90AA1 ER candidate gene (polycystic liver) 100%

HSPA6 ER candidate gene (polycystic liver) 100%

HYOU1 ER candidate gene (polycystic liver) 100%

IFT140 Cilia-associated cystic genes 100%

IFT172 Cilia-associated cystic genes 100%

IFT80 Cilia-associated cystic genes 99.58%

IFT88 Cilia-associated cystic genes, phenotype
resembling ADPKD

98.7%

INPP5E Joubert syndrome 100%

INVS NPHP 100%

IQCB1 NPHP 100%

KIAA0586 Joubert syndrome 93.79%

LRP5 Polycystic liver disease 100%

MKS1 Joubert syndrome/MKS 100%

MUC1 ADTKD 100%

NEK1 Polycystic kidney disease 100%

NEK8 NPHP 100%

NGLY1 ER candidate gene (polycystic liver) 100%

NPHP3 NPHP 98.29%

Table 2 Coverage of cystogenesis-related targeted gene panel
(Continued)
Target gene Previously reported disease Coverage

NPHP4 NPHP 100%

OFD1 OFD 100%

PARK2 ER candidate gene (polycystic liver) 100%

PAX2 Optic nerve coloboma, renal hypoplasia 100%

PKD1 ADPKD 100%

PKD2 ADPKD 100%

PKHD1 ARPKD 100%

PMM2 Polycystic kidney disease with
hyperinsulinemic hypoglycemia

100%

PRKCSH Polycystic liver disease 100%

REN Familial hyperproreninemia, high blood
pressure

100%

RPGRIP1L Joubert syndrome/MKS 96.64%

SDCCAG8 NPHP 94.23%

SEC24B ER candidate gene (polycystic liver) 97.43%

SEC24C ER candidate gene (polycystic liver) 100%

SEC24D ER candidate gene (polycystic liver) 100%

SEC31A ER candidate gene (polycystic liver) 97.42%

SEC31B ER candidate gene (polycystic liver) 100%

SEC61A1 ER candidate gene (polycystic liver) 100%

SEC61A2 ER candidate gene (polycystic liver) 100%

SEC61B Polycystic liver disease 100%

SEC62 ER candidate gene (polycystic liver) 100%

SEC63 Polycystic liver disease 95.11%

TCTN2 Joubert syndrome 100%

TMEM216 Joubert syndrome 100%

TMEM67 NPHP/Joubert syndrome/MKS 94.94%

TSC1 Tuberous sclerosis complex 100%

TSC2 Tuberous sclerosis complex 100%

TTC21B NPHP 100%

TXNDC5 ER candidate gene (polycystic liver) 95.15%

UBE4B ER candidate gene (polycystic liver) 100%

UGGT1 ER candidate gene (polycystic liver) 100%

UGGT2 ER candidate gene (polycystic liver) 100%

UMOD ADTKD 100%

VHL Von Hippel–Lindau syndrome 100%

WDR19 NPHP 100%

WDR34 Cilia-associated cystic genes 100%

WDR35 Cilia-associated cystic genes 100%

WDR60 Cilia-associated cystic genes 100%

WFS1 ER candidate gene (polycystic liver) 100%

XBP1 Polycystic kidney and liver diseases 100%

Abbreviations: ADPKD Autosomal dominant polycystic kidney disease, ADTKD
Autosomal dominant tubulointerstitial kidney disease, ARPKD Autosomal
recessive polycystic kidney disease, ER Endoplasmic reticulum, mks Meckel
syndrome, NPHP Nephronophthisis, OFD Orofaciodigital syndrome
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of variants. A schematic representation of the genetic
workflow is shown in Fig. 1.

Genotype-phenotype correlation analysis
Statistical analyses will be performed using a recent ver-
sion of SPSS software (IBM Corp., Armonk, NY, USA).
A linear regression model will be performed to identify
the correlation between genotype and clinical parame-
ters, including total kidney volume and estimated glom-
erular filtration rate. The cases will be classified into 5
classes using the Mayo imaging classification before ana-
lysis. The cases will also be classified into 6 groups ac-
cording to the chronic kidney disease stages. Analysis of
covariance, the Mann-Whitney test, and the chi-square
test will be performed to compare variables between
groups. The modifier effect of multiple genes on renal
and extrarenal manifestations will also be assessed. A P
value < 0.05 will be considered statistically significant.

Discussion
This study is the first prospective, multicenter cohort
study that will evaluate the genetic profiles and their
clinical correlation among patients with iCKDs in Korea.
There are some international cohorts to define the gen-
etic characteristics of various cystic kidney diseases and
their association with phenotypes. The Network for
Early Onset Cystic Kidney Disease (NEOCYST) is a
government-funded multicenter network that collects
clinical and genetic data to understand the underlying
pathogenesis of hereditary cystic kidney disease [27].
The Consortium for Radiologic Imaging Study of Poly-
cystic kidney disease (CRISP) group prospectively col-
lected clinical, radiological, and genetic data to perform
genotype-phenotype studies [28, 29]. The Toronto Gen-
etic Epidemiology Study of Polycystic kidney disease
(TGESP) also examined the prevalence of different mu-
tation classes and their association with phenotypes [30].
In Korea, there have only been single-center driven

Fig. 1 Genetic analysis pipeline. A total of 800 probands with iCKD will be enrolled in the study. They will be classified into typical ADPKD,
atypical polycystic kidney disease, or other/pediatric iCKDs. For the first screening genetic test, a targeted gene panel of 89 cytogenesis-related
genes will be applied to the total population. All the variants will be analyzed by bioinformaticians to identify pathogenic mutations. For those
with variants of undetermined significance (VUS) or no variants found by the gene panel, different genetic approaches will be taken for each
class of iCKD. For those with typical ADPKD, targeted exome sequencing of PKD1 after long-range PCR combined with MLPA will be performed
to identify pathogenic mutations. If the mutations are not found by this method, WES will take place. For those with atypical polycystic kidney
disease or pediatric iCKD, WES will be performed to identify pathogenic mutations. For the last step of genetic diagnosis, a family segregation
study will be performed to elucidate the cause of genotype-phenotype discordance, in-family severity discordance, or discordance between renal
and extrarenal manifestations. Abbreviations: ADPKD, autosomal dominant polycystic kidney disease; iCKD, inherited cystic kidney disease; PCR,
polymerase chain reaction; MLPA, multiplex ligation-dependent probe amplification; PKD, polycystic kidney disease; VUS, variant of undetermined
significance; WES, whole exome sequencing
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cohort studies for specific diseases. However, there has
not been a nationwide multicenter iCKD network to col-
lect epidemiologic, clinical, radiological, and genetic data
prospectively. This multicenter iCKD cohort will estab-
lish a concrete database and biobank of the Korean
iCKD population from which genotype-phenotype asso-
ciation studies can be performed.
Since the clinical diagnosis of iCKD is not always easy,

genetic characterization will help to confirm the diagno-
sis of each iCKD case and to elucidate the heterogeneity
of disease manifestations within the family. Since there
are over 100 genes that can result in ciliopathies, Sanger
sequencing or targeted exome sequencing of a few genes
can be time-consuming and costly. The targeted gene
panel approach through parallel sequencing of targeted
subsets of disease-specific genes may be an effective
screening method for iCKD cases. Recent papers have
also reported the effectiveness of gene panels and subse-
quent WES approaches in confirming genetic diagnosis
[10, 31, 32]. Therefore, we designed a targeted gene
panel for the initial screening method to find causal vari-
ants. The gene panel can be designed and customized
for research purposes. We included 13 genes associated
with Joubert syndrome, 27 genes associated with poly-
cystic liver, 8 genes associated with ADPKD, 1 gene as-
sociated with ARPKD, 11 genes associated with NPHP, 3
genes associated with Alport syndrome, 2 genes associ-
ated with ADTKD, 2 genes associated with tuberous
sclerosis complex and 19 other ciliopathy-related genes
in our targeted gene panel. The composition of the gene
panel will help us not only identify causal variants for
renal cystic disease but also explain the heterogeneity of
extrarenal manifestations in the same disease.
Patient recruitment from secondary and tertiary hospi-

tals across the country will represent the Korean cohort of
iCKDs. The sample size of 800 should provide sufficient
statistical power to address the heterogeneity of typical
ADPKD, atypical polycystic kidney disease, and pediatric
iCKDs. In particular, the establishment of a pediatric
iCKD subcohort and atypical polycystic kidney disease co-
hort can be helpful in defining pathogenic mutations in
each group because they are so rare, and genetic diagnosis
of each case can be difficult without building a multicenter
cohort. The five well-organized study teams (research
team, statistical analysis team, database team, sequencing
and biobanking team, and genetic analysis team) of this
study will facilitate the study process. Various other fac-
tors, such as central electronic case report forms, re-
searcher meetings, study nurse meetings, comprehensive
study analyses and regular monitoring, will keep the qual-
ity of this study as high as possible.
Potential limitations include the observational nature

of the study and short duration of follow-up. Although
we will recruit approximately 15% of the total iCKD

population in Korea, we cannot exclude potential selec-
tion bias since most of the patients will be recruited
through secondary and tertiary hospitals.
In summary, we will establish a prospective genetic co-

hort of iCKDs in Korea with 800 pedigrees in which we
collect demographic and clinical data as well as family
tree and laboratory follow-up data. We will establish a
genetic pipeline in typical ADPKD, atypical polycystic
kidney disease, and pediatric iCKD cohorts and analyze
genotype-phenotype correlations in renal and extrarenal
manifestations. This study will help us implement preci-
sion medicine for Korean iCKD patients.
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