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Abstract

Background: Salmonella infection poses significant public health threat globally, especially in resource-limited
countries. Emergence and spread of antibiotic resistant strains to fluoroquinolones have led to treatment failures
and increased mortality in Salmonella infection. However, there is dearth of information regarding mechanisms of
resistance to fluoroquinolones in Ghana. This study therefore sought to identify chromosomal mutations and
plasmid-mediated resistance as possible mechanisms of fluoroquinolone resistance from clinical isolates in Ghana.

Methods: This was a retrospective study of archived isolates biobanked at Kumasi Centre for Collaborative Research
in Tropical Medicine, Ghana. Isolates were obtained from blood, stool and oropharynx samples at two hospitals,
between May, 2016 and January, 2018. Salmonella identification was done using standard microbiological protocols
and antibiotic susceptibility testing performed by Kirby-Bauer disc diffusion method. Isolates with intermediate
susceptibility and/or resistance to nalidixic acid and/or ciprofloxacin were selected and examined for chromosomal
mutations by Sanger sequencing and plasmid-mediated resistance by PCR.

Results: Of 133 biobanked isolates cultured, 68 (51.1%) and 16 (12%) were identified as Salmonella Typhi and non-
typhoidal Salmonella (NTS), respectively. Sequence analysis of gyrA gene revealed the presence of 5 different
nonsynonymous mutations, with the most frequent mutation (Ile203Ser) occurring in 12 out of 13 isolates tested.
Gyrase B (gyrB) gene had 1 nonsynonymous mutation in 3 out of 13 isolates, substituting phenylalanine with leucine at
codon 601 (Phe601Leu). No mutation was observed in parC and parE genes. Two NTS isolates were found to harbour
qnrS plasmid-mediated resistant gene of molecular size 550 bp with high ciprofloxacin MIC of 0.5 μg/ml.

Conclusion: This study reports for the first time in Ghana plasmid-mediated fluoroquinolone resistant gene qnrS in
Salmonella clinical isolates. Nonsynonymous mutations of gyrA and gyrB genes likely to confer Salmonella reduced
susceptibility to ciprofloxacin were also reported.
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Background
Human Salmonella enterica infection poses a significant
public-health challenge globally, especially in low-to-
middle income countries in sub-Saharan Africa and
South Asia where sanitation is poor [1]. The situation is
worsened by an increasing rate of emergence and distri-
bution of antibiotic resistant strains [2–4].
One surveillance study has demonstrated an obvious in-

crease in overall antimicrobial resistance from 20 to 30%
in the early 1990s to as high as 70% in the early 2000s [5].
This report was based on old generic antibiotics which are
not currently in use. Chloramphenicol, ampicillin and
sulfamethoxazole trimethoprim used to be the drugs of
choice for treating Salmonella infection for over a decade
[6] . However, because of increased resistance to these
first-line drugs, physicians have resorted to ciprofloxacin
(a fluoroquinolone) [7]. Since its introduction, there has
not been structured surveillance mechanism(s) to identify
mutations possibly associated with its resistance in Ghana.
Availability of only few new antibiotics, has placed enor-
mous value on investigations into resistance strains of bac-
teria. The World Health Organisation (WHO) has listed
fluoroquinolone–resistant Salmonella spp. as part of the
priority pathogens for which new antibiotics are urgently
needed [8]. Although phenotypic resistance could be avail-
able in some clinical laboratories, there is paucity of data
on molecular investigations of fluoroquinolone resistant
genes associated with Salmonella infection in Ghana and
many African countries.
Fluoroquinolone resistance is mainly due to two mecha-

nisms: chromosomally mediated mutations occurring at the
quinolone resistance determining regions (QRDR) of topo-
isomerase genes (gyrA, gyrB, parC and parE genes) and re-
sistance mediated by plasmids [9]. The latter is further
divided into 3 different routes that confer decreased suscep-
tibility to fluoroquinolones: 1) quinolone resistance proteins
(encoded by qnr genes (qnrA, qnrB, qnrC, qnrD, qnrS) that
shield DNA gyrase from the effect of fluoroquinolones); 2)
aac(6′)-Ib-cr resistance mechanism (an aminoglycoside ace-
tyltransferase that modifies fluoroquinolones by acetylating
the free nitrogen on the C7 ring of the drug, decreasing
binding affinity), and 3) plasmid-mediated resistance by
OqxAb and QepA efflux systems [10, 11].
Fluoroquinolones resistance mediated by plasmids have

been identified in some developed countries such as United
States of America, United Kingdom and France [9, 12, 13].
With the high rate of spread of plasmid-mediated resistance
determinants coupled with some factors such as inter-
national travels, there is a possibility of fluoroquinolone re-
sistant Salmonella strains circulating in Ghana. More often
than not, fluoroquinolone resistance in Salmonella enterica
is mediated by gyrA mutations [3, 14], with few reported
cases of gyrB mutations [15] and very few cases of topo-
isomerase IV (parC and parE) genes. Mutation results in a

significant reduction of the drug-enzyme binding, and as
such the ability for fluoroquinolones to inhibit DNA
ligation is totally restricted [16, 17]. Both chromosomal and
plasmid-encoded fluoroquinolone resistance are responsible
for conferring low-level resistance to fluoroquinolones [18],
nonetheless, high level-resistance (with increasing MIC up
to 250-fold) has been documented [19].
Fluoroquinolone resistant Salmonella strains with

multiple gyr and par mutations have been reported from
Cambodia, India and Nepal [20, 21]. In Africa, fluoro-
quinolone resistant strains of Salmonella are known to
circulate in countries such as Kenya, Tanzania, Malawi,
South Africa, Zambia, Democratic Republic of Congo
and Nigeria [4, 22, 23]. However, meta analysis con-
ducted by Cuypers et al., revealed lower prevalence and
spread of these strains in Africa compared to Asia [8].
This study therefore sought to identify resistance asso-

ciated with mutations in the topoisomerase genes of Sal-
monella and plasmid-mediated resistant genes associated
with fluoroquinolone resistance in Salmonella strains
from Ghana.

Methods
Study design and study area
This was a retrospective study of archived isolates (from
blood, stool and oropharynx samples) biobanked at Ku-
masi Centre for Collaborative Research in Tropical
Medicine (KCCR), Ghana, between May, 2016 and Janu-
ary, 2018. These isolates were collected as part of a lar-
ger study that sought to investigate the burden of severe
typhoid in sub-Saharan Africa with six countries in par-
ticipation (Ghana, Burkina Faso, Democratic Republic of
Congo, Ethiopia, Nigeria and Madagascar). Nonetheless,
this report focused only on the Ghanaian site. Study
population comprised patients that presented with fever
at Komfo Anokye Teaching Hospital (KATH) and
Agogo Presbyterian Hospital (APH) in the Kumasi Me-
tropolis and Asante-Akim North district, respectively,
both located in the middle belt of Ghana. KATH serve
as a tertiary hospital in an urban setting whereas APH is
a primary health facility in a rural area of Ghana.

Ethics approval
The main study protocol was reviewed and approved by
the Committee for Human Research Publications and
Ethics (CHRPE) at the School of Medical Sciences,
Kwame Nkrumah University of Science and Technology
(KNUST) (Approval Number: CHRPE/AP/188/18).

Data collection
Study participants’ biodata such as age and gender were
collected from the data department of KCCR. Informa-
tion regarding the source of isolates, total number of
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samples received and processed were retrieved from la-
boratory data.

Laboratory procedures
Bacterial culture
Biobanked isolates were removed from − 80 °C freezer
(Thermo Scientific), thawed and sub-cultured unto three
standard growth media: Blood Agar (BA – Columbia
agar base supplemented with 5% sheep blood), chocolate
agar (CA) and macConkey agar (Mac) (BD, Franklin
Lakes, New Jersey, USA) under sterile working condi-
tion. All the plates were incubated aerobically overnight
at 35 °C–37 °C except for CA plates which was incubated
in 5% CO2 for microaerophilic condition.

Bacterial identification
Salmonella was identified based on colonial morphology on
the various agar, microscopic presentation, latex agglutin-
ation test, biochemical tests (including API20E), as well as
serotyping (by White-Kauffmann Le-Minor scheme) using
commercially available serotyping kit from BD (Franklin
Lakes, New Jersey, USA). On both the BA and CA, small,
creamy gamma (ɣ) hemolytic colonies consistent with Sal-
monella sp. was recorded. Gram negative short rods with
small colourless non-lactose fermenting colonies on Mac
was also documented. Biochemical tests such as triple sugar
iron (TSI), urease, citrate tests were performed to aid in
Salmonella identification from other enterobacteria based
on sugars fermentation, urease production and citrate util-
isation, respectively. Isolation and identification of other
gram negative and positive bacteria were done according to
standard microbiological protocols.

Antibiotic susceptibility testing
We performed antimicrobial susceptibility testing on all
biobanked isolates confirmed as Salmonella according to
Clinical and Laboratory Standards Institute (CLSI)
guidelines [24]. Susceptibility to ampicillin (10 μg),
amoxiclav (amoxicillin & clavulanic acid; 20/10 μg), cef-
triaxone (30 μg), trimethoprim/sulfamethoxazole (1.25/
23.75 μg), ciprofloxacin (5 μg), gentamicin (10 μg), tetra-
cycline (30 μg), chloramphenicol (30 μg), ceftazidime
(30 μg), cefotaxime (30 μg) and nalidixic acid (30 μg) was
tested on Mueller Hinton agar (BD, USA) using the
Kirby-Bauer disc diffusion method. The breakpoints of
the various antibiotics used were in line with CLSI 2018.
Resistance to fluoroquinolones, defined as isolates with
intermediate susceptibility and/or resistance to nalidixic
acid (surrogate marker for ciprofloxacin resistance) and/
or ciprofloxacin were selected for Minimum Inhibitory
Concentration (MIC). Enterobacteria such as E. coli and
Klebsiella sp. that were resistant to 3rd generation ceph-
alosporins in this study were further screened to detect
the presence of extended spectrum beta-lactamase

(ESBL) enzyme using double-disc diffusion method on
Mueller Hinton agar according to CLSI guidelines [24].
Again, S. aureus resistant to cefoxitin were regarded as
methicillin-resistant Staphylococcus aureus (MRSA).

MIC determination
Minimum inhibitory concentration (MIC) was per-
formed on ciprofloxacin/nalidixic acid intermediate and/
or resistant isolates using ciprofloxacin E-test (epsil-
ometer test) according to the manufacturers recommen-
dation (Oxoid, Wesel, Germany) to confirm
ciprofloxacin resistance. E-test gives a direct quantifica-
tion of antimicrobial susceptibility in the form of
discrete MIC values. Isolates with ciprofloxacin break-
point concentration (μg/ml) of ≤0.06 μg/ml was docu-
mented as sensitive (S); between 0.12 and 0.5 μg/ml as
intermediate (I); and ≥ 1 μg/ml was reported as resistant
(R) following the CLSI guidelines.

Quality control
Escherichia coli ATCC 25922 and Salmonella Typhimur-
ium ATCC 14028 were set up together with the test or-
ganisms to control media, biochemical tests, potency of
antibiotic discs, and ciprofloxacin E-test strip.

Molecular detection of fluoroquinolone resistant genes
DNA extraction
Genomic DNA was extracted from ciprofloxacin and/or
nalidixic acid resistant and/or intermediate isolates using
spherolyse DNA isolation kit (HainLife Science, Nehren,
Germany) according to manufacturer’s instructions. Ex-
tracted DNA were used as templates for detection of
chromosomally-encoded mutations in the topoisomer-
ase genes and plasmid-mediated fluoroquinolone re-
sistant genes.

Amplification of topoisomerase genes
Detection and amplification of gyrA, gyrB, parC and parE
genes by PCR was performed using primers shown in
Table 1. Twenty-five microlitres of One Taq Quick-Load
2x Master Mix with standard buffer (New England Biolabs®
Inc) was added to 1 μl each of 10 μM forward and reverse
primers respectively. Twenty-two microlitres of nuclease-
free water was added to the mastermix and finally, 1 μl
DNA template to obtain a reaction volume of 50 μl.
Amplification using Veriti thermal cycler was con-

ducted using the following PCR cycling condition: an
initial denaturation at 94.0 °C for 30 s; 30 cycles of
94.0 °C for 30 s, *60/54/53/52 °C for 1 min and 68.0 °C
for 1 min with a final extension of 68.0 °C for 5 min.
The reaction was put on hold at 4 °C until attended to.
Note: *60/54/53/52 °C corresponds to annealing

temperatures of gyrA, gyrB, parC and parE genes,
respectively.
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PCR product purification
The products of amplification of gyrA, gyrB, parC and
parE genes were purified using DNA clean and concen-
trator™-25 kit (Zymo research, Irvine, USA) according to
manufacturer’s instruction. This was to ensure that
ultra-pure PCR products are recovered ahead of Sanger
sequencing.

DNA sequencing and analysis of mutation
Sanger sequencing of the purified PCR products was
achieved using the aforementioned primers of the topo-
isomerase genes on an ABI 3730XL DNA Analyzer.
Analysis of the DNA sequences was performed by com-
paring with the reference S. Typhimurium strain LT2
genome (accession number AE006468.2) for gyrA, gyrB,
parC and parE genes (accession numbers AAL21173.1,
AAL22694.1, AAL22048.1 and AAL22055.1, respect-
ively) at GenBank database using the NCBI (National
Centre for Biotechnology Information) BLAST (basic
local alignment search tool) program. ExPASy (Expert
Protein Analysis System) translate tool, SIB (Swiss Insti-
tute of Bioinformatics) was used to translate the nucleo-
tide sequences into amino acid sequences. Global
alignment tool EBI (European Bioinformatics Institute)
was used to investigate for any mutations using
Needleman-Wunsch algorithm (EMBOSS).

Detection of plasmid-mediated quinolonone resistance
genes (PMQR)
Polymerase chain reaction (PCR) amplification of fluoro-
quinolones resistant genes: qnrA, qnrB and qnrS was per-
formed on all Salmonella isolates using the primers [9] in
Table 2. Genomic DNA extraction and PCR master-mix
preparation were prepared as mentioned before.
PCR experiments were carried out according to the

following cycling conditions for all three genes: initial
denaturation - 94 °C for 30s; template denaturation -
94 °C for 30s; annealing - 55 °C for 60s; extension - 68 °C
for 60s; final extension - 68 °C for 5mins; and reaction
was put on hold at 4 °C until amplicons were collected
for agarose gel electrophoresis.

Gel documentation
The amplicons were resolved by agarose gel electrophor-
esis (1.5% agarose) at 120 V for an hour and band visual-
isation done with the aid of UV-transilluminator (Vilber
Lourmat, Collegien, France). The concentation of agar-
ose used was more suitable for the expected band sizes
in this work. The stained gel was captured unto a desk-
top computer using the infinity® software.

Statistical analysis
Data were entered into Microsoft excel and exported to
STATA version 12 (Stata Corp, USA) for analysis.
Descriptive statistics was used to summarize the distri-
bution of various variables into tables and graphs. Differ-
ences between discrete variables were analysed using
Fisher’s exact test.

Results
Socio-demographic characteristics of the study
population
Majority (402/1036; 38.8% and 251/364; 69.0%) of the
sampled population from the two study sites (APH and
KATH) were ≤ 5 years old. The overall mean (±SE) age
(in years) of participants was 15.4 ± 0.5. The mean (±SE)
age (in years) of recruited patients seeking medical at-
tention at APH and KATH was 18.7 ± 0.6 and 4.5 ± 0.2
respectively. At both sites, there were high proportion of
males compared to females.

Table 1 Sequence of primers for detection of gyrA, gyrB, parC and parE genes

Target gene Nucleotide sequence (5′ -3′) Product size (bp) References

GyrA F 5′ –ATGAGCGACCTTGCGAGAGAGAAATACACCG − 3′ 632 [25]

R 5′ – TTCCATCAGCCCTTCAATGCTGAGTCTTC − 3′

GyrB F 5′ – AAGCGCGATGGCAAAGAAG − 3′ 1500 [25]

R 5′ – AACGGTCTGCTCATCAGAAAGG − 3′

ParC F 5′- CTATGCGATGTCAGAGCTGG − 3′ 270 [26]

R 5′- TAACAGCAGCTCGGCGTATT − 3′

ParE F 5′- TCTCTTCCGATGAAGTGCTG − 3′ 240 [26]

R 5′- ATACGGTATAGCGGCGGTAG − 3′

Table 2 Primers used for amplification of PMQR genes

Name Sequence Size (bp) References

QnrA-FW 5′-GGGTAT GGATATTATTGATAAAG-3′ 660 [9]

QnrA-RV 5′-CTAATCCG GCAGCACTATTA-3′

QnrB-FW 5′-GGMATHGAAATTCGCCACTG-3′ 264 [9]

QnrB-RV 5′-TTTGCYGYYCGCCAGTCGAA-3′

QnrS-FW 5′-AGTGATCTCACCTTCACCGC-3′ 550 [9]

QnrS-RV 5′-CAGGCTGCAATTTTGATACC-3′
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Distribution of bacteremic pathogens
Of 133 biobanked isolates cultured, 68 (51.1%) and 16
(12%) were identified as Salmonella Typhi and non-
typhoidal Salmonella (NTS) respectively (Fig. 1). Other
bacteriae identified included Escherichia coli (including
ESBL; 11; 8.3%), Staphylococcus aureus (including
MRSA; 7; 5.3%) and Klebsiella pneumoniae (5; 3.8%).
Salmonella Typhi was predominantly found in APH (56/
68; 82.4%) while NTS was high in KATH (9/16; 56.3%).

Salmonella from stool and oropharynx
A total of 13 Salmonella strains were isolated from 418
stool specimens collected from both APH and KATH. Of
the 13 strains, 4 (30.8%) and 9 (69.2%) were S. Typhi and
NTS, respectively (Table 3). Salmonella was the only
pathogen isolated from stool. Five hundred and fifty eight
oropharyngeal specimens (OPS) were collected from the
two study sites: APH – 401 (71.9%) and KATH – 157
(28.1%). Of the four (4) Salmonella strains isolated from
558 OPS, only 1 (25.0%) was identified as S. Typhi and 3
(75.0%) NTS (Table 3). All the Salmonella strains isolated
from stool and OPS were from APH but not KATH.

Serotyping of bacteremic isolates
Serotyping of iNTS revealed that Salmonella Typhimur-
ium (10/16; 62.5%) was the most predominant serovar
identified followed by Salmonella Enteritidis (5/16;
31.3%) and finally, 1 (1/16; 6.2%) untypable isolate. Rate
of isolation of Salmonella Typhimurium was signifi-
cantly higher in APH than in KATH (p = 0.011;
Table 4), however, Salmonella Enteritidis was isolated
from only KATH.

Antibiotic resistance profile
Generally, first-line anti-Salmonella drugs (ampicillin,
chloramphenicol, trimethoprim/sulfamethoxazole) re-
corded the highest rate of resistance in both S. Typhi
and NTS isolates (between 33.8 and 50.0%). Third-
generation cephalosporins (ceftazidime and ceftriaxone)
and gentamicin had 100% efficacy rate in all serovars of
Salmonella tested. Ciprofloxacin recorded significantly
reduced susceptibility (intermediate) in both typhoidal
and NTS (14.7 and 37.5%, respectively).

MIC determination for resistant and reduced-susceptible
Salmonella strains to fluoroquinolones
Of the 20 ciprofloxacin intermediate/resistant Salmon-
ella isolates tested by MIC, only 5 (breakpoint concen-
tration between 0.12 and 0.5 μg/ml) were intermediate
and no resistance recorded (Table 5).

Identification of mutations within QRDR
Thirteen isolates were selected (based on MIC values
from 0.03 to 0.5 μg/ml) for DNA product purification
and subsequent sequencing prior to mutational analysis.
Sequence analysis of gyrA gene revealed the presence of
5 different nonsynonymous mutations, with the most
frequent mutation (Ile203Ser) occurring in 12 out of 13
isolates tested (Table 6). Gyrase B (gyrB) gene revealed 1

Fig. 1 Distribution of bacteremic isolates from study sites. Biobanked bacterial isolates were cultured and identified using standard
microbiological culture methods and biochemical tests

Table 3 Bacterial isolates from stool and oropharynx

Pathogen n(%) pathogens from

Stool OPS

S. Typhi 4 (30.8) 1 (25.0)

NTS 9 (69.2) 3 (75.0)

Total 13 (100) 4 (100)
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nonsynonymous mutation in 3 out of 13 isolates, substi-
tuting amino acid phenylalanine with leucine at codon
601 (Phe601Leu). No mutation was observed in parC
and parE genes. In gyrA mutation alone, Serovar Typhi
recorded the highest mutation (5/13), followed by
Typhimurium (4/13) and Enteritidis (4/13). All three iso-
lates which harboured gyrB mutation were Salmonella
Typhi. Again, 3 isolates, all S. Typhi possessed both gyrA
and gyrB mutations. Only one S. Enteritidis isolate ex-
hibited Lys154Asn gyrA mutation and 5 S. Typhi isolates
had a Glu133Gly mutation in gyrA gene (Table 6). The
two isolates with the highest ciprofloxacin MIC (0.5 μg/
ml) had common amino acid substitutions resulting in 1
nonsynonymous mutation in gyrA gene (Ile203Ser).

Detection of plasmid-mediated qnr genes
Again, Of the 20 phenotypically resistant and/or inter-
mediate Salmonella isolates to ciprofloxacin and nali-
dixic acid tested by singleplex PCR reactions, there was
no amplification of qnrA and qnrB plasmid-mediated re-
sistant genes. However, 2 isolates were found to harbour
qnrS resistant gene of molecular size 550 bp (Fig. 2).
Both isolates were non-typhoidal Salmonella strains
from the blood (S. Enteritidis) and oropharynx (S. Typhi-
murium) of 11 and 1 year old children at KATH and
APH, respectively. Again, these two isolates recorded the
highest MIC value of 0.5 μg/ml (Table 6).

Discussion
This study identified five different gyrA mutations and
one gyrB nonsynonymous mutation in quinolone-
resistant Salmonella enterica from human clinical iso-
lates. Salmonella isolates harbouring plasmid-mediated
fluoroquinolone resistant gene qnrS was also identified
in this study.

There was high frequency of gyrA gene mutation in
this study than the other topoisomerase genes examined.
This agrees with findings from Eaves et al., in that muta-
tions occurring at the quinolone resistance determining
regions of other topoisomerase genes are more uncom-
mon than those observed in gyrA gene [27]. Thus, there
might be other mechanisms of resistance playing an im-
portant role, as mutations in all but gyrA gene were rare.
In Africa, the most common mutation known to account
for ciprofloxacin non-susceptibility in most clinical Sal-
monella isolates is found in gyrA gene, followed by parC
and gyrB genes, with no reported case of parE gene mu-
tation [28]. As observed in this study, both parC and
parE gene mutations were completely absent in the
study populations, consistent with previous studies [29].
Report by Bae et al., showed a higher frequency (18 out
of 27 isolates) of gyrA mutation (Asp87Gly) in nalidixic
acid resistant S. Enteritidis from South Korea [30]. How-
ever, the present study identified only 2 nalidixic acid re-
sistant S. Enteritidis with the same Asp87Gly gyrA
mutation and had ciprofloxacin MIC 0.12 μg/ml. Codons
83 and 87 of gyrA gene are widely known to be a com-
mon hotspot for gyrA mutation [31, 32], nevertheless,
their frequency was much lower in the current study.
Mutations at these codons, especially codon 87, have
been shown to be associated with decreased ciprofloxa-
cin susceptibility and nalidixic acid resistance [31].
Other gyrA mutation was detected in 5 S. Typhi iso-

lates which resulted in amino acid substitution from glu-
tamic acid to glycine at codon 133 with MIC of 0.03 μg/
ml (4 isolates) and 0.12 μg/ml (only one isolate). With
these low MICs, it could be suggested that mutation of
Glu133Gly alone could not necessarily lead to quinolone
resistance in Salmonella. This agrees with findings from
Eibach et al., who detected a Glu133Gly mutation in cip-
rofloxacin susceptible S. Typhi clinical isolate in Ghana
with MIC of 0.06 μg/ml [29]. However, studies in Kenya
found 11 S. Typhi reduced ciprofloxacin susceptible iso-
lates with the same gyrA mutation (Glu133Gly) [33].
Studies show that double mutations found in gyrase

further reduce binding affinity of the enzyme-DNA com-
plex to fluoroquinolones [34]. This agrees with the
current study as 2 S. Typhi isolates identified to have
double mutations in gyrA and gyrB genes were MDR
and also resistant to the quinolone nalidixic acid.
Gyrase B gene mutation was detected in only 3 S.

Typhi isolates which resulted in amino acid substitution
from phenylalanine to leucine at codon 601 (Phe601leu).
The first gyrB gene mutation (Glu466Asp) reported in
Ghana was from S. Typhimurium [15], however, the
present study identified gyrB mutation in S. Typhi, for
the first time in Ghana. Findings from Tadesse et al., re-
vealed a low proportion (0.2%) of Salmonella gyrB muta-
tion from human and animal sources in Africa [28].

Table 4 Invasive NTS distribution among study population

Serovar KATH [n(%)]
(n = 9)

APH [n(%)]
(n = 7)

p-value

Salmonella Typhimurium 3 (18.8) 7 (43.8) 0.011

Salmonella Enteritidis 5 (31.1) 0 0.034

Untypable 1 (6.3) 0 –

Table 5 MIC of fluoroquinolone resistant and reduced-
susceptible Salmonella strains

Isolate number MIC (μg/ml) Interpretation

16, 18 0.500 I

1, 14, 15 0.120 I

2, 5, 6, 8, 13, 17, 19, 20 0.030 S

3, 4, 7, 9, 10, 11, 12 0.015 S

I intermediate, S sensitive
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Molecular analysis by PCR detected the presence of quin-
olone resistance gene qnrS in 2 non-typhoidal Salmonella
isolates from the blood and oropharynx in patients attending
health care at KATH and APH respectively. The 3 principal
genes responsible for plasmid-mediated fluoroquinolone

resistance in Salmonella include qnrA, qnrB and qnrS genes
[9]. Previous studies in Ghana showed the absence of all
three genes [15, 29], indicating a more recent emergence of
qnrS resistant gene. Plasmids increase bacterial genetic di-
versity greatly through acquisition or loss of genes especially,
those pertaining to resistance and/or virulence. Detection of
qnrS gene in this study might be due to indiscriminate use
of over-the-counter antibiotics by humans, without comply-
ing to clinicians prescriptions. This could lead to increased
selective pressure on the drugs and subsequently contributes
to resistance. Again, there could be possibility of zoonotic
transmission of these resistant genes [35, 36], as Dekker
et al., has already reported on emergence of qnrB resistant
gene in poultry population in Ghana [37].
Variant qnrA1 of the qnrA gene family was the first

plasmid-mediated fluoroquinolone resistant gene de-
scribed, however, several studies show that this gene is
not commonly found in Salmonella [9, 38, 39]. This
might explain why none of the isolates tested in this
study was positive for qnrA.
Dekker et al., detected Salmonella Poona plasmid-

mediated resistant gene qnrB2 in 3 out of 200 poultry meat
samples collected from markets in Ghana [37]. In Africa,
evidence-based findings of plasmid-encoded genetic deter-
minants associated with fluoroquinolone resistance in

Table 6 Summary of resistance profiles, target gene mutations and prevalence of PMQR genes

Serovar Study site Cip MIC (μg/ml) Coresistance Target mutations

gyrA gyrB PMQR

Typhi APH 0.12 AMPCSXTNATET Ser83Tyr Phe601Leu

Glu133Gly

Ile203Ser

Typhi APH 0.03 AMPCSXTTET Glu133Gly Phe601Leu

Ile203Ser

Typhi APH 0.03 Glu133Gly

Ile203Ser

Typhi APH 0.03 Glu133Gly Phe601Leu

Ile203Ser

Typhi APH 0.03 Glu133Gly

Ile203Ser

Enteritidis KATH 0.03 AMPCSXTTET Ile203Ser

Enteritidis KATH 0.12 Asp87Gly

Ile203Ser

Enteritidis KATH 0.12 Asp87Gly

Ile203Ser

Enteritidis KATH 0.50 Ile203Ser qnrS

Typhimurium APH 0.03 Ile203Ser

Typhimurium APH 0.50 AMPAMC Ile203Ser qnrS

Typhimurium APH 0.03 AMPAMC Lys154Asn

Typhimurium APH 0.03 AMPCSXTAMC Ile203Ser

Fig. 2 Amplification and detection of qnrS plasmid-mediated
fluoroquinolone resistant gene (molecular size 550 bp) by PCR. Lanes
4,8 are positive for qnrS gene (550 bp). Lanes –C, +C are negative
and positive controls respectively.L = Molecular ladder of size 100 bp
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Salmonella strains are generally rare [28]. Few cases of qnrB
and qnrS genes have been reported in South Africa [40]
and Nigeria [8], respectively. Studies in Europe have re-
ported on the increasing rate of qnrB resistant genes in
several European countries (including Spain, Italy and
Netherlands) and these were mostly from animal sources
(predominantly chicken and turkey) [41]. The most com-
monly reported qnrB variant is qnrB2 and it is usually har-
boured in Salmonella serovars Agona, Derby, Enteritidis,
Hadar, London and Montevideo [41]. Although qnrB resist-
ant genes are often restricted to animal populations, there
is a potential chance of future global transmission to
humans, as variant qnrB19 has already been implicated in
human S. Typhimurium infection in Netherlands and Italy
[42, 43]. Studies in Scotland also revealed the presence of
qnrB and qnrS from returning travellers from Egypt and
Nigeria [39]. Another study conducted in United States re-
ported on low prevalence of plasmid-mediated fluoroquino-
lone resistant genes, particularly qnrS [12, 44]. However,
this study contrasts findings from some European (like
Germany and Poland) and Asian countries, depicting re-
gional differences in the prevalence of plasmid-mediated
fluoroquinolone resistant genes [45].
To date, there are 9 variants of qnrS resistant gene

(qnrS1 to qnrS9) identified, with qnrS1 being the most
predominant [46]. Previous studies showed that qnrS1
alone was capable of conferring reduced susceptibility to
ciprofloxacin even in the absence of gyrA mutation [47].
Again, findings from Hopkins et al., in the United States
demonstrated that quinolone resistant gene increased
ciprofloxacin MIC to 0.38–0.78 μg/ml [13], giving cre-
dence to the fact that, qnr genes might confer full resist-
ance in the near future with MIC ≥1 μg/ml if strong
surveillance system is not established to control spread
of these plasmid-encoded genes.
Other plasmid mediated fluoroquinolone resistant genes

not screened in this study include qnrC, qnrD, qnrVC,
aac(6′)-lb and plasmid-mediated enhanced efflux pump
mechanisms by QepAB and OqxAB [48]. Studies show
that the global prevalence of these genes are low [41]. Al-
though qnr genes are usually associated with plasmid-
encoded ESBL genes [10, 18], no ESBL gene was identified
among the qnrS positive strains in this study.
Resistance of Salmonella to ciprofloxacin and other re-

lated fluoroquinolones has serious public health implica-
tions because this class of antimicrobials is commonly
used to treat invasive forms of Salmonella infections.
Mechanisms by these plasmid-mediated genetic determi-
nants lead to low-level resistance that by itself does not
exceed clinical breakpoint for susceptibility. However, it
facilitates selection of higher level resistance and makes
pathogens harbouring PMQR genes difficult to treat [48,
49]. The present study could not examine for the presence
of other genetic determinants (such as qnrC, qnrD, qnrVC,

aac(6′)-Ib-cr, and qepAB genes) responsible for plasmid-
mediated fluoroquinolone resistance. Another limitation
to this study was the inability to link the novel mutations
(gyrA - Ile203Ser and Lys154Asn; and gyrB – Phe601Leu)
to their involvement in reduced ciprofloxacin susceptibil-
ity/resistance within the QRDR. A suggested approach is
to conduct a conjugational transfer experiment by intro-
ducing wild-type allele of the gyrA and gyrB genes into a
broad host-range plasmid vector [15].

Conclusion
This study reports for the first time plasmid-mediated
fluoroquinolone resistant gene qnrS in Salmonella clin-
ical isolates in Ghana. Nonsynonymous mutations
(Asp87Gly, Glu133Gly and Ser83Tyr) which confer Sal-
monella reduced susceptibility to ciprofloxacin were also
detected as reported in several studies [27, 29], with 3
other novel mutations likely to confer Salmonella resist-
ance. We recommend surveillance systems to track the
evolution of Salmonella plasmid-mediated resistant
genes and to ensure proper use of antibiotics and con-
trol of severe infections.
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