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Abstract

Background: Clinical genetic diagnosis of non-syndromic hearing loss (NSHL) is quite challenging. With regard to
its high heterogeneity as well as large size of some genes, it is also really difficult to detect causative mutations
using traditional approaches. One of the recent technologies called whole-exome sequencing (WES) has been thus
developed in this domain to remove the limitations of conventional methods.

Methods: This study was a report on a research study of two unrelated pedigrees with multiple affected cases of
hearing loss (HL). Accordingly, clinical evaluations and genetic analysis were performed in both families.

Results: The results of WES data analysis to uncover autosomal recessive non-syndromic hearing loss (ARNSHL) disease-
causing variants was reported in the present study. Initial analysis identified two novel variants of MYO15A i.e. c.T6442A:
p.W2148R and c.10504dupT:p.C3502Lfs*15 correspondingly which were later confirmed by Sanger validations and
segregation analyses. According to online prediction tools, both identified variants seemed to have damaging effects.

Conclusion: In this study, whole exome sequencing were used as a first approach strategy to identify the two novel
variants in MYO15A in two Iranian families with ARNSHL.
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Background
Hearing impairment is considered as an etiologically het-
erogeneous sensory deficiency with incidence 1 in 1000
newborns around the world [1]. In this regard, genetic
hearing loss (HL) has been divided into syndromic and
non-syndromic types. Considering the high rate of consan-
guineous marriages in the Middle East, autosomal recessive
non-syndromic hearing loss (ARNSHL) is reportedly more
prevalent western countries [2]. However; due to the wide
variety of pathogenic genes associated with non-
syndromic hearing loss (NSHL), including both nuclear
and mitochondrial ones, the disease includes diverse
patterns of inheritance comprised of autosomal

dominant, autosomal recessive, mitochondrial, and X-
linked recessive. Disease heterogeneity has been admit-
tedly recognized as the most important challenge in
genetic diagnosis of NSHL. Diagnostic approaches
which have been relied on conventional methods based
on genetic testing of the most common genes, often fail
to determine the exact genetic cause of the disease in
many countries including Iran [3]. In heterogeneous
populations like Iran, the distribution of mutations in
the gap junction beta-2 protein, also known as con-
nexin 26, (i.e. GJB2) gene as a major cause of ARNSHL
can be extremely diverse depending on patients’ ethnic-
ities. The prevalence rate of GJB2-related hearing loss
has been reported by 38.3% in northern Iran, but the
percentage of such variations has been found very
rarely in southern regions [3]. Various frequencies of
causative mutations, compound heterozygotes, as well
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as nuclear modifier genes can also render the molecular
diagnosis of ARNSHL as a challenge [3, 4]. Moreover, mu-
tation screening in large genes such as MYO15A (66
exons) can be impeded following the use of traditional ap-
proaches based on Sanger sequencing [5, 6]. Today, mo-
lecular genetic testing on the basis of multi-gene
screening such as whole-exome sequencing (WES) are be-
ing used instead of traditional diagnostic procedures [7].
For first time, MYO15A (DFNB3 locus) mutation was

reported from Indonesia population. Until now, there have
been many reports of mutations of MYO15A causing
ARNSHL in different countries of Asia such as Pakistan
[8], Turkey [9] and Iran [6]. In the present study, two
novel MYO15A variants identified by WES from two Iran-
ian families with ARNSHL is reported.

Methods
Subjects and clinical evaluations
The study was approved by the Ethics Committee of Shah-
rekord University of Medical Sciences (IR.SKUMS.-
REC.1397.008), Iran. Two Iranian families from Hamedan
Province with hearing impairments, without any other add-
itional symptoms were thus studied. Informed written con-
sent was taken from both families. The proband from each
family was further subjected to clinical evaluations of the
inner ear accompanied by pure-tone audiometry (PTA).

Molecular analysis
WES was used to detect the deafness associated variants
in the DNA sample in probands. Genomic deoxyribo-
nucleic acid (DNA) was extracted from whole peripheral
blood of each study subject utilizing DNA Extraction Kit
DNP (Sinacolon, Iran) according to the manufacturer’s
instructions. Purity and concentration of DNA samples
were further measured via Thermo Scientific NanoDrop
2000c Spectrophotometer.
DNA samples from each pedigree’s proband (Fig. 1a,

V-4 in family 1; Fig. 1c, II-3 in family 2) were then sub-
jected to WES at Macrogen Online Sequencing Order
System (Seoul, South Korea) on Genome Analyzer/
HiSeq 2000 (Illumina, San Diego, CA, USA, 151-bp
paired-end reads). It should be noted that the library
had been prepared through SureSelect XT Library Prep
Kit (Agilent Technologies, CA, USA). Data analysis was
correspondingly performed using an in-house developed
pipeline, adopted from Genome Analysis Tool Kit v3.6
and ANNOVAR software [10]. Homozygous missense,
start codon change, splice site, nonsense, stop loss, and
indel variants with minor allele frequency < 1% were fur-
ther filtered in dbSNP (version 138), 1000 Genomes Pro-
ject, Exome Aggregation Consortium (ExAC), and
NHLBI GO Exome Sequencing Project (ESP). Based on
autosomal recessive inheritance, the homozygosity

region of samples was determined using homozygosity
mapping algorithms.
In order to prioritize the candidate functional variants,

several online prediction software including Mutation-
Taster2, FATHMM, PANTHER, SIFT, PROVEAN,
MetaLR, PolyPhen-2, CADD, and ConSurf were also
used to evaluate the pathogenic effects of the variants
with a frequency less than 0.01. After observing the
autosomal recessive inheritance pattern in both pedi-
grees, the homozygous variants were then prioritized.
Next, the variants were investigated in the Human Gene
Mutation Database, hereditaryhearingloss home page
and the related literature to survey their association with
a phenotype and novelty of the variants.
Besides, candidate variant segregation from exome data was

evaluated through polymerase chain reaction (PCR)-based
Sanger sequencing. Therefore, the following primers were syn-
thesized: 5 -GAACTACATCGTGCAGAAGG-3 and 5 -
CCTATCCAGTCCCACTCACT-3 for human MYO15A c.
T6442A variant and 5 -CCACCATTCGGCCTTCCA-3
and 5 -CTGCCTCCTCTTAGTGTCCTC-3 for human
MYO15A c.10504dupT variant.

Results
Clinical and molecular findings
Family1
The first family pedigree is displayed in Fig. 1a. Accord-
ingly, four members of the pedigree including two af-
fected and two unaffected individuals who consented to
be included in this study are indicated. In this family,
the proband (V: 4) was a 21-year-old woman with con-
genital HL. No additional abnormal phenotypic features
including visual impairments or any limb and facial mal-
formations were observed in the proband. The parents
were consanguineous and both showed normal hearing.
According to the audiogram, the proband is suffering
from congenital profound deafness (Fig. 1b).

Family2
A three-generation pedigree, depicted in Fig. 1c, was pre-
sented as the second family with ten members, six males
and fourteen females, suffering from ARNSHL. The pro-
band was a 25-year-old male individual, born as the sec-
ond child of non-sanguineous healthy parents, who had
been diagnosed for congenital HL when he was 1 year old.
At the age of 5, he had gone through bilateral cochlear im-
plant surgery based on physical examinations and audiom-
etry testing. Audiogram analysis also confirmed HL to be
profound in the proband (II: 3) (Fig. 1d).
Considering the all limitations in genetic diagnosis of

ARNSHL, it was decided to perform WES as a first ap-
proach on proband’s genome DNA. The total number of
bases, reads, GC (%), and Q30 (%) are calculated for the
subjected sample. 70,760,838 reads were produced, and
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total read bases were 10.7G bp. The GC content (%) and
Q30 were 51.87 and 95.69% respectively. Following the fil-
tering step depicted in Fig. 2, two novel homozygous vari-
ants in MYO15A i.e. c.T6442A:p.W2148R and c.10504
dupT:p.C3502Lfs*15 were prioritized in family I and II,

respectively. Given that the proband of family I was the off-
spring of consanguineous parents, WES dataset revealed
that MYO15A (c.T6442A) variants had resided in the large
homozygous regions on chromosome 17 (Fig. 3). All in
silico programs also predicted damaging effects of

Fig. 1 Pedigrees and the proband audiograms, as well as sequencing chromatograms. a Pedigree of family 1 having autosomal recessive form of
NSHL disease is drawn. The proband (V: 4), for whom whole exome Sequencing has been carried out is indicated by arrow. b Audiogram for pure
tone audiometry (PTA) of the proband (V: 4) with profound hearing loss in both ears. c Three-generation pedigree of family 2 having autosomal
recessive form of NSHL disease is drawn. The proband (II: 3), for whom whole exome Sequencing has been carried out is indicated by arrow . d
Audiogram for pure tone audiometry (PTA) of left and right ears of the affected proband (II: 3) showed profound hearing loss. Hearing impaired
individuals are illustrated by black-filled symbols. e Partial sequence chromatograms of MYO15A gene from two unaffected (IV.2 and V.5) and affected
individuals (V: 3 and V: 4) in family 1 illustrate T to A transition at position 6442. f Partial sequence chromatograms of MYO15A gene containing
(c.10504dupT:p.C3502Lfs*15) variant in proband (II: 3), his father (I: 1) and his siblings (II: 2 and II:5) in family 2 illustrates insertion of T as indicated
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p.W2148R variant. Mutation taster further suggested that
c.10504dupT variant had deleterious effects. Moreover, the
first conservative amino acid alternation (p.C3502L) pre-
dicted to be pathogenic using online softwares (Table 1).
Analysis of genotype-phenotype correlations revealed that
patients with c.T6442A:p.W2148R and c.10504dupT:
p.C3502Lfs*15 tended to have profound hearing loss.
Additionally, the results of Sanger sequencing confirmed

the presence of p.W2148R variant in MYO15A gene in the
proband and other affected members who were studied,

but the unaffected sister (V.5) and her father were found
heterozygous for the variant (Fig. 1e).
The findings of Sanger sequencing also revealed co-

segregation of c.10504dupT variant in the second family
(Fig. 1f). The affected proband was thus homozygous,
whereas his unaffected sister (II:5) and his father (I:1)
were heterozygous for this locus and his unaffected
brother (II:2) lacked the variant.
It should be noted that these two variants were absent

in 50 ethnically-matched control cases.

Fig. 2 Schematic flow chart of the filtering of causative variants in this study

Fig. 3 Homozygosity region in the proband (V: 4) of pedigreeI. Coordinate homozygosity region on chromosome 17 in
proband [17927849–18,239,689]

Khatami et al. BMC Medical Genetics          (2020) 21:226 Page 4 of 7



Discussion
Based on WES data as well as segregation and genotype-
phenotype correlational studies, mutations in MYO15A
gene were identified as a main contributor of NSHL in
the first and second surveyed families.
MYO15A, as a new branch of the myosin protein-

coding gene superfamily, has a role in stereocilia forma-
tion [11]. This gene is considered as the third leading
cause of ARNSHL in many populations [12, 13], includ-
ing Iran, with a prevalence rate ranged from 4.8–9.6%
[14–16] . Moreover, mutations in this gene have been
associated with severe-to-profound HL. Screening of 66
coding exons through Sanger sequencing is expensive
and more time-consuming. On the contrary, high-
throughput techniques can save time and money [17].
MYO15A is a different form of myosins protein with

long N-terminal extensions following by the conserved
motor domain, IQ motifs (calmodulin/ myosin light
chain binding), MyTh4 domains (Myosin-Tail like Hom-
ology region 4), FERM motifs (4.1 protein, Ezrin,
Radixin, and Moesin), SH3 domain (Src Homology 3),
and the PDZ ligand domain (Post synaptic density pro-
tein (PSD95), Dlg1 (Drosophila disc large tumor sup-
pressor), and zo-1 (Zonula occludens-1 protein) [18].
The identified c.T6442A: p.W2148R variant in our study
is located in the first (MyTH4) domain and is also con-
served among different species (data not shown). The as-
sociation of (MyTH4) domain mutations with hearing
loss was firstly reported in 1998 [19]. Due to documents,
variants in this domain have related severe to profound
hearing loss, which is consistent with our pedigree
phenotype [5, 15, 16, 20–22]. To the best of our know-
ledge, p.P2073S, p.R2124Q [22] p.P2073L, p.V2114G
[16], R2146Q [23], p.R2146W [24] and c.6273 + 1G > A
[25] variants have been detected in Iranian population
until now [15, 16, 22]. The p.R2124Q and p.P2073S were

the first reported mutations in the MyTH4 domain of
MYO15A protein which was located in conserved fourth
helix of MyTH4. Variations in the MyTH4 domains
interfere in forming of transmembrane actin microfila-
ment assembly complex at the stereocilia tips [22].
Mehregan et al., reported p.Arg2146Gln in the fourth

helix of the first MyTH4 core, which results in severe to
profound hearing loss. Structural analysis of this vari-
ation has revealed that this substitution alters binding
properties at the domain surface [24].
The substitution of a highly conserved amino acid

(Table 1), hydrophobic non-polar tryptophan, with argin-
ine can lead to a loss of hydrophobic pocket. The counter-
parts of p.W2148 in the more studied family members, i.e.
MYO7A is W1192. Sans CEN2 (a scaffold protein) inter-
acted with MyTH4 domain by extensive hydrogen bond-
ing, hydrophobic contacts, and charge-charge interactions.
The hydrophobic pocket in MYO7A comprised the con-
served A1189, W1192, I1193, P1220, and Y1223 residues.
Substitution of Ala1189 by Glu, leads to a.
~ 10-fold decrease of the binding affinity between

MyTH4 domain and CEN. The complex of myosins and
SANS linked cadherins to the actin cytoskeleton [26]. Woo
et al., explained that p.R2146Q in myosin 15A and
R1190 of MYO7A had similar structure in MyTH4-
FERM domains and interfere to binding CEN2 to this
domain [5].
In addition, Myosin interacts with other scaffolding pro-

teins (whirlin and Eps8 (Epidermal Growth Factor Recep-
tor Pathway Substrate 8)) and can transport them to the
tip of stereocilia to form a stereocilia tip complex, which
can facilitate maturation of stereocilia. These scaffold pro-
teins are essential for normal hearing in humans [27, 28].
MyTH4 domain contains the actin-binding sites. The
overall surface of the microtubule (MT) is negatively
charged. The positively charged motifs with surface-

Table 1 In Silico and Bioinformatics Analysis of the Variants

Variant c.T6442A:p.W2148R c.10504dupT:p.C3502Lfs*15

Locus DFNB3 DFNB3

dbSNP rsID Novel Novel

ConSurf score 8 8

MutationTaster2 Disease causing Disease causing

SIFT Damaging deleterious

Polyphen2 Probably damaging Probably damaging

FATHMM Damaging Damaging

PROVEAN Deleterious Deleterious

MetaLR Damaging Not down

CADD_phred 24.3 Not down

PANTHER Probably damaging Probably damaging

Segregates in the family Yes Yes

*Creating a new reading frame ending at a stop codon at position 15
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exposed hydrophobic side chains found in the myosin
MyTH4 domain can serve as an MT binding site [29].
We speculate the, c.T6442A:p.W2148R variant inter-

feres with the formation of the Myosin 15A-whirlin-
Eps8-CEN2 complexs and microtubule-binding.
In the second studied family, WES could successfully de-

tect a novel homozygous insertion variant i.e. c.10504dupT:
p.C3502Lfs*15 in MYO15A gene, co-segregated with the
disease within the pedigree. This variant between the
second FERM and PDZ domains could also lead to a read-
ing frame shift at position 10,504 and a stop codon
(p.C3502Lfs*15) with truncation and translation of mRNA
resulting in lack of its conserved amino acids at C-terminal
(data not shown). Lezirovitz et al. reported a frameshift mu-
tation c.10573delA to cause profound.
hearing loss. This mutation in the PDZ binding ligand

of MYO15A altered interaction of this protein with whir-
lin. Thus, stereocilia elongation did not occurred [30].
Zhang et al. identified p.Leu3501Glu variant was asso-

ciated with profound hearing loss [17].
Today, the topic of oligogenic inheritance traits has

made a big wave in diagnostic medicine; since, in many
monogenic diseases, it represents that there is not just
one gene affected phenotype which causes new chal-
lenges in diagnosing these diseases and it can be more
complicated for diseases with heterogenic pathology in
which many genes are involved [31].

Conclusion
In summary, we identified two novel variants (p.W2148R
and p.C3502Lfs*15), in the MYO15A gene in two Iranian
families using whole-exome sequencing. Accordingly, we
showed that these likely pathogenic variants were segre-
gated with the profound hearing loss in both families.
However, further functional analysis is required to con-
firm the results of the present study.
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