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Abstract

Background: Dengue and West Nile viruses are highly cross-reactive and have numerous parallels in geography,
potential vector host (Aedes family of mosquitoes), and initial symptoms of infection. While the vast majority (>
80%) of both dengue and West Nile virus infections result in asymptomatic infections, a minority of individuals
experience symptomatic infection and an even smaller proportion develop severe disease. The mechanisms by
which these infections lead to severe disease in a subset of infected individuals is incompletely understood, but
individual host differences including genetic factors and immune responses have been proposed. We sought to
identify genetic risk factors that are associated with more severe disease outcomes for both viruses in order to shed
light on possible shared mechanisms of resistance and potential therapeutic interventions.

Methods: We applied a search strategy using four major databases (Medline, PubMed, Embase, and Global Health)
to find all known genetic associations identified to date with dengue or West Nile virus disease. Here we present a
review of our findings and a meta-analysis of genetic variants identified.

Results: We found genetic variations that are significantly associated with infections of these viruses. In particular
we found variation within the OAST (meta-OR =0.83, 95% Cl: 0.69-1.00) and CCR5 (meta-OR =1.29, 95% Cl: 1.08-1.
53) genes is significantly associated with West Nile virus disease, while variation within MICB (meta-OR = 2.35, 95%
Cl: 1.68-3.29), PLCET (meta-OR = 0.55, 95% Cl: 0.42-0.71), MBL2 (meta-OR = 1.54, 95% Cl: 1.02-2.31), and IFN-y (meta-
OR =248, 95% Cl: 1.30-4.71), is associated with dengue disease.

Conclusions: Despite substantial heterogeneity in populations studied, genes examined, and methodology,
significant associations with genetic variants were found across studies within both diseases. These gene
associations suggest a key role for immune mechanisms in susceptibility to severe disease. Further research is
needed to elucidate the role of these genes in disease pathogenesis and may reveal additional genetic factors
associated with disease severity.
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polymorphism
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Background

Dengue (DENV) and West Nile (WNV) viruses are
mosquito-borne viruses in the Flaviviridae family, which
also includes other viruses such as Zika and yellow fever.
These viruses can cause disease with substantial public
health impact. DENV and WNYV are found in similar
areas of the world, can be carried by the Aedes family of
mosquitoes, have similar initial stages of infections and
similar symptoms of mild febrile illness, and are highly
cross-reactive; however, severe disease manifests differ-
ently for these two viruses [1-3]. West Nile Virus was
first identified in Uganda in 1937, has been endemic in
the United States since 1999 [4], and is estimated to
have infected 3 million people [5]. While the majority of
infections are asymptomatic, ~20% of infections lead to
mild febrile disease in infected individuals and 1% of in-
fected individual experience severe, neurological disease
such as meningitis and encephalitis [6]. DENV has a
vastly higher disease burden, with an estimated 50 mil-
lion cases and 25,000 fatalities worldwide annually [7, 8].
The majority of DENV infections can be classified as
asymptomatic or mild febrile illness, with approximately
< 1% progressing to Dengue Hemorrhagic Fever (DHF)
or Dengue Shock Syndrome (DSS). DHF is delineated
from mild DENYV febrile illness by the increase in vascu-
lar permeability, while DSS has the additional develop-
ment of circulatory shock [7, 8].

For both WNV and DENV, known risk factors such as
immune-compromised states or advanced age are associ-
ated with susceptibility to mild and severe disease [9,
10]. The mechanisms by which an infection leads to se-
vere disease in a subset of all infected individuals is in-
completely explained. Differing immune responses to
infections, including elevated cytokine responses, have
been proposed [11-13] and we have recently shown that
geographic location is not a driver of severity of WNV
infection in a localized region [14]. In addition to
similarities in the early stages of infection [15-17], both
viruses induce strong immune responses including che-
mokines (such as IL-8) and cytokines which up-regulate
inflammatory reaction (such as TNF-a, IL-1, II-6, and
IFN-P) [18-21]. Renewed interest in understanding flavi-
viral infection and disease susceptibility comes as cli-
mate change expands the number of individuals at risk
of exposure to WNV and DENV [3, 22], and with out-
breaks of related flaviviruses, most notably Zika [23, 24].

Genetic differences are additional explanations of indi-
vidual susceptibility to symptomatic disease, and previ-
ous genome-wide association studies (GWAS) and
candidate-gene studies have identified genetic factors as-
sociated with DENV or WNV disease pathogenesis. To
assess the current state of knowledge on genetic vari-
ation associated with these flaviviral diseases, and to
identify any shared features of anti-viral responses, we
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conducted a systematic review and meta-analysis of the
published associations to date between genetic variants
and development of DENV or WNV disease.

Methods

A systematic review of genetic factors and WNV or DENV
disease was conducted using the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA)
(Additional file 1) [25].

Search strategy

Medline, PubMed, Embase, and Global Health databases
were used to search the literature. Search terms included
West Nile or DENV and genetic factors; the same set of
text words was used for all databases in conjunction
with subject headings that were tailored for each data-
base. The text word search specified West Nile or Den-
gue in the title, a genetic term in the title or abstract,
and a human-related term in the title or abstract
(Table 1). A sample search strategy is included in the ap-
pendix (Additional file 2). Case-control studies which
examined at least one genetic factor associated with ei-
ther viral disease were included. Studies on non-human
(e.g., viral, mosquito) genetics and case reports on single
patients were excluded. Reports published prior to May
2017 were included in the review. An ancestry search
was done of references of selected studies to collect add-
itional potentially relevant references.

Table 1 Text word selection for search of selected databases.
Text words used for the search strategy, with one term from
each column required in the title for the viral term, or in the
title or abstract for the genetic and human terms

Viral terms Genetic Factor Human-related
terms terms

- West Nile = microsatellite(s) = human

- Dengue = genetic variation = man/men

= woman/women
= child/children
= teenager(s)

= genetic factor(s)
= genetic marker(s)
= genetic analysis/analyses

= SNP(s) = middle-aged

= single nucleotide polymorphism(s) = elderly

= copy number variant(s) = infant(s)

= genetic predisposition = male(s)

= genetic susceptibility = female(s)

= disease susceptibility = patient(s)

= GWAS = participant(s)

= genome-wide association = Citizen(s)
study/studies = subject(s)

= genetic association(s) = case(s)

= genetic association study/studies = control(s)

= candidate gene study/studies

= genetic predisposition to disease
= susceptibility to disease

= genetic variability

= gene identity
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Study selection and data extraction

Two researchers reviewed the titles and abstracts of all
studies and identified potentially relevant articles within
Covidence with 98.6% consistency [26]. Discrepancies
were resolved through re-review and mutual consensus.
Both researchers read the full text of all of the selected
potentially relevant articles and identified the final re-
ports to be included in this review. Data sets were ex-
tracted without personal identifiers and organized into
literature tables. The main fields included authors, year
of publication, country, sample size, case and control
group definitions, genotyping method, genes and genetic
variants analyzed, genotype count data when available,
odds ratios (OR), and statistical analysis method.

When two or more studies examined the same vari-
ants, we used the raw genotype data to calculate ORs
with 95% confidence intervals using the R package Epi-
tools [27]. When the raw genotype data were not avail-
able within the published papers, we requested the data
sets from corresponding authors of the studies. Of the
six authors contacted, three shared data, two indicated
they no longer had access to the data, and one did not
respond by date of submission. In order to make com-
parisons across the different DENV phenotypes used in
the studies, we compared asymptomatic DENV infec-
tions and controls with all symptomatic infections
(DENV fever, DENV hemorrhagic fever, and DENV
shock syndrome). Using the genotype data, we calcu-
lated ORs for each study under a dominant model, re-
cessive model, homozygote mutant versus homozygote
wild-type, and heterozygote versus homozygote
wild-type. We meta-analyzed the ORs using RevMan
[28]. The genetic model with the most significant
meta-OR is presented here. When this model was the
homozygote mutant versus homozygote wild or the het-
erozygote versus homozygote wild, we included both of
these models for that particular single nucleotide poly-
morphism (SNP).

Quality assessment

We assessed the quality of each study with the
Newcastle-Ottawa  Quality Assessment Scale for
Case-Control Studies [29], which assesses each study’s
selection, comparability, and exposure ascertainment
approach.

Results

To identify all published research assessing the role of
genetic variation with DENV or WNV disease, we exe-
cuted the above search strategy and identified 633 pub-
lished reports (Table 1, Fig. 1). Two researchers
independently reviewed the titles and abstracts of these
633 papers and identified 104 papers for further full-text
review in this meta-analysis (Additional file 3). One
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additional paper from 1987 was identified as pertinent
during the ancestry search and was added to the review.
The final analysis includes data from 87 of the 105 pub-
lications, following exclusion of 18 papers for cause
(seven repeats, six conference abstracts, and five with an
outcome other than disease severity). Reflecting the
higher disease burden and longer research history of
DENYV virus, of these 87 papers selected, 74 studied
DENV-infected populations and 13 focused on WNV.

HLA genetic variation associated with disease severity
Notably, 27 separate HLA alleles were examined by two
or more research groups for an association with severe
DENV disease (Additional file 4). Four research groups
analyzed HLA alleles for an association with WNYV dis-
ease (Additional file 5), however there was no overlap in
the alleles studied. Although HLA variants show sub-
stantial contribution to disease outcome, significant vari-
ations in study design, data analysis platforms, data
availability and presentation precluded our in-depth
meta-analysis of these data.

Multiple genes are associated with severity of WNV
infection

Previous reports of genetic associations with WNV dis-
ease severity focused on U.S. or Canadian populations
and compared severe and non-severe infections. Overall,
these studies identified 12 gene variants and significant
findings include SNPs of multiple immune-related genes
such as RFC1, SCN1A, and IRF3 (Table 2).

OAS1 and CCR5 have significant associations with WNV
disease across multiple studies

For genes with genotype count data available for >2
studies, we conducted a meta-analysis of genetic associ-
ation to disease severity. Meta-analysis allows recogni-
tion of well-established genetic associations and
identification of redundant studies for genes with null
associations. We found that SNPs in MX1, OASL,
OAS1, RFC1, and CCR5 were studied by multiple re-
search groups for an association with WNV disease
(Table 2). To assess the overall association of these SNPs
with WNV disease, we calculated a combined OR
for each gene based on the genotype counts under
four different genetic models. Of these, CCR5 and
OAS1 meta-ORs were significant under a dominant
model, with meta-OR of 0.83 [95% CI: 0.69-1.00]
and 1.29 [1.08-1.53], respectively (Fig. 2). The CCR5
meta-OR was also significant under an allelic model
with a meta-OR of 1.22 [95% CI: 1.03-1.44]. The
CCR5 delta 32 deletion is associated with more se-
vere disease while the OAS1 allele G was associated
with less severe disease.
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Fig. 1 PRISMA Flowchart of strategy to identify papers assessing genetic variation and WNV or DENV disease

J

Multiple genes are associated with severity of DENV
infection

Seventy-four studies have examined genetic associations
with DENV disease severity and more than 30 genes have
been implicated in DENV disease (Additional file 3). SNPs
that were studied by only a single research group are pre-
sented in Table 3. We also include SNPs studied by mul-
tiple research groups, but for which genotype data was
unavailable or the comparison groups of multiple studies
could not be analyzed together.

Significant associations with DENV disease

Among the DENV studies, the same variant within 17
genes was studied by two or more research groups
(Table 3). Four genes had significant meta-ORs (Fig. 3).
For a SNP in MBL2 (exon 1), we calculated a meta-OR
of 1.54 [1.02-2.31] under a dominant model and 1.65
[1.18-2.32] under an allelic model, with alleles other
than the A allele being associated with more severe dis-
ease. The T allele for SNP rs2430561 in the IFN-y gene

was associated with severe disease under a recessive model
with a meta-OR of 2.48 [0.30—4.71]. For a SNP located within
MICB (rs3132468), we found the CC genotype had a signifi-
cantly greater association with severe disease (meta-OR 2.35
[1.68-3.29]), but the heterozygote genotype showed no sig-
nificant association with disease severity as compared to the
TT genotype (meta-OR = 1.17 [0.86—1.59]). For this SNP, the
C allele was also found to be significantly associated with dis-
ease as compared to the T allele (meta-OR=1.35 [1.16—
1.57]). For two SNPs located within the PLCE1 gene, every
model tested was significant, with the most significant
meta-ORs being 0.62 [048-0.79] for TT genotype as com-
pared to CC genotype for rs3740360 and 0.55 [0.42-0.71]
under a recessive model for rs3765524. TNF-a (rs1800629
and rs361525) was the most studied gene, but none of the
models tested provided a significant meta-OR.

Quality scores
Based on the Newcastle Ottawa Scoring System, the
average quality score was 5.76 (range: 3-7) for the WNV
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a) OAS1 - dominant model
Symptomatic Control 0Odds Ratio Odds Ratio
Study or Subgroup  Events Total Events Total Weight M-H, Fixed, 95% CI M-H, Fixed, 95% CI
Bigham 2011 257 420 187 331 33.6%  1.21[0.91,1.63] e [ ama | ae | 66 |
Lim 2009 254 501 342 552 66.4%  0.63[0.49, 0.81] ——
Total (95% CI) 921 883 100.0%  0.83 [0.69, 1.00] -
Total events 511 529
Heterogeneity: Chi? = 11.25, df = 1 (P = 0.0008); I* = 91% '0 > o 5‘
Test for overall effect: Z = 1.99 (P = 0.05) Favours [experimental] Favours [control]
b) CCR5 - dominant model
Symptomatic Control Odds Ratio 0Odds Ratio
Study or Subgroup Events Total Events Total Weight M-H, 95% CI M-H, J 95% CI
Bigham 2011 150 713 216 1318 56.3% 1.36 [1.08, 1.71] R . | A- | AA |
Danial-Farran 2015 11 39 15 61 3.7% 1.20 [0.49, 2.99] —
Glass 2006 79 395 20 145 10.7% 1.56 [0.92, 2.66) T—
Lim 2008 0 0 0 0 Not estimable
Lim 2010 119 634 74 422 29.4% 1.09[0.79, 1.50] =
Total (95% CI) 1781 1946 100.0% 1.29 [1.08, 1.53] ‘
Total events 359 325
Heterogeneity: Tau? = 0.00; Chi® = 1.81, df = 3 (P = 0.61); I’ = 0% :0 05 ob t 3
Test for overall effect: Z = 2.84 (P = 0.005) Favours [experimental] Favours [control]
CCR5 - allelic model
Cases Control Odds Ratio Odds Ratio
Study or Subgroup  Events Total Events Total Weight M-H, Fixed, 95% CI M-H, Fixed, 95% CI
Bigham 2011 157 1426 229 2636 57.4%  1.30[1.05, 1.61] - _ | A |
Danial-Farran 2015 1 78 17 122 4.6%  1.01[0.45,2.30] —_— T
Glass 2006 63 430 3 38  1.9%  2.00[0.60, 6.71] —
Lim 2009 134 1268 84 844 36.2%  1.07[0.80, 1.43] -
Total (95% CI) 3202 3640 100.0%  1.22 [1.03, 1.44] &
Total events 365 333
Heterogeneity: Chi? = 1.99, df = 3 (P = 0.57); 1> = 0% [ + t J
0.05 0.2 5 20
Test for overall effect: Z = 2.31 (P = 0.02) Favours [experimental] Favours [control]
Fig. 2 Significant meta-ORs for associations between OAS1 (rs10774671) and CCR5 (A32) and West Nile virus disease. Genotype count data from
published reports of WNV subjects were meta-analyzed using RevMan. The meta-odds ratio (OR) for more severe disease is indicated with the
genetic model for each gene. For each gene, the allele or genotype is shown which is associated with asymptomatic infection and controls
(blue) or severe disease (yellow) outcome

publications and 5.10 (range: 2—7) for the DENV publi-
cations (Additional file 6). We also assessed whether the
study authors corrected for multiple testing, and found
less than half of both WNV and DENYV studies provided
corrected p-values when appropriate, indicating an in-
flated type I error rate.

Discussion

We have examined genetic variants that show associ-
ation with DENV or WNYV disease severity. This analysis
was undertaken to identify genetic differences that are
significant drivers of susceptibility to symptomatic dis-
ease that may shed light on mechanisms of immune re-
sistance to these viruses. Among the 87 studies
examined, a wide range of genetic targets was found to
be significant, with many of the genes unsurprisingly
playing a key role in the immune system defense against
viral infections (Additional file 7).

Despite the large number of studies, only 27 genes
were studied by more than one research group for an as-
sociation with either disease. Throughout these studies,
several key genes rose to the forefront as the most stud-
ied and the most significant associations. Many studies
focused on the HLA region of the genome, and, al-
though inconsistencies in data presentation preclude a

meta-analyze of these results, there were clear signs of
the importance of this area for both diseases.

With the central role of HLA for the immune system,
polymorphisms in this region have been well studied for
associations with disease. The area is highly poly-
morphic, however, leading to difficulties for comparing
the diverse range of alleles. Adding to this complexity,
DENV serotypes interact differently with HLA [30]. The
regions identified in this systematic review, including
DRBI1, DQA1, DQBI, A, B, and C, are among the most
diverse regions of the HLA region [31]. A recent study
examined some of these regions by supertype, and
found the B44 supertype could be protective against
DHF during secondary infections and that the A02
and A01/03 supertypes could be associated with more
severe disease [32].

KIR genes, which are expressed on the surface of nat-
ural killer cells, also have wide genetic variability as
noted with HLA genes [33]. While several KIR alleles
were studied in DENV-infected populations, only one
publication to date has examined KIR genotypes in West
Nile virus-infected individuals, and this study had a sam-
ple size of four [34]. The results suggested a possible as-
sociation; this, in conjunction with the results of the
DENV research in this area and the genes’ highly
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a) MBL2 - dgminant,madel e

0dds Ratio

0dds Ratio

Total events 70
Heterogeneity: Tau’ = 0.00; Chi?

Study or Subgroup _Events _Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI
Acioli-Santos 2008 28 57 34 104 37.8% 1.99[1.03, 3.85] =
Figueiredo 2016 42 110 48 150  62.2% 1.311[0.78, 2.20] T
Total (95% CI) 167 254 100.0% 154 [1.02,2.31] (o

| AA

AO

00

Test for overall effect: Z = 3.94 (P < 0.0001)

matic  Asymptomatic & Contr

d) PLCE1 rs3740360 - heterozyte vs homozyote wild

o. 0.5 2 H
Favours [experimental] Favours [control]

0dds Ratio

Total events 788 3237
Heterogeneity: Tau? = 0.00; Chi* = 0.35, df = 1 (P = 0.56); I = 0%
Test for overall effect: Z = 5.34 (P < 0.00001)

Study or Subgroup _Events _Total Events Total_Weight M-H, Random, 95% CI M-H, Random, 95% CI
Khor 2011 683 1910 823 1883 78.2% 0.72 [0.63, 0.82]

Whitehorn 2013 105 281 2414 5569 21.8% 0.78 0,61, 1.00]

Total (95% CI) 2191 7452 100.0% 0.73 [0.65, 0.82] L 4

0.94,df = 1(P = 033); 1 = 0%
002 o1 10 50 -
Test foroverall et 2= 2.07 (¢ = 000 Favours expermentall Favours eantol] where O = alleles other than A
Symptomatic Asymptomatic + Control Ratio Odds Ratio
Study or Subgroup _Events _Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI
‘Acioli-Santos 2008 29 200 55 300 60.5% 1.45 (0.94, 2.23] F—
Figueiredo 2016 34 114 36 208 39.5% 2.03 [1.19, 3.48] — I A | 0 I
Total (95% CI) 314 508 100.0% 1.65 [1.18, 2.32] >
Total events 83
Heterogencity: Tau' = 0.00; Chi' = 0.93, df = 1 (P = 0.34) I = 0% TR % = where O = alleles other than A
Test for overall effect: Z = 2.91 (P = 0.004) Favours [experimental] Favours [control]
Symptomatic  Asymptomatic + Control Odds Ratio Odds Ratio
Study or Subgroup _Events _Total Event Total Weight M-H, Fixed, 95% Cl M-H, Fixed, 95% CI
Feitosa 2016 4 80 5 99 315% 3.99 (137, 1161] —_—
Perez 2010 13 4 18 92 685%  178[0.78,4.09] - I AA I AT I T I
Total (95% CI) 123 191 100.0%  2.48[1.30,4.71] i
Total events 27 23
Heterogeneity: Chi? = 1.37, df = 1 (P = 0.24); I* = 27%
005 0.2 5 20
Test for overall effect: Z = 2.77 (P = 0.006) Favours [experimental] Favours [control]
Symptomatic  Asymptomatic + Control Odds Ratio Odds Ratio
Study or Subgroup _Events _Total Events Total_Weight M-H, Random, 95% CI M-H, Random, 95% CI
Dang 2014 5 83 213 821 18.1% 0.63[0.35, 1.13] —
Khor 2011 594 1953 471 1986 45.3% 1410122, 162] - I TT I TC I CcC |
Whitehorn 2013 81 284 1411 5876 36.6% 1.260.97, 1.64] =
Total (95% CI) 2320 8683 100.0% 117 [0.86, 1.59] -
Total events 690
Heterogeneiy: Tau’ = 0 —56 gg(;j;;)df =2(P=0.03)F=72% T g + —d
est for overall effect: 2 = = Favours [experimental] Favours [control]
Symptomatic  Asymptomatic & Control 0dds Ratio Odds Ratio
Study or Subgroup _Events _Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI
Dang 2014 s 73 19 627 11.0% 2.35 [0.85, 6.50]
Khor 2011 56 1415 31 1546 57.3% 2.01(1.29,3.14] —a— T TC CC
Whitehorn 2013 13 216 %2 4557 31.7% 3.11[L71, 5.65] e —
Total (95% CI) 1704 6730 100.0% 235 [168,3.29] -
Total events 74 142
Heterogeneity: Tau? = 0.00; Chi’ = 1.36, df = 2 (P = 0.51); I = 0% T o + I
Test for overall effect: Z = 4.98 (P < 0.00001) Favours [experimental] Favours [control]
MICB - allelic model
Symptomatic  Asymptomatic + Control Odds Ratio Odds Ratio
Study or Subgroup _Events _Total Events Total _Weight M-H, Random, 95% CI M-H, Random, 95% CI
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Fig. 3 Meta-analyzed genetic variation associated with DENV disease. Genotype count data from published reports of WNV subjects were meta-
analyzed using RevMan. The meta-odds ratio (OR) for more severe disease is indicated with the genetic model for each gene: MBL2 (a), IFN-y (b),
MICB (c), PLCET (d and e). If multiple models were significant, we present the most significant model. The alleles or genotypes associated with
asymptomatic infection and controls (blue) or with severe disease (yellow) outcome are shown for each gene

polymorphic nature, could be an area that should be ex-
plored further. Infection with WNV has been shown to
lead to diversification of KIR receptor expression [35]. In
addition to the research outlined above, researchers have
examined the association of KIR genotypes with DENV
infection in vitro. Within the in vitro research, the tim-
ing of natural killer cell activation has been linked to dis-
ease severity and interactions between KIR and HLA
have been suggested [36-38].

Another key non-HLA gene identified to be associated
with WNV disease was OASL, which codes for an en-
zyme that is induced by type 1 interferon and viruses
[39]. OASL was first identified to have a potentially crit-
ical role in WNYV disease pathogenesis in 2002, when re-
searchers found that mice with a truncated form of the
gene were more susceptible to disease [40]. Elevated ac-
tivity of the OAS genes has also been associated with
more severe DENV infection in vitro [41]. This data and
the significance of variation within the OAS genes for
WNV outcomes highlight the importance of the inter-
feron pathways in response to flavivirus infections and
suggest a need for further in depth examination the as-
sociation of genetic variability within OAS and DENV
severity.

CCR5A32 was the only gene studied by two or more
research groups for each disease. CCR5 was first identi-
fied as a co-receptor for HIV in 1996, and CCR5 defi-
ciency, or a homozygous genotype of CCR5A32, was
found to be protective against HIV infection [42-45]. In
West Nile, CCR5 deficiency is not associated with inci-
dence of infection, but is associated with severity of dis-
ease for infected individuals [46]. Subsequent research
showed that CCR5 specifically plays a role in the ability
of cortical neurons to combat West Nile virus infection
of the brain [47]. In DENV, CCR5 deficiency has been
linked with increased viral load and disease severity [48].
The study also found that the CCR5 receptor in macro-
phages is necessary for replication of DENV serotype 2, an
early step in the infection process [49]. Given the similar-
ities of these flaviviral diseases and the significant associ-
ation of CCR5, the only gene looked at by research groups
for both diseases, further research could be beneficial to
further understanding the role of genetic variation in the
development of severe flavivviral disease [50].

When we meta-analyzed the DENV studies, we found
significant associations between DENV disease and gen-
etic variation in MBL2, PLCE1, IFN-y, and MICB. The
role of many of these genes in disease pathogenesis has

been characterized through in vivo and in vitro studies.
MBL2, the mannose-binding lectin 2 gene, encodes a
protein with a role in innate immunity and complement
pathway, while PLCE1 encodes an enzyme critical to the
generation of the inositol 1,4,5-triphosphate (IP3) and
diacylglycerol (DAG) messengers [51]. MICB and IFN-y
are both critical in the immune response, and thus varia-
tions within these genes could have strong effects on the
initial response to the viral infection and the subsequent
disease pathogenesis [51].

Our study is limited by several factors, most notably
by the available literature. To ensure we found as many
papers as possible, we constructed a search strategy that
involved multiple databases, used both subject headings
and text words, was not limited to English articles, and
included an ancestry search [52]. Despite our focus on
significant results and genes studied by at least two re-
search groups, the wide heterogeneity among the popu-
lations studied limited our ability to interpret the
meta-analyzed results. Lack of diversity in genetic stud-
ies is well-documented [53], and the absence of certain
affected populations, particularly in Africa, among the
identified studies further demonstrates this unmet re-
search need [54]. The diversity of results among studies
that examined the same SNP could be due to population
heterogeneity, as well as to differences in study ap-
proach, including selection of control and comparison
groups. Additionally, previous exposure history, DENV
serotype, and WNV or DENV genotype are all factors
that can affect disease severity, but were not accounted
for in the included studies [4]. The number and type of
genes examined varied greatly between studies, and we
were limited by what genes researchers chose to se-
quence and include in publications. The unavailability of
comparable genotype data and the incomparability of re-
search groups across some studies preclude a more in
depth analysis at present.

Conclusions

The genes found to be significantly associated with
WNV or DENV disease pathogenesis varied in function,
with most being linked to the immune response. As the
regions of the world affected by WNV, DENV, and re-
lated viruses such as Zika, continue to expand due in
part to climate change, an improved understanding of
the association between genetic variation and disease se-
verity will be valuable for all potentially affected popula-
tions [55—58]. Based on the growing incidence of these



Cahill et al. BMC Infectious Diseases (2018) 18:282

diseases, the paucity of consistency in the associations
found, and the limited overlap in genetic targets studied
to date, there is need for continued and deeper studies
examining the role of genetic factors in WNV and
DENV disease severity. In addition to conducting new
studies such as whole-exome sequencing within larger
population samples, further analyses could be conducted
of existing data, to glean novel findings such as gene-gene
or gene-environment interactions, rare and low frequency
variants, and pathways of significant determinants of
anti-viral resistance.
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