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Abstract

Background: With a wide array of multi-modal, multi-protocol, and multi-scale biomedical data being routinely
acquired for disease characterization, there is a pressing need for quantitative tools to combine these varied channels
of information. The goal of these integrated predictors is to combine these varied sources of information, while
improving on the predictive ability of any individual modality. A number of application-specific data fusion methods
have been previously proposed in the literature which have attempted to reconcile the differences in dimensionalities
and length scales across different modalities. Our objective in this paper was to help identify metholodological
choices that need to be made in order to build a data fusion technique, as it is not always clear which strategy is
optimal for a particular problem. As a comprehensive review of all possible data fusion methods was outside the
scope of this paper, we have focused on fusion approaches that employ dimensionality reduction (DR).

Methods: In this work, we quantitatively evaluate 4 non-overlapping existing instantiations of DR-based data fusion,
within 3 different biomedical applications comprising over 100 studies. These instantiations utilized different
knowledge representation and knowledge fusion methods, allowing us to examine the interplay of these modules in
the context of data fusion. The use cases considered in this work involve the integration of (a) radiomics features from
T2w MRI with peak area features from MR spectroscopy for identification of prostate cancer in vivo, (b)
histomorphometric features (quantitative features extracted from histopathology) with protein mass spectrometry
features for predicting 5 year biochemical recurrence in prostate cancer patients, and (c) volumetric measurements
on T1w MRI with protein expression features to discriminate between patients with and without Alzheimers’ Disease.

Results and conclusions: Our preliminary results in these specific use cases indicated that the use of kernel
representations in conjunction with DR-based fusion may be most effective, as a weighted multi-kernel-based DR
approach resulted in the highest area under the ROC curve of over 0.8. By contrast non-optimized DR-based
representation and fusion methods yielded the worst predictive performance across all 3 applications. Our results
suggest that when the individual modalities demonstrate relatively poor discriminability, many of the data fusion
methods may not yield accurate, discriminatory representations either. In summary, to outperform the predictive
ability of individual modalities, methodological choices for data fusion must explicitly account for the sparsity of and
noise in the feature space.
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Background
Predictive, preventive, and personalized medicine has the
potential to transform clinical practice by enabling the
use of multi-scale, multi-modal, heterogeneous data to
better determine the probability of an individual con-
tracting certain diseases and/or responding to a spe-
cific treatment regimen. These heterogeneous modalities
may characterize either imaging (such as Magnetic Res-
onance Imaging (MRI), ultrasound, histology specimens)
or non-imaging (gene-, protein-expression, spectroscopy)
data, based on the method and type of data being
acquired.
These modalities also have differing dimensionalities,

where MRI, ultrasound are scalar intensity values, while
spectroscopy is a multi-dimensional signal comprising
metabolite concentrations at every image voxel (Fig. 1).
More crucially, each of these modalities capture different
types of information about the disease at different length
scales. For example, gene expression levels represent cel-
lular scale observations; changes in which would result in
a phenotypic structural or vascular difference on tumor
morphology that is captured at the pathologic scale via
standard H&E tissue specimens [1]. While data acquired
at different length scales may be considered to capture
complementary characteristics (structural versus biolog-
ical), the associated information is represented via fun-
damentally different data types (images versus molecular
concentrations).
We define multi-modal data fusion as the process of

combining a variety of complementary measurements
from different data modalities, existing at different length
scales, into an integrated predictor [1]. Combining com-
plementary sources of information in this manner to yield
a more comprehensive characterization of a disease or
tissue region has been demonstrated to yield a more accu-
rate predictor than using any individual data modality
[2, 3] .
Recently, our group and several others have explored

different dimensionality reduction (DR) based fusion
approaches, such as linear or non-linear projections [4–7],
multi-kernel learning [8, 9] or feature selection [10–12] to
address the challenge of multi-modal data fusion; specifi-
cally involving imaging and non-imaging data modalities.
Note that while there is a plethora of fusion methodolo-
gies, we choose to focus here on DR-based multimodal
data fusion.
Consider the publicly available ADNI database which

contains imaging (MRI and PET), as well as non-imaging
(genetics, cognitive tests, CSF and blood biomarkers)
information for a population of patients with and with-
out Alzheimer’s disease. Using the ADNI database, mul-
tiple data fusion methodologies have been proposed to
integrate these different data types to build a fused pre-
dictor for Alzheimer’s disease, including classifier-based

[13], dimensionality reduction-based [7], as well as multi-
kernel learning-based [14]. Given that these methods all
attemptmulti-modal data fusion, one can posit the follow-
ing questions:

(a) How are these approaches similar or different from
one another?

(b) How does a particular method compare to other
fusion methods applied to same dataset, either
methodologically or in terms of performance?

(c) How can a particular method be selected over any
other for a new application i.e. do the methods
generalize or do they require specific types of
information?

Motivated by the seminal work by Yan et al. [15],
who demonstrated that different dimensionality reduc-
tion methods can be formulated as instantiations of the
“generalized graph embedding” approach, in this paper we
propose to identify common methods and thus an under-
lying workflow which govern existing multi-modal data
fusion strategies. Further, we will compare a subset of
these data fusion methods to better understand the con-
tributions of the individual modules that comprise a data
fusion strategy.
The rest of the paper is organized as follows. We first

briefly define the specific steps (representation and fusion)
typically followed within a multi-modal data fusion strat-
egy, based on a summary of existing work in this domain.
We then provide a detailed description of the differ-
ent modules that have been previously utilized for data
representation as well as data fusion. Experiments to
demonstrate the application of multi-modal data fusion
in the context of different diagnostic and prognostic clin-
ical problems are then described, followed by the results
of quantitative and qualitative evaluation of representa-
tive data fusion strategies within these applications. Note
that while we have attempted to diversify in terms of our
choice of datasets and methods employed, this work is
not meant as a comprehensive evaluation of all possible
imaging and non-imaging fusion methods and datasets.
For instance, we have not extensively explored the popular
canonical correlation class of fusion approaches [6]. We
have instead opted to systematically compare and relate
a few different representative multi-modal data fusion
strategies in the context of different clinical applications,
to provide a basic understanding of the interplay of dif-
ferent individual modules that can comprise a data fusion
method. As all the techniques compared in this study
involved projecting the data modalities to construct a
reduced fused representation, we have essentially focused
on DR-based multimodal data fusion. Finally, we conclude
by summarizing our takeaways and directions for future
work.
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Fig. 1 Illustration of data acquired at different length scales from imaging (radiology, pathology) and non-imaging (MR spectroscopy, protein
expression) data, which could be combined to create fused predictors of disease aggressiveness and treatment outcome. In this illustration we use
the example of prostate to illustrate the types of data that might be acquired before and after radical prostatectomy. In vivo information acquired
prior to prostatectomy includes MR imaging and spectroscopy, while the surgical specimen yields digitized histological sections as well as
undergoing genomic profiling via mass spectrometry. The middle column of the illustration depicts different knowledge representation methods
(e.g. dimensionality reduction, co-association matrices) for uniformly representing multi-modal data. Once represented in a common space, these
features can be combined to create a predictive model. An application of this predictive model could include survival curve analysis (far right
column, obtained by combining histologic and proteomic features) for identification of prostate cancer patients who will later suffer from
biochemical recurrence within 5 years (red) from those who will not (blue)

Generalized overview of a dimensionality reduction-based
multi-modal data fusion strategy
Table 1 summarizes a number of recently presentedmeth-
ods for multi-modal data fusion, including the variety of
data that has been examined and the different methods
that have been utilized in each case. Based on the litera-
ture, we observe that there appear to be two specific steps
that are utilized (either explicitly or implicitly):

1. Knowledge representation: We define this as
transforming the individual data modalities into a
common space where modality differences in terms
of scale and dimensionality are removed. This
includes methods such as kernel representations
[16], low-dimensional representations (LDR) [17], or
classifier-based decisions [18].

2. Knowledge fusion: We define this as combining
multiple different knowledge representations into a
single integrated result to build a fused predictor,
such that complementary information from different

modalities is leveraged as best possible. Methods
utilized in this regard include confusion matrices,
weighted or unweighted combinations, as well as
concatentation.

Based on our summary of the literature in Table 1,
we further conceptualize the interplay of these two steps
in the context of multi-modal data fusion as illustrated
in Fig. 2. We have additionally incorporated commonly
used strategies of resampling (generating multiple repre-
sentations from each data modality) as well as weighting
(differentially considering data modalities depending on
their contributions) into this series of steps. The differ-
ent options for representation as well as fusion have been
enumerated in the flowchart; note that any fusion method
could be used with any representation method. This indi-
cates that a wide variety of data fusion strategies can be
enumerated, however, we must once again note that the
current study is not intended as a comprehensive review of
all these possible methods. The representative strategies
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Table 1 Brief review of multi-modal data fusion methods from the literature and methodologies that have been used

Reference Data Method

Moutselos et al. [65] Skin images Combining features into a confusion matrix

Gene expression

Golugula et al. [6] Histopathology Correlating features via CCA, combining CCA-based
confusion matrices

Proteomics

Dai et al. [20] sMRI Construct classifiers from features, weighted
combination of classifier decisions

fMRI

Gode et al. [66] mRNA
Compute LDR/classifier decisions, unweighted
combination of LDR- or classifier-based confusion
matrices

miRNA

Raza et al. [22] Gene-expression Compute classifier decisions, unweighted
combination of classifier decisions

FNAC

Sui et al. [67] DTI Correlate features via CCA, unweighted combination
of CCA-based confusion matrices

fMRI

Wolz et al. [7] T1-w MRI Compute LDR, weighted combination of LDR-based
confusion matrices

ApoE genotype, Aβ1−42

Wang et al. [62] T1-w MRI, FDG-PET Feature selection, weighted concatenation of
selected features

Gene-expression

Lanckriet et al. [9] Protein expression Compute kernel representations, weighted
combination of kernels

Gene-expression

Yu et al. [68] Text ontologies Compute kernel representations, fuse kernel-based
confusion matrices

Gene-expression

Higgs et al. [54] CT Compute LDR, fuse LDR maintaining manifold
structure

Gene-expression

Lee et al. [4] Gene-expression Compute LDR, unweighted concatenation of LDR

Histopathology

Viswanath et al. [5] T2-w Compute LDR, combine LDR-based confusion
matrices using label information

ADC, DCE

Tiwari et al [8] T2-w MRI
Compute kernel representations, weighted
LDR-based combination of kernels using label
information

MRS

CCA Canonical Correlation Analysis, LDR Low-Dimensional Representation. See Description of methods utilized for multi-modal data fusion section for more details
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Fig. 2 Generalized overview of steps followed for DR-based multimodal data fusion. Knowledge representation refers to transforming each modality
individually into a space where modality-specific scale and dimensionality differences are removed. Resampling allows for generation of multiple
representations from each data modality to try and maximize the information extracted from it. Knowledge fusion then combines different
representations into a single integrated result to build a fused predictor. Weighting enables building of a fused result where the data modalities are
differentially considered depending on how well they individually characterize the data. The final fused result is expected to leverage the
complementary information from different modalities as best as possible

we have chosen to compare in the current study have
instead been chosen based on combining different aspects
of the workflow depicted in Fig. 2, and all of them involve
some form of dimensionality reduction.

Methods
Description ofmethods utilized formulti-modal data fusion
Notation
We define the original feature space associ-
ated with samples ci and cj for modality m as
Fm = [Fm(c1), . . . ,Fm(cN )], i, j ∈ {1, . . . ,N}, m ∈
{1, . . . ,M}, where N is the number of samples and M is
the number of modalities. The corresponding class label
for sample ci is given as ωi ∈[ 0, 1].

Knowledge representation
The primary goal of this step is to transform differ-
ent multi-modal data channels into a common space
to overcome inherent dimensionality and scale differ-
ences. Representation facilitates subsequent data fusion
step by (a) preserving information from each of the
input heterogeneous data modalities, while (b) accounting
for factors that would be detrimental to combining this
information.

Decision representations This class of approaches
involve deriving classifier outputs from independent data
channels [18]. For example, Jesneck et al. [19] calculated
individual sets of probabilities from different imaging
modalities (mammograms, sonograms) as well as patient
history (non-imaging). These sets of classifier probabili-
ties were then quantitatively fused to yield an integrated

classifier for improved breast cancer diagnosis (as the
modalities had been transformed into a common classifier
probability space).
For each modality m ∈ M, decision representa-

tion involves calculating a probability for each sam-
ple as belonging to the target class, denoted as
hm(c1) . . . , hm(cN ), 0 ≤ hm ≤ 1, which may be
done via a wide variety of classifier methods that
exist [18]. While classifier-based approaches have seen
extensive use in as an implicit form of data fusion
[20–22], one of the major disadvantages to this class
of approaches is that all inter-source dependencies
between modalities are lost, as each modality is being
treated independently when computing the decision
representation [4].

Kernel representations Kernels are positive definite
functions which transform the input data to an implicit
dot product similarity space [16], and in typical use, dif-
ferent kernels are used to represent each data modality
[9], with the advantage being the flexibility to tweak and
fine-tune the kernel depending on the type of data being
considered [23].
For each modality m ∈ M, the kernel representa-

tion is calculated as Km(ci, cj) = 〈
�(Fm(ci),�(Fm(cj))

〉
,

where � is the implicit pairwise embedding between
the feature vectors Fm(ci) and Fm(cj) being calculated
between every pair of points ci and cj, i, j,∈ {1, . . . ,M},
for modality m, while 〈.〉 denotes the dot product
operation.
Kernels and multi-kernel learning are one of the

most powerful representation strategies which has found
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wide application in many different domains [14, 24–26].
However, in addition to being computationally expen-
sive, there is a lack of transparency in relating kernel
representations to the input multi-modal data, as it is not
possible to create an interpretable visualization of the joint
kernel space.

Low-dimensional representations (LDR) Dimension-
ality reduction transforms input data to a low-dimensional
space while preserving pairwise relationships between
samples as best possible [17]. Typically, these pairwise
relationships can be quantified via affinities or distances
(as used by methods such as spectral embedding [27]);
however, it is also possible to utilize measures such as
covariance as considered within canonical correlation
analysis (CCA) [6, 28] or principal component analysis
(PCA) [29].
Low-dimensional representations first require calcu-

lation of an N × N confusion matrix W =[wij] which
attempts to capture pairwise relationships between
objects ci and cj, i, j ∈ {1, . . . ,N}, N being the total
number of samples. The corresponding low-dimensional
representation y can be obtained via Eigenvalue
decomposition as,

Wy = λDy, (1)

with the constraint yTDy = 1, where Dii = ∑
j wij.

Given M modalities, Wm is calculated for every m ∈
M, each of which are then subjected to Eigenvalue
decomposition to yield the low-dimensional representa-
tions ym. Low-dimensional representations have proven
very popular for biomedical applications [30–33], espe-
cially as they enable informative visualizations (such as
cluster plots) while ensuring computational tractabil-
ity. Similar to kernel representations, depending on the
LDR method used, one cannot always relate the low-
dimensional representation to the original multi-modal
data.

Generation of multiple representations (resampling)
The robustness and generalizability of representation
techniques has been shown to improve when multiple
representations of input data are generated and com-
bined [5, 34–36]. For example, combining multiple clas-
sifier outputs into an “ensemble” classifier result has
been demonstrated to yield better classification accu-
racy and generalizability than any individual classifier
(both analytically and empirically) [34, 37]. This idea
of calculating a number of representations is typically
implemented by resampling a given dataset as demon-
strated for classifier decisions [34], projections [38], and
clusterings [39].
Thus, rather than calculate a single representation per

modality (i.e. generatingM representations forM distinct

modalities), n “weak” representations could be generated
for each ofM modalities, in total yielding nM representa-
tions of heterogeneous data modalities.
These may be generated in any of the following ways:

(a) Perturbing the samples: Given a set of N samples in a
set C, n bootstrapped sets C1,C2, . . . ,Cn ⊂ C (with
replication) are created, which in turn will yield n
different representations. Each of C1,C2, . . . , Cn will
consist of samples drawn at random from C, but with
replacement, such that every sample c ∈ C may be
repeated multiple times across all of C1,C2, . . . ,Cn.
This approach has been termed “bootstrapped
aggregation” (or bagging [37]).

(b) Perturbing the parameters: All knowledge
representation schemes (kernels, decisions,
low-dimensional) are known to be sensitive to the
choice of parameters used [40–42]. For example, a
neighborhood parameter must be optimized for
calculating an accurate low-dimensional
representation via locally linear embedding [42, 43]
or for constructing an accurate k-nearest neighbor
classifier model [44]. A range of n possible parameter
values can be used to generate n different “weak”
representations [45].

(c) Perturbing the features: Similar to perturbing the
samples, we can create n bootstrapped sets of
features with replication.
By varying the feature space input to the
representation scheme, it is possible to generate n
distinct “weak” representations [5].

Knowledge fusion
Given nM knowledge representations of M input het-
erogeneous modalities, the objective of knowledge fusion
[9, 19, 34] is to combine multiple different representations
into a single integrated result, denoted as R̂. Note that this
fusion may involve combining the knowledge representa-
tions directly (i.e. combining kernels or low dimensional
representations) or by preserving specific relationships
associated with a representation technique (e.g. affinity-
based or structure-based fusion). R̂ will be subsequently
utilized to build a comprehensive predictor for a given
dataset [23, 46, 47].

Direct fusion The most popular class of fusion strate-
gies involve directly combining a set of knowledge rep-
resentations either through simple concatenation or a
weighted combination. Concatenation has most popularly
been used for combining information extracted frommul-
tiple imaging modalities which are in spatial alignment
[2, 48–50] i.e. intensity values from acrossmultiplemodal-
ities are concatenated at every spatial location into a single
feature vector.
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Calculating a final fused representation, R̂, based on a
set of representations φt , t ∈ {1, . . . , nM}, can be written
as, φ ∈ {F, h, y,K},

R̂ = ξ
∀t
[φt] , (2)

where ξ may be a weighted or unweighted combination
function (including concatenation). For example, R̂ =∑

∀t αt[ ht] corresponds to a weighted combination of
decision representations (α corresponds to the weight),
as typically performed via Adaboost [51]. Similarly, the
combination method adopted in [46], where PCA-based
representations of MRI (denoted as yMRI ) and MR
spectrocopy (denoted by yMRS) were concatenated into a
unified predictor, can be rewritten as R̂ =[ yMRI , yMRS].

Co-association matrix fusion This fusion approach
involves integrating information being derived from the
knowledge representations (i.e. properties of the repre-
sentations are extracted and combined). This information
is captured within what we term a co-association matrix,
which is then decomposed to yield a single, unified repre-
sentation. Typically Eigenvalue decomposition is utilized
for the latter as it will yield a mathematically interpretable
representation of an input square matrix.
We denote the co-association matrix as Wt = δ(φt),

where δ is any function used to quantify the informa-
tion within the representations φt , t ∈ {1, . . . , nM},
φ ∈ {F, h, y,K}. These Wt , t ∈ {1, . . . , nM}, can then be
combined as Ŵ = ξ∀t[Wt], where ξ is a weighted or
unweighted combination function. The final fused rep-
resentation, R̂, may then be calculated via Eigenvalue
decomposition as,

ŴR̂ = 
D̂R̂, (3)

such that R̂T D̂R̂ = 1 and D̂ii = ∑
j Ŵij (similar to Eq. 1).

Note that depending on the type of association being
captured in Wt and the type of representation φt , some
modifications to Eq. 3 may be required to obtain an
appropriate R̂. For example, when considering kernel rep-
resentations, Eq. 3 is modified to result in a multi-kernel
Eigenvalue decomposition problem as follows,

K̂ŴK̂TR̂ = 
K̂D̂K̂TR̂, (4)

subject to same conditions as for Eq. 3. Here, K̂ = ξ∀t[Kt],
t ∈ {1, . . . , nM}, is the combined kernel representation
based on the combination function ξ .
Co-association matrix fusion can be seen to encompass

a wide variety of previous work, including combining pair-
wise distances extracted from multiple low-dimensional
representations [5, 45], combining correlations extracted
from multiple kernel representations [52], or combining
CCA-based representations via regularization [6].

Structural fusion Fusing the structure inherent to a
knowledge representation [53, 54] is a perhaps lesser
explored approach to data fusion. In one of its earliest
applications, Higgs et al. [54] demonstrated that spectral
embedding revealed implicit complementary manifold
structure information in both image and microarray data,
which could be useful in classification. The idea of fusing
representations (derived from different data modalities)
at a structural level has thus been primarily explored
in the context of low-dimensional representations
[53, 55, 56].
Given a set of representations φt , t ∈ {1, . . . , nM}, φ ∈

{F, h, y,K}, structural fusion first involves some form of
“representation alignment” to ensure that all of φt lie in the
same co-ordinate frame-of-reference, i.e., calculating φ̂t =
T(φt), where T denotes the transformation required to
align the representation into a unified frame-of-reference.
For example, point correspondences have been used to
drive an alignment of low-dimensional representations to
one another, in previous work [57].
Once aligned, the final fused representation, R̂, could

be obtained via,

R̂ = ξ
∀t

(φ̂t), (5)

where ξ denotes the combination function. In addi-
tion to applications demonstrated in learning [55]
and retrieval [56], structural fusion was utilized by
Sparks et al. [35] to develop a parametrized shape
model to combine information from across multi-
ple aligned low-dimensional representations and thus
distinguish between tumor sub-types via pathology
data.

Weighted and unweighted data fusion
For each of the data fusion strategies above, the com-
bination function ξ enables either a weighted or an
unweighted combination of the different data modal-
ities. Calculation of weights requires quantification of
the relative contributions of the individual data modal-
ities, and ensures that the resulting unified represen-
tation accurately captures these contributions. Further,
the unified representation that leverages weighting may
be expected to demonstrate better class separability
compared to a naive, unweighted combination (or con-
catenation) of these data modalities, as demonstrated
in the context of decision and low-dimensional repre-
sentations. However, learning optimal weights for the
data modality typically requires some form of class
information.
In previous work, decision representations have been

extensively explored in terms of both unweighted [37]
and weighted [51] combinations, while kernel represen-
tations have classically been considered within weighted
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multi-kernel formulations [16, 23] alone. By contrast, low-
dimensional representations have typically been com-
bined within an unweighted formulation [5, 45]. Label
information has, however, been used to regularize low-
dimensional representations [6, 7] (i.e. to minimize out-
liers and ensure a smooth continuum between different
classes). Thus, for each of the knowledge fusion strategies
above, it is possible to utilize either of the following:

(a) Unweighted : Instead of using label information, a
data-driven estimation is typically utilized. For
example, both Tiwari et al. [45] and Viswanath et al.
[5] utilize the median as a maximum likelihood
estimator across multiple co-association matrices
Wt , t ∈ {1, . . . , nM}, (derived from corresponding
low-dimensional representations yt). This results in a
unified Ŵ , which then undergoes Eigenvalue
decomposition as detailed in Eq. 3.

(a) Weighted : An optimization function is utilized to
calculate different weights for each input
representations. In the presence of labeled
information, this function could optimize
classification accuracy; alternate objective functions
could include an unsupervised clustering measure or
a similarity measure. For example, label information
has been used both for multi-kernel learning [58] as
well as for constructing a semi-supervised
representation [8].

Experimental design
To better understand the interplay and contributions of
different modules that can be utilized for multimodal
data fusion, we have implemented four representative
DR-based data fusion methods and evaluated their per-
formance in three distinct clinically relevant problems.
Table 2 summarizes the 3 problems and different types of
data considered in this work. Note that each clinical prob-
lem was identified such that it involves heterogeneous
data integration of different data types and dimension-
alities, including fusion of radiology and gene-expres-
sion data (radio-genomics),MR imaging and spectroscopy
data (radio-omics), and histology and protein-expression
data (histo-omics). Further, for each clinical problem, the
features being extracted are at different length scales (per-
location, per-region, and per-patient basis), resulting in
different ratios for the number of samples (N) to the
number of features (P). Note that while we have attempted

to diversify in terms of our choice of datasets and meth-
ods employed, this work is not meant as a comprehensive
evaluation of all possible imaging and non-imaging fusion
methods and datasets.

Multimodal data fusion strategies compared
For each problem, four distinct multimodal data fusion
methods were implemented, each of which utilized dif-
ferent combinations of fusion and representationmodules
(see Table 3 for details). In addition to having being previ-
ously published, these instantiations each utilize different
representation and fusion methods, but with the com-
mon step of using dimensionality reduction to construct
the final fused representation. These instantiations were
then systematically compared to the individual imaging
and non-imaging modalities in terms of their predictive
accuracy for each of these problems. For the purposes
of readability, we utilize the acronym DFS (Data Fusion
Strategy) in Table 3.

Dataset S1: MRI, proteomics for Alzheimer’s disease
identification
S1 requires the construction of a classifier to differentiate
Alzheimer’s Disease (AD) patients from a normal popula-
tion, based on quantitatively integrating area and volume
measurements derived from structural T1-weighted
brain MRI with corresponding plasma proteomic
biomarkers.
A total of 77 patients were identified from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu), of which 52 had been cat-
alogued as having AD while the remainder were nor-
mal healthy controls. The ADNI was launched in 2003
as a public-private partnership, led by Principal Inves-
tigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial magnetic res-
onance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neu-
ropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). For up-to-date informa-
tion, see www.adni-info.org. Patients were included in
S1 based on having both (a) a structural 1.5 T T1w
MRI scan acquired per the standardized ADNI proto-
col, and (b) plasma proteomics data, for which detailed
collection and transportation protocols are described on
the ADNI website (http://www.adni-info.org/Scientists/

Table 2 Summary of the three clinical problems and data cohorts utilized to evaluate the GFA

Dataset # Studies Modalities Clinical problem addressed

S1 77 T1-w MRI, protein-expression Differentiating Alzheimer’s patients from normal subjects

S2 40 Histology, protein expression profiles Predicting biochemical recurrence in prostate cancer

S3 36 (3000 voxels) T2-w MRI, MR spectroscopy Detecting prostate cancer on a per-voxel basis

adni.loni.usc.edu
http://www.adni-info.org/Scientists/ADNIScientistsHome.aspx
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Table 3 Summary of different DR-based multimodal data fusion methods considered in this work

Strategy Resampling Representation Weighting Fusion

DFS-DD - Decision Unweighted Direct fusion (AND operation)

DFS-EC Feature perturbation PCA Unweighted Co-association matrix fusion

DFS-KC - Kernels Weighted, semi-supervised Co-association matrix fusion

DFS-ES - LLE Unweighted Structural fusion

DFS Data Fusion Strategy, DD Decision representation, Direct fusion, EC Embedding representation, Co-Association fusion, KC Kernel representation, Co-Association fusion, ES
Embedding representation, Structural fusion

ADNIScientistsHome.aspx). The brain regions known
to be most affected by AD had been segmented and
quantified via the widely used FreeSurfer software pack-
age (http://surfer.nmr.mgh.harvard.edu/), that was run
on each T1w MRI scan, yielding a total of 327 fea-
tures (that were available for download). Similarly, plasma
proteomics had been extracted through a multiplex
immunoassay panel of blood samples to yield a protein
expression vector (that was available for download). These
features are summarized in the Appendix (Table 5), and
described in more detail on the ADNI webpage (http://
adni.loni.ucla.edu/).

Dataset S2: Histology, proteomics for prostate cancer
prognosis
S2 requires building a prognostic classifier that can distin-
guish between prostate cancer (CaP) patients that are at
risk for disease recurrence versus those who are not, using
pathology and proteomic information acquired immedi-
ately after radical surgery.
A cohort of 40 CaP patients was identified at the

Hospital at the University of Pennsylvania, all of whom
underwent radical prostatectomy. Half of these patients
had biochemical recurrence following surgery (within 5
years) while the other half did not. For each patient, a rep-
resentative histological prostatectomy section was chosen
and the tumor nodule identified. Mass spectrometry was
performed at this site to yield a protein expression vector.
The resulting 650 dimensional proteomic feature vector
consisted of quantifiable proteins found across at least
50% of the studies. A corresponding set of 189 histol-
ogy features were extracted based on using quantitative
histomorphometry on the digitized slide specimen and
included information relating to gland morphology, archi-
tecture, and co-occurring gland tensors. Both sets of fea-
tures are summarized in the Appendix (Table 6), and have
been described in more detail in Lee et al. [11].

Dataset S3: Multiparametric MRI for prostate cancer
detection
S3 requires quantitatively combining 2 different MRI pro-
tocols for accurately identifying locations of prostate can-
cer (CaP) in vivo, on a per-voxel basis: (a) T2-weighted

MRI reflecting structural imaging information about the
prostate, where every location is characterized via a scalar
image intensity value, and (b) MR spectroscopy data
which captures the concentrations of specific metabolites
in the prostate, and every location is represented as a
vector or spectrum.
A total of 36 1.5 Tesla T2w MRI, MRS studies were

obtained prior to radical prostatectomy from University
of California, San Francisco. These patients were selected
as having biopsy proven CaP, after which an MRI scan
(including T2w MRI and MRS protocols) had been
acquired. For every patient dataset, expert labeled cancer
and benign regions (annotated on a per voxel basis) were
considered to form the CaP ground truth extent, yield-
ing a total of 3000 voxels. For each voxel, 6 MRS features
were calculated based on calculating areas under specific
peaks to determine deviations from predefined normal
ranges [46]. 58 voxel-wise MRI features were extracted
for quantitatively modeling image appearance and texture
to identify known visual characteristics of CaP presence
[46]. The specific features utilized are summarized in the
Appendix (Table 7), and were extracted as described in
Tiwari et al. [8].

Evaluation measures
In order to compare the performance of different mul-
timodal data fusion methods against each other, as well
as against using the individual modalities, we formulated
each of S1, S2, S3 as a 2-class classification problems. Clas-
sifier performance in segregating the two classes was
used to quantify how well each of these strategies pre-
serves information relevant to building such a predic-
tor. Thus the parameters governing the creation of the
integrated representation as well as for constructing the
classifier were kept as consistent as possible for all 3
datasets.

Classifier construction and evaluation The Random
Forests (RF) classifier [37] was utilized to construct clas-
sifiers in all experiments. RF uses the majority voting
rule for class assignment by combining decisions from an
ensemble of bagged (bootstrapped aggregated) decision
trees.

http://www.adni-info.org/Scientists/ADNIScientistsHome.aspx
http://surfer.nmr.mgh.harvard.edu/
http://adni.loni.ucla.edu/
http://adni.loni.ucla.edu/
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The primary motivation for using RF over other clas-
sifier schemes were, (1) ability to seamlessly integrate a
large number of input variables, (2) robustness to noise
in the data, and (3) relatively few parameters that require
tuning [59].
The RF implementation within MATLAB (TreeBagger)

was utilized, where the number of bagged decision trees
was set to 100, and each decision tree was generated
through subsampling 66% of the input training feature
space. A separate RF classifier was trained and evalu-
ated on each of the 4 multimodal fusion methods (see
Table 3) as well as on each the 2 individual data modal-
ities (i.e. a total of 6 classifiers). Evaluation of the RF
classifier in each case was done through ROC analysis,
to yield an area under the receiver-operating character-
istic curve (AUC) as a measure of performance for each
method.
Classifier robustness was determined via a randomized

three-fold cross validation procedure, with segregation of
data on a per-patient basis. Each run of three-fold cross
validation involved randomly dividing a given dataset into
three folds, following which 2 folds (i.e. 2/3rd) were used
for training and the remaining fold (1/3rd) for testing.
This is repeated until all the samples are classified within
each dataset. This randomized cross-validation was then
repeated a total of 25 times, and done separately for each
of the 6 RF classifiers.

Statistical testing Through the three-fold cross-
validation procedure, each classifier yielded a set of 25
AUC values (corresponding to each cycle of the pro-
cedure) and for each of 6 strategies being compared.
Multiple comparison testing to determine statistically sig-
nificant differences in AUC values for each dataset con-
sidered (i.e. within the results for each of S1, S2, S3)
was performed using the Kruskal–Wallis (K-W) one-way
analysis of variance (ANOVA) [60]. The K-W ANOVA
is a non-parametric alternative to the standard ANOVA

test which does not assume normality of the distribu-
tions when testing. The null hypothesis for the K-W
ANOVA was that the populations from which the AUC
values originate have the same median. Based off the
results of a K-W ANOVA, multiple comparison test-
ing was performed to determine which representations
showed significant differences in performance in a given
problem.

Results
Table 4 summarizes the mean as well as the standard devi-
ation in AUC values for each of 6 strategies, in each of the
3 classification tasks considered (calculated over 25 runs
of three-fold cross validation). The highest performing
strategy in each task is highlighted in bold.

Experiment 1: Integrating MRI and proteomics to identify
patients with Alzheimer’s disease
DFS-DD (decision representation, direct fusion) demon-
strated the highest overall AUC value, which can be
directly attributed to the relatively high performance of
the individual protocols (AUC of 0.77 for non-imaging,
0.88 for imaging data). However, the 3 top perform-
ing strategies (DFS-DD, DFS-KC, imaging data) also did
not demonstrate any statistically significant differences
in their performance in a Kruskal-Wallis test, indicat-
ing they were all comparable in terms of predictive
performance. The least successful method was DFS-
EC (embedding representation, co-association fusion),
which demonstrated statistically significantly worse clas-
sifier performance compared to all the remaining
strategies.
These results imply that when the input features have

relatively high discriminability, multimodal data fusion
that utilizes a simple representation (decisions) and a
simple fusion (direct) approach, as utilized by DFS-
DD, can be highly effective for creating an accurate
predictor.

Table 4 Mean and standard deviation in AUC values (obtained via three-fold cross validation) for datasets S1, S2, and S3, while utilizing
different DR-based multimodal data fusion methods (see Table 3 for details)

Strategy Dataset S1 Dataset S2 Dataset S3

Non-imaging 0.774 ± 0.043 0.511 ± 0.078 0.771 ± 0.009

Imaging 0.885 ± 0.034 0.503 ± 0.076 0.564 ± 0.036

DFS-DD 0.905± 0.035 0.496 ± 0.079 0.752 ± 0.026

DFS-EC 0.675 ± 0.065a 0.465 ± 0.111 0.720 ± 0.020

DFS-KC 0.888 ± 0.040 0.808± 0.067 b 0.857± 0.009 b

DFS-ES 0.789 ± 0.035 0.531 ± 0.086 0.748 ± 0.013

For baseline performance comparison, AUC values for the individual data modalities are also reported
aindicates that the result was statistically significantly worse than comparative strategies
bindicates that the result was statistically significantly better than comparative strategies
The best performing data fusion strategy for each classification task is highlighted in bold
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Experiment 2: Integrating histopathology and proteomics
to predict prostate cancer recurrence after surgery
DFS-KC (kernel representation, co-association fusion)
yielded the highest AUC value in Dataset S2, and was
also statistically significantly better than any alternative
strategy (p = 2.14e−12). All the remaining strategies
performed comparably, albeit relatively poorly (AUC ≈
0.5), with no significant differences in their classifier
performance. In comparison to dataset S1, it appears
that dataset S2 has relatively poor features associated
with the imaging and non-imaging modalities. As a
result, most data fusion strategies (as well as the indi-
vidual modalities) performed poorly for classification,
possibly as they are unable to capture enough relevant
information.

Experiment 3: Integrating MRS andMRI to identify
voxel-wise regions of prostate cancer recurrence after
surgery in vivo
DFS-KC (kernel representation, co-association fusion)
performed statistically significantly better than any alter-
native strategy in the classification task for Dataset S3
(p = 9.81e−26). Amongst the remaining strategies,
DFS-DD and DFS-ES (embedding representation, struc-
tural fusion), as well as the non-imaging data, per-
formed comparably and significantly better than DFS-EC
or using imaging data alone. In this dataset, a mis-
match can be observed in the relative discriminabil-
ity of the individual modalities (AUC = 0.77 vs 0.56
for non-imaging vs imaging). Both kernel-based meth-
ods (DFS-KC) and embedding-based methods (DFS-ES)
appear somewhat robust to this effect, however DFS-
EC (embedding representation, co-association fusion)
appears to have been affected by this issue. One pos-
sible factor contributing to the poor performance of
DFS-EC may be the relatively low dimensionality of
the MRS feature space (6 dimensions), which would
prevent the resampling step of DFS-EC from being
effective.
These conclusions are supported by the qualitative

results in Fig. 3, which depicts representative classification
results for detecting the presence of CaP on a voxel-wise
basis in vivo via different strategies. These results were
obtained by visualizing the voxel-wise RF classifier result
for this section as a heatmap, where red corresponds
to a higher likelihood of CaP presence. Classifying the
MRS (Fig. 3b) and T2w (Fig. 3c) data modalities individ-
ually yields results that appear to detect CaP with widely
varying accuracy (note poor overlap of red region with
ground truth, depicted via a red outline). By contrast, mul-
timodal data fusion via DFS-KC appears to show both
optimal sensitivity and specificity, as much of the red in
the heat map is located within the ground truth cancer
region.

Discussion
Our preliminary findings from this work were as follows,

• In terms of the knowledge representation module, a
kernel-based method (DFS-KC) demonstrated the
best classifier performance consistently across all 3
applications, implying that kernels may offer distinct
advantages for multimodal data representation. This
performance may have been further enhanced by the
fact that DFS-KC utilized differential weighting for
individual data modalities based on their
contributions, in addition to using semi-supervised
learning. However, we must note that this method
was also amongst the most computationally
expensive in terms of memory usage.

• For the knowledge fusion module, co-association
matrix fusion yielded consistently high classifier
performance; albeit when combined with kernels (as
done by DFS-KC) rather than when combined with
embeddings (reflected by the poor performance of
DFS-EC). However, further exploration of how each
representation strategy interplays with each fusion
strategy is required to understand this aspect better,
which was out of the scope of the current work.

• One of our multimodal data fusion methods
(DFS-EC) demonstrated consistently poor classifier
performance across all 3 applications. While this
method has demonstrated significant success in
previous work [5], its poor performance in the
current work could be attributed to (a) inability to
handle sparse feature spaces (as seen in Dataset S3),
and (b) use of a linear embedding method (PCA)
which is likely unable to handle representation of
potentially non-linear biomedical data [30].

• Our experimental datasets demonstrated wide
variability in terms of the classifier performance
associated with the individual data modalities, which
had significant bearing on the performance of
different multimodal data fusion methods. For
example, in dataset S1 where both modalities showed
a relatively high classifier AUC individually, a simple
combination of decision representations offered the
highest performance amongst the integrated
representations (DFS-DD). However, in dataset S2
where both modalities showed relatively poor
discriminability individually, most of the data fusion
methods failed to create accurate, discriminatory
representations.

• Dataset S2 was an example of a Big-P-Small-N
(number of features P >> number of samples N)
problem where the large noisy feature space ensured
that most representation strategies failed to yield an
accurate classifier. In additional experiments
involving feature selection (not shown) to assuage
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(a) (b) (c)

(d) (e) (f)
Fig. 3 Sample predictive heatmaps for detection of prostate cancer in vivo through combining MRI and MRS data. a shows a T2w MRI section with
the MRS grid overlaid in white. The expert annotation of cancer presence is also shown with a red outline around those voxels that were assessed as
cancerous. Corresponding automated classification results are shown for using: b T2w MRI texture features alone, cMRS peak area metabolite ratios,
d DFS-ES, e DFS-EC, f DFS-KC. These are visualized in the form of heatmaps, where red corresponds to higher probability of CaP presence. The
expert annotation of CaP presence is also superposed via a red outline in each image

this mismatch, we found that kernel-based
approaches performed better in the absence of
feature selection (i.e. when provided the entire
feature space). By contrast, with feature selection
applied, LDR-based approaches improved in
performance, likely because they could better identify
a discriminatory projection for the data.

• Dataset S3 was an example of a Small-P-Big-N
(number of samples N >> number of features P)
problem, wherein very sparse feature space caused
embedding-based methods (DFS-EC, DFS-ES) to
throw a number of errors during our experiments.
The issue of very few number of input dimensions
was further exacerbated by having a large number of
samples causing these methods to become more
computationally expensive than when P >> N .

• While one would expect multimodal data fusion
strategies to always perform better than at least the
weaker modality under consideration, our
experimental results suggest otherwise. When
suboptimal representation or fusion strategies are
utilized e.g. using PCA within DFS-EC for
representation, or simple structural fusion within
DFS-EC, such data fusion methods tend to perform
comparably or worse than the individual modalities.
Conversely, when a method leverages different
modules in a complementary manner (e.g. kernels,
weighting, and semi-supervised learning in DFS-KC),

we can construct a truly robust, accurate multimodal
data fusion predictor.

The most significant finding of our methodological
review and experimental results was the variety of factors
affect the process of DR-based data fusion. For exam-
ple, when combining fusion and representation strate-
gies, one should consider how noisy the individual
modalities are or how many samples are available for
training the predictive model. Thus, while our initial
results indicate that kernel-based methods (DFS-KC)
yield highly discriminatory predictive models within all
3 biomedical datasets (each of which comprised dif-
ferent heterogenous modalities), a more wide-ranging
evaluation is required to ratify this finding. Our cur-
rent findings do echo previous work demonstrating the
high performance offered by kernel-based representations
[14, 24–26].
We also acknowledge several additional limitations

exist in our study. While we have attempted to diver-
sify in terms of our choice of datasets and methods
evaluated in the current study, we did not attempt a
comprehensive evaluation of all possible imaging and
non-imaging fusion methods. We have instead opted
to systematically compare and relate a few representa-
tive DR-based multi-modal data fusion strategies in the
context of different clinical applications, to provide an
overview of the interplay between different individual
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modules that can comprise a data fusion method. For
example our experiments did not explicitly include an
examplar of CCA-based methods [61]. Methods we did
implement and compare involved directly projecting data
either linearly or non-linearly into a reduced embedding
space. As CCA based methods optimize for correlations
between modalities when projecting them, they did not
fit within the strict definition we utilized in this study.
Further, none of the datasets considered in this work
comprise more than 2 modalities, nor did we examine
multi-class or multi-task learning problems. However,
our methodological description (as well as the meth-
ods we compared in this work), have been described
to be easily extensible to multiple data modalities or
labels.
Recently, several papers have examined the use of

imputation between heterogeneous data modalities i.e.
predicting “missing” values on one modality based on
available values on a complementary data modality
[62–64]. We have instead examined how to combine
the information from across heterogeneous modalities
to build predictive models. Our framework also specif-
ically focuses on the steps associated with data fusion,
rather than the entire pipeline for building predictive
models. For example, while we did perform additional
experiments regarding the effect of feature selection
(not shown), we did not evaluate this in more detail
due to the complexity it would add to our experimen-
tal design. The effect on the data fusion method of
varying the input feature space or the number of sam-
ples required for training are also avenues for future
work.

Conclusions
In this paper, we have presented common concepts,
methodological choices, and a unifying workflow to
address the major challenges in quantitative, heteroge-
neous multi-modal data integration. In addition to a
wide variety of choices for representation and fusion
techniques, we have acknowledged the contribution of
resampling or weighting approaches; all of which enable

the construction of a variety of different data integra-
tion approaches which can be tuned for a particular
application, dataset, or domain. In addition to provid-
ing an overview of different modules, we experimen-
tally implemented and compared 4 representative data
fusion methods in the context of 3 clinically signifi-
cant applications: (a) integrating T2w MRI with spec-
troscopy for prostate cancer (CaP) diagnosis in vivo, (b)
integrating quantitative histomorphometric features with
protein expression features (obtained via mass spectrom-
etry) for predicting 5 year biochemical recurrence in CaP
patients following radical prostatectomy, and (c) integrat-
ing T1w MR imaging with plasma proteomics to dis-
criminate between patients with and without Alzheimers’
Disease.
Our preliminary results indicate that kernel-based

representations are highly effective for heterogeneous
data fusion problems such as those considered in this
work, as seen by the fact that a weighted multi-kernel
data fusion method yielded the highest area under
the ROC curve of over 0.8 in all three applications
considered. Our results also suggest that in situations
where the individual modalities demonstrate relatively
poor discriminability, many of the data fusion meth-
ods may not yield accurate, discriminatory representa-
tions either. This implies that when developing such
multimodal data fusion schemes, one must account for
how noisy or sparse individual modality feature spaces
are, as this could significantly affect embedding-based
representations. Optimally weighting individual modali-
ties or samples as implemented in the most successful
data fusion strategy also appear to have a significant
effect on the discriminability of the final integrated
representation.
With the increasing relevance of fused diagnostics in

personalized healthcare, it is expected that such hetero-
geneous fusion methods will play an important role in
developing more comprehensive predictors for disease
diagnosis and outcome.

Appendix

Table 5 Description of 327 imaging and 146 proteomic features in Dataset S1 for classifying AD patients from normal controls

T1w MRI # Description

FreeSurfer ROIs extracted 327 Subcortical, cortical volumes, surface area, thickness average and standard
deviation for Pallidum, Paracentral, Parahippocampal, Opercularis, Pars Orbitalis,
Triangularis, Pericalcarine, Cingulate, Frontal, Pareital, Temporal, Caudate, Insula,
Occipital etc.

Proteomic data Description

Plasma proteomics 146 Microglobulin, Macroglobulin, Apolipoproteins, Epidermal growth factors,
Immunoglobulins, Interleukins, Insulin, Monocyte Chemotactic Proteins,
Macrophage Inflammatory Proteins, Matrix Metalloproteinases etc.
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Table 6 Description of 189 histomorphometric and 650 proteomic features in Dataset S2 to be used to identify patients who will and
who will not suffer CaP recurrence within 5 years

Morphological # Description

Gland Morphology 100 Area Ratio, distance Ratio, Standard Deviation of Distance, Variance of
Distance, Distance Ratio,Perimeter Ratio, Smoothness, Invariant Moment 1–
7, Fractal Dimension, Fourier Descriptor 1–10 (Mean, Std. Dev, Median, Min/
Max of each)

Architectural Description

Voronoi Diagram 12 Polygon area, perimeter, chord length: mean, std. dev., min/max ratio,
disorder

Delaunay Triangulation 8 Triangle side length, area: mean, std. dev., min/max ratio, disorder

Minimum Spanning Tree 4 Edge length: mean, std. dev., min/max ratio, disorder

Co-occurring Gland Tensors 39 Entropy, energy: mean, std. dev., range

Gland Subgraphs 26 Eccentricity, Clustering coefficient C, D, and E, largest connected
component: mean, std. dev.

Proteomic Description

Proteins Identified 650 Protein-disulfide isomerase A6, T-complex protein subunit delta, ADP-
ribosylation factor 1/3, Protein di-sulfide-isomerase, Ras GTPase-activating-
like protein IQGAP2, T-complex protein subunit beta, Ras-related protein
Rab-5C, ATP-dependent RNA helicase DX3X/DDX3Y, 40S ribosomal protein
S17, Serine/arginine-rich splicing factor 7, Tubulin alpha-1A chain/alpha-
3C/D chain/ alpha-3E chain, Laminin subunit alpha-4, Collagen alpha-1 (VIII)
chain, Tubulin-tyrosine ligase-like protein 12

Table 7 Description of 58 texture and 6 metabolic features in Dataset S3, extracted from 1.5 Tesla T2w MRI and MRS for identifying
prostate cancer (CaP) on a per-voxel basis

Texture features # Description

Kirsh Filters 4 X-direction, Y-direction, XY-diagonal, YX-diagonal

Sobel Filters 4 X-direction, Y-direction, XY-diagonal, YX-diagonal

Directional Filters 5 x-Gradient, y-Gradient, Magnitude of Gradient, 2 Diagonal Gradients

First order Gray Level 8 Mean, Median, Standard deviation, Range for window size = 3 × 3, 5 × 5

Haralick features 13 Contrast Energy, Contrast Inverse Moment, Contrast Average, Contrast Variance, Contrast Entropy, Intensity
Average for window size = 3× 3, Intensity Variance, Intensity Entropy , Entropy, Energy, Correlation, info. Measure
of Correlation 1 , Info. Measure of Correlation 2

Gabor filters 24 Filterbank constructed for different combinations of scale and orientation

Metabolic features Description

Metabolites Identified 6 Area under peaks for choline (Ach), creatine (Acr ), citrate (Acit ), and ratios (Ach/Acr , Ach/Acit , Ach+cr/Acit )
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