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Abstract

Background: Cervical dystonias have a variable presentation and underlying etiology, but collectively represent the
most common form of focal dystonia. There are a number of known genetic forms of dystonia (DYT1-27); however

the heterogeneity of disease presentation does not always make it easy to categorize the disease by phenotype-

genotype comparison.

Case presentation: In this report, we describe a 53-year-old female who presented initially with hand tremor
following a total hip arthroplasty. The patient developed a mixed hyperkinetic disorder consisting of chorea,
dystonia affecting the upper extremities, dysarthria, and blepharospasm. Whole exome sequencing of the patient
revealed a novel heterozygous missense variant (Chr11(GRCh38): g.26525644C > G; NM_031418.2(ANO3): c.702C > G;

NP_113606.2. p.C234W) in exon 7 in the ANO3 gene.

Conclusions: ANO3 encodes anoctamin-3, a Ca**-dependent phospholipid scramblase expressed in striatal-neurons,
that has been implicated in autosomal dominant craniocervical dystonia (Dystonia-24, DYT24, MIM# 615034). To date,
only a handful of cases of DYT-24 have been described in the literature. The complex clinical presentation of the
patient described includes hyperkinesias, complex motor movements, and vocal tics, which have not been reported in
other patients with DYT24. This report highlights the utility of using clinical whole exome sequencing in patients with
complex neurological phenotypes that would not normally fit a classical presentation of a defined genetic disease.
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Background

Dystonias are a heterogeneous group of movement disor-
ders with both primary genetic and secondary environmen-
tal etiologies [1]. Over the last few decades, several novel
disease associated genes (DYT1-27) have been identified in
dystonic syndromes, but the underlying genetic diagnosis
remains elusive in most patients [1]. Inherited isolated
craniocervical dystonias are rare, and most commonly
caused by pathogenic variants in THAPI (Dystonia-6,
DYT6, MIM# 602629) and GNAL (Dystonia-25, DYT25,
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MIM# 615073) and have adolescent to late adult onset with
variable penetrance [2]. To date, targeted clinical gene test-
ing has been performed with limited success, however with
the advent of next generation sequencing technologies in
the clinic, we are beginning to unravel the complex genetic
landscape of primary dystonias.

Using exome sequencing, Charlesworth et al. [3] identi-
fied pathogenic variants in the anoctamin-3 gene (ANO3)
in three families in the UK with craniocervical dystonia, in-
cluding the index family described in Miinchau et al. [3, 4].
The age at onset ranges from early childhood to the 5th
decade with patients typically presenting in the late 4th
decade of life with cervical and laryngeal dystonia (Table 1)
[5]. Most affected individuals also have dystonic tremor that
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Table 1 Previously described ANO3 variants that are likely associated with disease

. Amino Age
Nucleotide . CADD . ExAC -
acid Polyphen/SIFT/MutationTaster | Exon Clinical phenotype at Ref.
change RawScore Frequency
change onset
c.161C>T p.T54| 2.88 Benign; Tolerated; Polymorphism Ex2 8.239e-06 Familial essential tremor ? [3]
(1/121372)
c.1470G>C p.W490C 6.65 Probably Damaging; Deleterious; Ex15 Tremulous cervical dystonia and ? [3,5]
Disease Causing upper-limb dystonic tremor with
laryngeal involvement
c.1480A>T p.R494W 6.46 Probably Damaging; Deleterious; Ex15 Tremulous cervical dystonia and 19-39 [3,5]
Disease Causing upper-limb dystonic tremor. 3
individuals with laryngeal
involvement, and 1 with
blephrospasm
c.2053A>G p.S685G 1.98 Possibly damaging; Tolerated; Ex21 Early-onset cervical dystonia, ? [3,5]
Disease Causing tremor affecting upper limbs, and
laryngeal dystonia; the mother, one
sister, and son affected; later onset
in sister with laryngeal dystonia
only
C.2497A>G p.1833V 1.91 Benign; Tolerated; Disease Ex24 2.475e-05 Cervical dystonia with dystonic 40 [16]
Causing (3/121234) head tremor
c.2540A>G p.Y847C 5.91 Probably Damaging; Deleterious; Ex24 Cervical dystonia, blephrospasm, 39-56 [8]
Disease Causing oromandibular dystonia, head
tremor, dysphonia, upper limb
dystonia (5 affected)
c.2586G>T p.K862N 1.95 Benign; Tolerated; Disease Ex25 Cervical dystonia and ? [3]
Causing oromandibular dystonia
c.2917G>C p.G973R 5.53 Probably Damaging; Tolerated; Ex27 Blephrospasm and oromandibular 69 [16]
Disease Causing dystonia
(1 affected)
c.702C>G p.C234W 5.46 Probably Damaging; Deleterious; Ex7 Cervical dystonia, hyperkinesias, 52 This
Disease Causing chorea, motor and vocal tics, study
blepharospasm and oromandibular
dystonia (1 affected)

The novel variant described in this report is highlighted in red

affects the upper limbs, which can be misdiagnosed as fa-
milial essential tremor [5]. Patients can also develop ataxia,
head tremor, dystonic posturing of the upper limbs, oro-
mandibular dystonia, dysarthria, blepharospasm, and mild
cognitive impairment. Interestingly, in at least one family,
an unaffected ANO3 pathogenic variant carrier had both an
affected child and an affected parent, suggesting reduced
penetrance [5].

ANO3 encodes anoctamin-3, a homodimeric protein be-
longing to the anoctamin/TMEM16 family of proteins that
are structurally related and encode Ca**-activated chloride
channels and membrane phospholipid scramblases with dis-
tinct patterns of expression [6]. ANO3 consists of eight
hydrophobic transmembrane helices and may act as a Ca**
sensor involved in regulating calcium homeostasis (Fig. 1)

[6]. The exact function of ANO3 is still poorly understood,
and recent experiments have shown that it does not act as a
Ca*?-activated chloride channel, and may in fact function as
a Ca*?-dependent phospholipid scramblase [7]. ANO3 ap-
pears to have a role in the modulation of neuronal excitabil-
ity and is highly expressed in the striatum, hippocampus,
and cortex. [3, 6] Mechanistically, pathogenic variants in
ANO3 could lead to abnormal striatal-neuron excitability,
which manifests as uncontrolled dystonic movements [6].

In this report we describe a patient with atypical
craniocervical dystonia presenting with chorea and com-
plex motor tics with a novel variant (Chr11(GRCh38):
g.26525644C > G;  NM_031418.2(ANO3): ¢.702C > G;
NP_113606.2. p.C234W) in ANO3 that was identified
using whole exome sequencing (WES).
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Fig. 1 Summary of previously reported ANO3 variants. We used TMRPres2D to generate a schematic layout of ANO3 and color to annotate the
protein sequence using EXAC allele frequencies and the eight previously reported dystonia-associated missense mutations [19]. The HGMD
database associates these variants with dystonia (D), craniocervical dystonia (CD), or dystonia primary torsion (DPT) [20]

Case presentation

The patient is a 53-year-old white female who presented
at 52-years-of-age with tremor following a right total hip
arthroplasty. Postoperatively, the patient had nausea from
her pain medication and was on promethazine for several
months when she first noted her hand tremor. Prometha-
zine exposure could be associated with the genesis of her
hyperkinesias; however, her tremor quickly progressed to
diffuse abnormal choreiform movements affecting her
upper extremities and torso with increasing frequency
(Additional file 1: Video S1). Concurrently, the patient
also noted difficulty with speech and extreme sensitivity to
light, which preceded the development of blepharospasm.
The patient had difficulty focusing without any noticeable
decrease in visual acuity. She described difficulty focusing
on visual stimuli in open spaces with accentuation of her
diffuse abnormal body movements.

Upon examination, the patient had a tendency toward
phasic, left torticollis and had developed hypertrophy and
tightness of the strap muscles that was becoming painful.
The patient had mixed, generalized hyperkinesias and cer-
vical dystonia. She also had evidence of abnormal postur-
ing within her phalanges and left hand, which were
suggestive of multi-focal dystonia. She performed move-
ments, such as clapping her hands, which were thought to
reflect complex motor tics (Additional file 2: Video S2).
Her gait was slow and she took small steps during the
exam. The patient frequently grimaced and reported that
she “cracked several teeth,” both secondary to her orofacial
dystonia. Motor speech examination provoked accelerated,
uncontrolled upper extremity movements. With tongue
protrusion, there was evidence of motor impersistence
(Additional file 3: Video S3). The patient also showed
slowed processing speed, dissociation of knowledge from
action, and echopraxia that were thought to be consistent
with frontal lobe involvement. At the time, the patient was

taking clonazepam, carbidopa/levodopa, trazodone, na-
proxen, and hydrochlorothiazide with some benefit.

Initial workup of the patient for secondary causes of
dystonia was unrevealing and included complete blood
count (CBC) with peripheral smear (no acanthocytes seen),
normal sedimentation rate, vitamin B12, methylmalonic
acid, electrolytes, ammonia, ceruloplasmin, copper, liver
function tests, thyroid-stimulating hormone (TSH), para-
neoplastic profile, tests of connective tissue disorders, sera
rapid plasma reagin (RPR), negative anti-thyroid peroxidase
(TPO) antibodies and tissue transglutaminase antibodies.
Additionally, the patient’s local physician reported genetic
testing for Huntington’s disease that was normal.

Family history

The patient’s father was deceased and therefore unavailable
for testing. The family history is otherwise unremarkable
(Fig. 2). We were unable to get additional family members
to participate in the research study, including the patient’s

i .1 Whole Exome Sequencing

Fig. 2 Three-generation family pedigree showing the proband and
relatives. Both the proband (arrow) and her 85-year-old mother had
whole exome and mitochondrial DNA sequencing and the clinically
reportable results are shown in Table 2
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siblings. Of note, both sporadic and familial cases of
ANO3-related cervical dystonia have been observed in the
literature highlighting the reduced penetrance associated
with this form of dystonia [3, 8].

Ophthalmological findings

The patient had no history of diplopia, oscillopsia, or history
of previous ophthalmologic disease processes. The patient’s
neuro-ophthalmologic examination revealed normal visual
acuity and color vision. The patient was noted to have con-
stant bilateral forcible eyelid closure and it was difficult to
demonstrate any definite apraxia of eyelid opening or eye
closure. The patient was noted to have bilateral upward de-
viation of the eyes that was consistent with physiologic Bell’s
phenomenon. The patient’s ocular motility was full with lat-
eral gaze intact. Occasionally she developed an esotropia
with constriction of the pupils compatible with spasm of the
near reflex. The patient did not have nystagmus. Cranial
nerves V and VII were intact except for occasional abnormal
facial movements and frequent eye closure.

Speech/language assessment

The patient’s voice was hypophonic, with high-pitch and
strained stuttering speech (Additional file 1: Video S1). She
repeated consonants at the beginning of some sentences
and had some elongated vowel sounds as well. The patient
understood what was said to her and despite her challenges
with speech, she was able to communicate her ideas
although she exhibited echopraxia. She also had several
episodes of spontaneous crying that were suggestive of a
pseudobulbar component to her disease. The patient exhib-
ited perceptual evidence of a moderate dysarthria, with
clinical features that appear compatible with a hyperkinetic
dysarthria. The patient’s receptive and expressive language
skills were unimpaired, but her writing legibility and reading
from computer screen were affected due to uncontrolled
upper extremity movements, as well as visual sensitivity.

Electrophysiology

The EEG was moderately abnormal due to the presence of
excessive myogenic activity. The patient was tense and
experienced a number of abnormal movements (tremor,
jerks) that were not associated with epileptiform activity.
These were only associated with movement and myogenic
artifacts but baseline activity was maintained. The back-
ground activity was predominantly around 7 Hz and was
intermixed with beta activity that was symmetrical and re-
active. There was excessive beta activity that was thought to
be due to medication effect as the patient was taking
benzodiazepine medication. The background activity was
mainly in theta frequency band and was thought to repre-
sent either medication effect or a more organic pathology
such as encephalopathy.
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Genetic testing

Clinical WES was performed by GeneDX (XomeDxPlus),
which also included mitochondrial DNA sequencing.
Briefly, genomic DNA was extracted from blood from the
proband and her mother. As described in the clinical testing
methodology by GeneDX, the SureSelectXT Clinical
Research Exome (Agilent) capture kit was used for exome
enrichment and sequencing was done on an Illumina HiSeq
2000 that generates 100 bp paired-end reads. Bi-directional
sequence was assembled, aligned to reference gene se-
quences based on human genome build GRCh37/UCSC
hg19, and analyzed for sequence variants using a proprietary
analysis tool (Xome Analyzer, GeneDx) as previously de-
scribed [9]. Sanger sequencing was used to confirm all po-
tentially pathogenic variants identified in this individual and
in the parental sample [9]. Sequence alterations were re-
ported according to the Human Genome Variation Society
(HGVS) nomenclature guidelines. The exome was covered
to a mean depth of 97x, with a quality threshold of 95.7%.

The patient was found to have a ¢.702C > G, p.C234W
missense variant in exon 7 (of 27 total exons) in the ANO3
gene that falls within the cytoplasmic N-terminus (Fig. 1).
This variant was not found in the patient’s mother and
testing was not performed on the patient’s father who is
deceased. For this gene, 100% of the coding region was
covered at a minimum of 10x by the XomeDx test
(GeneDX). The ¢.702C > G variant in the ANO3 gene has
not been observed in approximately 6500 individuals of
European and African American ancestry in the NHLBI
Exome Sequencing Project or in over 60,000 individuals in
ExAC [10, 11]. No other variants were reported in the
clinical sequencing report and mitochondrial DNA sequen-
cing revealed a m.8999 T > C p.V158A variant of uncertain
significance in MT-ATP6 that was homoplasmic in both
the proband and her 85-year-old mother (Table 2).

The p.C234 residue in ANO3 is moderately conserved
across species and falls within a region that is highly
conserved among homologs (Fig. 3a), the only variants
at position 234 being a conservative C>S present in
some ungulate and whale species, but is not well repre-
sented across human ANO3 paralogs (Fig. 3b). The in
silico prediction algorithms, SIFT, PolyPhen-2, and Muta-
tionTaster2 predict this missense mutation to be deleteri-
ous, possibly damaging, and disease causing, respectively
(Table 1) [12-14]. The Combined Annotation Dependent
Depletion (CADD v1.3) raw score for this variant is 5.46
and ranges from 1.91 to 6.65 for the other previously re-
ported variants in ANO3 (scores range from 1 to 99, with
a higher score indicating a greater likelihood of being
deleterious) (Table 1) [15]. In ExAC, the probability of be-
ing loss-of-function (LoF) intolerant value (pLI) for ANO3
is 0. The pLI provides a measure of a given gene’s intoler-
ance to variation and controls for coding sequence length
(pLI= 0.9 may indicate LoF intolerant genes and pLI <0.1
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Table 2 Clinically reportable variants found within the patient by whole exome sequencing or mitochondrial DNA sequencing

Gene NCBI accession number  Nucleotide change ~ Amino acid change  Exon Inheritance  Zygosity ACMG classification
ANO3 NM_031418.2 c702C>G p.C234W Ex7 Unknown Heterozygous ~ VUS

MT-ATP6 NC_012920.1 c473T7>C p.V158A Ex1 Maternal Homoplasmic VUS

may indicate LoF tolerant ones) [11]. This metric may Conclusions

provide an indication of whether heterozygous LoF variants
would be expected confer some survival or reproductive
disadvantage but does not necessarily reflect the ability of a
gene to result in disease (for instance the prion protein gene,
PRNP, which is associated with a number of autosomal
dominant neurodegenerative spongiform encephalopathies
has a pLI of 0.03 and is predicted to be relatively tolerant of
coding variation) [11]. In the patients WES report the
p.C234W missense variant is classified as a variant of uncer-
tain significance. Given the strong clinical and phenotypic
overlap with previously published DYT24 patients, however,
this variant is a strong candidate in the etiology of this pa-
tient’s disease. In order to rule out other genetic causes of
disease, we looked at the coverage of other genes that have
been associated with cervical dystonia. GNAL (Dystonia-25,
DYT25, MIM# 615073), THAPI (torsion dystonia-6, DYT6,
MIM# 602629), TORIA (torsion dystonia-1, DYT1, MIM#
128100), CIZ1, HPCA (torsion dystonia-2, DYT2, MIM#
224500), TUBB4A (torsion dystonia-4, DYT4, MIM#
128101) and COL6A3 (dystonia-27, DYT27, MIM# 616411)
had 100% coverage by WES and no reportable variants were
identified in any of these genes. However, WES could not
rule out deletions or duplications affecting these genes.

In this report we describe a 53-year-old female patient with
a novel heterozygous missense variant of uncertain signifi-
cance (VUS) (Chr11(GRCh38): g.26525644C > G; NM_0
31418.2(ANO3): ¢.702C > G; NP_113606.2. p.C234W) in
ANO3 who had a late and precipitous onset of disease. The
patient shares many of the same clinical and pathological
features as patients described with autosomal dominant
craniocervical dystonia, including initial manifestation in
the form of a progressive tremor, with development of a
dystonia affecting the upper extremities, dysarthria, and
blepharospasm. However, the patient also has mixed hyper-
kinesias manifesting as chorea, as well as simple and com-
plex motor and vocal tics, which have not been observed in
other patients with DYT24. Potentially complicating the pa-
tient’s phenotype is the fact that she was on promethazine
for several months following a total right hip arthroplasty.
Her hyperkinesias became evident while she was on the
promethazine thus, leading to speculation that some of her
hyperkinesias could have a tardive etiology.

The p.C234W ANOS3 variant described in this patient is
classified as a VUS by clinical report, is predicted to be
damaging by in silico analysis, and has never been reported
in any publically available databases. Given the good

a b
p.C234W p.CZUW ~
Human 240 250 270 , ZIBO
Chim ANO7 v-ALLIAIwAVch A.DLRL.LFL.ELPNQASNWS ---------- A8
'mp ANO9 QVFFGIRADNSVFGL RTLEMLER. . . .- - ...
Rat ANO3 I1MF 18I LCK RLNI MP F R K c YTDBRSKSMGRMQTYFRR
Mouse ANO4 | | F VL LGR QMN MP F RKI YLPRRYKFMSRIDKQ ISR
Dog ANO5 T¥F VI VLV T vl.el MP IMESDI - -PREKH- - TR ------
Platypus ANO6 LVF vLET IMHIBLPLEPNDL - - KNRSSAFBTL- - - - - -
Chicken
Frog Conservation
Zebrafish PF 64564947574 3 473924412110000- -0001- - - - - -« -----
KsH E Y E K
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Fig. 3 Annotated multiple sequence alignments (MSA) for ANO3 homologs and human ANO3 paralogs. a ANO3 homologs show a high degree
of conservation across species (only select species shown; coloring by amino acid type). The site is either C or S from human, through hominids,
rodents, and whales (shown by conservation and consensus logo) across 69 different species (identified by pBLAST [21] and aligned using
COBALT [22]; data not shown). b Human ANO3 paralogs show some level of conservation in the region preceding the variant of interest
(p.C234W; shown as a red box), but the site itself is not conserved across human paralogs. Both figures were created using Jalview [23]
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phenotypic overlap, we posit that this variant may con-
tribute to the patient’s disease. However, a recent study
identified a neighboring c.704A >G (p.Y235C) missense
mutation in 4 of 4300 European American individuals
within the NHLBI-ESP cohort [16]; the variant is also re-
ported 35 times (out of 114122 alleles) in ExAC database.
As yet there is no report of the p.Y235C variant linked with
disease, even though it is rare and predicted to be
damaging [16]. It remains possible that with the noted
reduced penetrance and later onset of tremor observed in
some families, that the more benign manifestations of
DYT24 could go undetected in a seemingly healthy control
population.

To date, 8 pathogenic missense variants in ANO3 have
been identified including: ¢.2540A >G (p.Y847C), c.14
80A>T (p.R494W), ¢.1470G >C (p.W490C), c161C>T
(p-T541), c.2053A > G (p. S685G), c.2586G > T (p.K862N),
€2190C > T, ¢.2497A > G (p.I833V), c.2917G > C (p.G973R)
(Table 1) [8]. These variants fall within the transmembrane
spanning alpha helices, within the intracellular and extra-
cellular loops, and within the N and C-termini of ANO3
(Fig. 1). While these variants do not implicate a hotspot,
their spatial relationships within the 3D protein structure
are unknown (Fig. 1). Future work investigating the 3D
structure could shed light on common mechanisms of
alteration by each variant. No nonsense or frame-shift
mutations in ANO3 have been reported in association with
DYT?24, however there are several rare frameshift and non-
sense variants present in EXAC, suggesting that there may
be additional phenotypes associated with this gene such as
autism spectrum disorders [17].

The ANO3 p.C234W substitution in the patient under
study is located within the N-terminus of the protein
(amino acids #1-403). The only other variant described
in the N-terminus (NM_031418.2, exon 2, c.161C>T,
p.T541) was in a patient who was diagnosed with familial
essential tremor (Table 1) [3]. The function of the N-
terminal region of ANO3 and other anoctamin family
members remains poorly described, but may be involved
in dimerization or interactions with other proteins such
as calmodulin, as has been demonstrated in ANO1
(TMEM16A) [6].

Only the c.1470G>C (p.W490C) variant has been
evaluated using functional studies, with patient fibro-
blasts showing reduced ATP- and thapsigargin-induced
calcium signal compared to controls, that was thought
to be due to a smaller calcium pool in the endoplasmic
reticulum [3]. ANO3 is expressed throughout the central
and peripheral nervous system. In one study, rats were
shown to have high Ano3 expression in a subset of noci-
ceptive neurons in dorsal root ganglia (DRG) [6, 18].
Ano3 knockout rats (Ano3 ") were hypersensitive to high
temperatures and electrophysiological measurement from
DRG neurons from these animals showed action potential
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broadening and lower threshold for action potential firing
[6, 18]. Interestingly, Na‘-activated K" current was also
strongly reduced in Ano3™" rats [6, 18]. Colocalization ex-
periments showed that Ano3 directly interacts with Kentl
(Slack), a sodium-activated potassium channel implicated
in infantile epileptic encephalopathy-14 (EIEE14, MIM#
614959) [6, 18]. Ano3 may enhance the activity of Kentl,
which in turn helps regulate the excitability of nociceptive
neurons [6, 18].

As we see an increase in the utilization of whole-exome
and -genome sequencing in the clinic, there will be an
ever-increasing demand for methods of determining disease
relevance and pathogenicity. In this case report we identi-
fied a novel mutation of likely pathogenicity in a gene
known to present with a similar phenotype. For rare
protein variants such as ANO3 p.C234W, clinical genetic
studies may not be sufficient to prove pathogenicity, rather
additional functional studies will likely be needed. However
with this in mind, it is critical that robust functional assays
are developed that truly reflect the underlying disease
mechanisms occurring, that is to say not all functional
effects are created equally. As we gain a better understand-
ing of the pathways and mechanisms underlying DYT24,
and dystonia in general, clarification of rare variants will
better direct targeted drug design and clinical trials.

Additional files

Additional file 1: Video S1. Patient history and tremor. Video of patient
tremor with diffuse abnormal choreiform movements affecting her upper
extremities and torso. (WMV 19181 kb)

Additional file 2: Video S2. Patient gait and complex motor tics. Video
of patient performing movements while walking, such as clapping her
hands, which reflect complex motor tics. The patient's lower extremities
were unaffected. (M4V 3657 kb)

Additional file 3: Video S3. Motor impersistence with tongue
protrusion. With tongue protrusion. (WMV 15275 kb)
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