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Abstract

Background: To predict the risk of infectious diseases originating in wildlife, it is important to identify habitats that
allow the co-occurrence of pathogens and their hosts. Puumala hantavirus (PUUV) is a directly-transmitted RNA
virus that causes hemorrhagic fever in humans, and is carried and transmitted by the bank vole (Myodes glareolus).
In northern Sweden, bank voles undergo 3–4 year population cycles, during which their spatial distribution varies
greatly.

Methods: We used boosted regression trees; a technique inspired by machine learning, on a 10 – year time-series
(fall 2003–2013) to develop a spatial predictive model assessing seasonal PUUV hazard using micro-habitat variables
in a landscape heavily modified by forestry. We validated the models in an independent study area approx. 200 km
away by predicting seasonal presence of infected bank voles in a five-year-period (2007–2010 and 2015).

Results: The distribution of PUUV-infected voles varied seasonally and inter-annually. In spring, micro-habitat
variables related to cover and food availability in forests predicted both bank vole and infected bank vole presence.
In fall, the presence of PUUV-infected voles was generally restricted to spruce forests where cover was abundant,
despite the broad landscape distribution of bank voles in general. We hypothesize that the discrepancy in
distribution between infected and uninfected hosts in fall, was related to higher survival of PUUV and/or
PUUV-infected voles in the environment, especially where cover is plentiful.

Conclusions: Moist and mesic old spruce forests, with abundant cover such as large holes and bilberry shrubs,
also providing food, were most likely to harbor infected bank voles. The models developed using long-term and
spatially extensive data can be extrapolated to other areas in northern Fennoscandia. To predict the hazard of
directly transmitted zoonoses in areas with unknown risk status, models based on micro-habitat variables and
developed through machine learning techniques in well-studied systems, could be used.
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Background
Zoonotic disease hazard is contingent upon the spatial
overlap between pathogens and their hosts and vectors,
realized within an environmental envelope shaped by
biotic and abiotic factors. The transmission of zoonotic
pathogens requires close contact between infected
individuals on one hand and vectors or susceptible hosts
on the other, and is therefore essentially a spatial
phenomenon [1]. The recognition of habitat variables
that capacitate pathogen, host, and vector co-occurrence
enables the prediction of zoonotic hazard in a world
where emerging infectious diseases pose an increasing
socio-economic threat [2].
For vector-borne diseases, the distribution of arthro-

pod vectors such as ticks and mosquitos, which transmit
important zoonoses such as Lyme disease and West Nile
virus, is often climatically delimited. Survival and vector-
ial capacity of ticks and mosquitoes are affected by
factors such as humidity [3] and temperature [4].
Warm-blooded hosts on the other hand are less affected
by climatic variables [1]. For example, small mammal
hosts of hantaviruses [5–7], arenavirus [8], and plague
[9] are often dependent on food, structural habitat, and
landscape factors. The density and distribution of some
host populations vary considerably between seasons and
years, which poses an additional challenge of identifying
habitats that serve as ‘refugia’ for a pathogen when its
host distribution contracts [10].
The bank vole (Myodes glareolus) is the most common

small mammal in Europe and has a wide distribution in
Europe and Asia [11]. In northern Fennoscandia, bank
vole populations undergo 3–4 year cycles [12–14]
characterized by large variation in density and landscape
distribution. The bank vole is the sole host of Puumala
hantavirus (PUUV, genus Hantavirus, family Bunyaviri-
dae) [15, 16], an RNA virus that causes a mild form of
hemorrhagic fever in humans and responsible for thou-
sands of cases each year [17]. PUUV is directly transmit-
ted among bank voles through physical contact, e.g.
grooming and biting, or environmentally through inhal-
ation of viral particles excreted in feces or urine. PUUV
tracks the dynamic distribution of its host over the
course of a population cycle. Infection rates and
presence of infected voles vary over few kilometers and
from one year to the next [6, 18, 19].
In northern Sweden, the bank vole is the most abun-

dant small mammal [13] and is generally considered a
forest dwelling species [20]. The region has been modi-
fied by forestry over the last six decades, and approxi-
mately 40% of the landscape consists of forests that has
been clear-cut at some point [21]. Young even-aged
forests lack the extensive three-dimensional structures
and ground cover found in older forests [22], which
provide shelter and food for forest-dwelling voles [23].

In young forests and clear-cuts, bank vole population
densities may reach high levels [23], but over-winter
survival of bank voles is highest in old forests [23, 24].
In Western Europe, bank vole density is also highest in
habitats with high availability of cover, nesting opportun-
ities, and food [25–27].
Unsurprisingly, PUUV risk is generally associated with

forests. Increased logging of old forest reduces the distri-
bution of PUUV-infected voles in the study area; which
are more likely to survive winter in old forests [6, 23].
Also, the abundance of cover and food was associated
with high fall density of PUUV-infected voles in the
same region, however, these results were based on one
trapping occasion [28]. In humans, PUUV infection
appears more likely in households close to contiguous
forests near the coast in northern Sweden [29].
Nevertheless, the occurrence of hantaviruses does not

always match that of their hosts, neither at a continental
[30] nor regional scales [31], and the causes behind this
discrepancy are unclear. Further, little is currently
known about the properties of infection “refugia” where
the virus persists during periods with low host density.
Characterizing these habitats enables mitigating zoonotic
risk by managing the relatively few sites from which in-
fection spreads in the landscape when host populations
increase. Finally, according to our knowledge, the
predictive power and robustness of local habitat models
for hantavirus presence remain untested.
Here, we used boosted regression trees, a technique

inspired by machine learning, on a 10-year dataset to (a)
identify micro-habitat characteristics important for bank
vole presence, and more importantly, the presence of in-
fected bank voles in spring and fall. We then (b) validate
the models in an independent study area by predicting
seasonal presence of infected voles in a five-year-period.
Finally, due to the dynamic nature of bank vole and
PUUV presence in the landscape, we also (c) seek key
habitats where PUUV persists when bank vole densities
are low, i.e. infection ‘refugia’. We hypothesize that
forests rich in cover and food are important for the pres-
ence of infected bank voles [28], both through maintain-
ing bank vole populations and promoting PUUV survival
in the environment by providing shade and moisture
[32, 33].The predictive framework developed and vali-
dated here can be used by practitioners and stakeholders
to assess zoonotic PUUV hazard using micro-habitat
variables.

Methods
Bank vole and infection data
Training data
Bank vole data in fall 2003–2013 was available through
the Swedish Environmental Monitoring Program [13].
The study area is located in northern Sweden (approx.
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64 ° N, 20 ° E) and belongs to the middle boreal zone
[34]. Within a total area of 100 × 100 km, small mam-
mals are trapped twice a year – spring (May) and fall
(September) – in 58 systematically placed 1-ha plots (see
[12, 13, 34] for further details). Each sampling plot
contains 10 trapping stations 10 m apart; unless any of
the trapping stations fell within non-trappable locations
such as lakes. Each plot is trapped for three nights
and the total trapping effort is 150 trap nights. We
classified the years between fall 2003 and 2013 based
on the phases of the vole population cycles as
follows: ‘increase’, ‘peak’, and ‘decline’ years [35]. For
the four-year cycle between 2009 and 2012, there was
an additional ‘low’ phase.

Independent validation data
To validate our predictions, we used unpublished trap-
ping data from a project focusing on the response of
small mammals to a forest fire. The study was per-
formed 200 km north of the study area were the training
data was collected (approx. 66 ° N, 20 ° E). The trapping
of small mammals followed the same protocol as that
for the training data, including spring and fall trapping.
Sampling occurred from spring 2007 to fall 2010 as well
as spring and fall 2015 in 17 1-ha plots. The micro-
habitat data collected for the independent validation

data was a subset of that for the training data (Table 1),
but included the variables that were important for
predicting presence of infected voles in the training data.

PUUV data
Data on PUUV infection in bank voles was available in
fall 2003–2013 (see [36]). We analyzed serum samples
from bank voles by enzyme-linked immunosorbent assay
(ELISA) to detect anti-PUUV IgG antibodies and thus
sero-positive voles (see [37] for details) in 2003–2013.
PUUV infection is chronic and infected voles shed the
virus for life [38]. Thus sero-positive bank voles were
considered infected and referred to as such throughout
the paper. However, bank voles weighing <14.4 g may
carry maternal antibodies and were consequently ex-
cluded from further analysis since their sero-status may
not reflect genuine infection [39]. In subsequent ana-
lyses, we used presence-absence data on bank voles in
general and PUUV-infected bank voles in 58 1-ha plots
in fall 2003–2013.

Micro-habitat data
Field surveys were done in fall 2012 and 2013 and
micro-habitat data was collected from all 58 1-ha sam-
pling plots. At each trapping station, the vegetation and
structural habitat variables were collected within a

Table 1 Micro-habitat variables used to predict the presence of all bank voles and infected bank voles in 58 1-ha plots in fall 2003–2013
and to validate the models in an independent area (+) (17 plots in 2007–2010 and 2015)

Variable Explanation Measure Availability in validation data

Shrubs Shrub layer 0.5–5 m in height 5 graded scale +

Lholes All large holes >5 cm in diameter 6 number classes +

Stoneholes Only holes under stones 6 number classes −

FWD Fine woody debris <10 cm 5 graded scale +

CWD Coarse woody debris Total length +

Cobbles Stones between 10 and 50 cm in diameter 5 graded scale +

Lcobbles Stones >50 cm in diameter 5 graded scale −

Uveg Vegetation cover >50 cm 5 graded scale +

Flveg Vegetation in field layer ≤50 cm 5 graded scale +

Grasses Grass cover 5 graded scale +

Lichens Cover of ground lichens 5 graded scale +

Mosses Cover of ground and stone mosses 5 graded scale +

Bilberry Cover of bilberry 5 graded scale +

Lingon Cover of lingonberry 5 graded scale +

Spruce Cover of spruce trees % +

Pine Cover of pine trees % +

Birch Cover of pine trees % +

Tl1 Upper tree layer (≥ 5 m) 5 graded scale +

Tl2 Lower tree layer (< 5 m) 5 graded scale +

For the independent validation data, data on large cobbles and stone holes was not available (−). See also Additional file 1 for more detailed description of the
variables and their estimation
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quadratic plot with 2.5 m sides centered on each trap-
ping station (see Table 1 for all measured variables and
Additional file 1 for the protocol with definition of vari-
ables; see also [23, 40]). Surveyed habitat types included
old forest dominated by spruce (Picea abies) or pine
(Pinus sylvestris) (> 80 years-old), intermediate aged
forest (20–80 years), clear-cuts (0–20 years), mires and
meadows [36]. The majority of the sampling plots were
located within forested land and all of the forest vegeta-
tion types (lichen, moist, mesic and wet forest) were
represented (see [41, 42] for definition of forest
vegetation types).

Statistical analyses
We aimed to develop and independently validate a model
predicting presence of PUUV infected bank voles. We
used boosted regression trees (BRT), a technique inspired
by machine learning methods and characterized by strong
predictive performance [43, 44]. BRT combines regression
trees [45] and boosting, which is a stage-wise procedure
for minimizing a loss function such as deviance [46]. One
important difference between BRT and traditional statis-
tical techniques, e.g. generalized linear models (GLM), is
that BRT does not fit a single best model but combines a
large number of regression tree models to minimize pre-
dictive error. Hence, the final model consists of hundreds
or thousands of single trees that combine to predict the
response. BRT is generally superior in predictive power
compared to GLMs or generalized additive models
(GAMs) [44, 47] and can handle a large number of predic-
tors of any type (numeric, categorical, etc.) with different
scales of measurement. Also, BRT is insensitive to outliers
and captures non-linear relationships between response
and predictors. If complex enough trees are specified,
BRT automatically models interactions among predictors.
See Elith et al. [44] for a comprehensive guide for the use
of BRT in ecological modelling.
BRT models do not provide P values. The use (and

abuse) of P values are a current topic of debate [48] and
our aim to predict PUUV hazard makes model perform-
ance our priority [49]. Predictors important in a model
are those that appear in many of the fitted regression
trees and improve the fit. Relative importance of a
predictor is based on the number of times a predictor is
selected for splitting a tree, weighted by its contribution
to the model due to that split, and averaged over all
trees. The relative importance (%) of predictors is scaled
so that the total sum is 100, with higher values indicat-
ing increasing importance [50]. Partial dependence plots
help visualize the curvilinear relationship between the
response and predictors and are partly presented in the
results.
Despite our focus on maximizing the predictive ability

to independent data, we do not treat the output of BRT

as a black box. We interpreted the general patterns
describing overall bank vole and PUUV landscape distribu-
tion patterns. Fitted models are a form of logistic
regression, modelling the probability of occurrence of any
vole or an infected vole (y = 1) at each sampling plot in
spring or fall, given a number of predictors (X).The prob-
ability is modelled using a logit link function: logit P (y = 1|
X) = ƒ (X). BRT should be interpreted with caution since
the fitted relationships may be noisy [44]. Fitting the same
model several times to one data set will result in slightly dif-
ferent outputs due to subsets of the data being drawn sto-
chastically for fitting as the model is developed. We
restricted our discussion of predictors in the model to the
minimum number of predictors that cumulatively reach
relative importance of 85%. Beyond 85%, remaining vari-
ables contribute a small percentage each, often 1–2% or
less. Nevertheless, the full models were used for validation.
To identify micro-habitat variables important in

predicting presence of voles in general or infected voles,
we fitted two BRT models for spring and fall (thus four
models in total) using the variables listed in Table 1. We
excluded two variables from BRT models that were
highly correlated with others to reduce redundancy: tree
lichens and mosses. Then, we used principal component
analysis (PCA) to visualize the sampling plots in
environmental space defined by the micro-habitat
variables we collected. Through bi-plots of PCAs we also
highlighted factors important for predicting the pres-
ence of voles in general or of infected voles, elucidat-
ing the overlap in predictors between models for the
presence of bank voles in general and infected bank
voles in each season.
Then, we used the models developed on training data

to predict the presence of infected bank voles in spring
and fall in the independent area (see above). We used
the following measures to evaluate model performance:
Area Under Curve (AUC), True Positive Rate (TPR), and
True Negative Rate (TNR). AUC can be interpreted as
the probability of the model assigning a randomly
selected positive instant, i.e. a plot with an infected bank
vole, a higher probability than a randomly selected nega-
tive instant [51]. TPR, also known as sensitivity, assesses
the ability of the model to identify presences. It is
measured by dividing the number of correct positive
instances predicted by the model by total positive
instances, i.e. correctly predicted plus misclassified as
negative by the model. TNR, also known as specifi-
city, is the number of negative instances correctly
identified by the model divided by total number of
negative instances [52].
Further, to show where infected bank voles were

frequently present, we calculated the number of years
when at least one PUUV-infected bank vole was trapped
in each plot in spring and fall in fall 2003–2013.
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All statistical analyses were performed in R environ-
ment [53], version 3.2.2, and “gbm” package [54].

Results
We analyzed a total of 4169 bank voles trapped in fall
2003–2013. Overall, 942 voles were PUUV-infected, i.e.
prevalence was 22.5%. Total PUUV prevalence was 47%
in spring and 17% in fall. Bank vole density was higher
and their distribution more extensive in fall following
summer reproduction compared to spring. In spring,
bank voles and infected bank voles were present in 7–
81% and 2–70% of the 58 1-ha plots, respectively. In fall,
bank voles were present in 30 to 98% of the plots,
whereas infected bank voles were present in 2–74%.
The presence and frequency of occurrence of PUUV-

infected voles showed considerable spatial variation. In
spring for example, we did not trap infected voles in six
out of 58 plots during the study period, whereas in one
plot we trapped infected voles on eight occasions out of

ten (Fig. 1). There were few plots where PUUV-infected
voles were frequently present in spring, when bank vole
densities were at an annual low (e.g. Fig. 2, Additional
file 2), including four where infected bank voles were
trapped on six or more occasions out of ten (Fig. 1).
Compared to a previous study on PUUV spatial

dynamics between 1979 and 1986 in the same area [6],
changes due to succession or forestry altered the infec-
tion status of several plots. For example, the old forest
plot of 22K7H1237 (see Fig. 1 for the location) became
more likely to harbor PUUV-infected bank voles in this
study (Fig. 3) compared to 1979–1986 (Figure 1 in [6]).
PUUV-infected animals were trapped in 22K7H1237 in
eight springs out of 10 in 2003–13 compared to three
springs out of seven in springs 1980–1986. Also, plot
21K2C1237 matured between 1986 and 2003 from a
forest <20 years-old to an intermediate-aged forest (20–
80 years). Infected bank voles were trapped in six
springs out of ten between 2003 and 2013, compared to

Fig. 1 The study area in northern Sweden (black square) near the city of Umeå (a); the curved line indicates 65°N. The blow-up shows the
5 × 5 km landscapes, containing four 1-ha trapping plots each, totalling 58 trappable out of 64 plots (six plots encompassed for example water
bodies and were not sampled). b) Each tile in the spring and fall panels represents a 1-ha plot and the colour coding reflects the number of years
when infected bank voles were trapped, in spring and fall, between fall 2003–2013
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one spring in 1980–1986. Conversely, plot 21J2C3737
was an old forest in 1980 to 1986 but was cut some-
time after, and we trapped infected bank voles there
twice in spring between 2003 and 2013, compared to
four out of seven times between spring 1980 and
spring 1986.
Also, there was large inter-annual variation in landscape

occupancy of infected bank voles, depending on the phase
of the population cycle (Fig. 3, Additional file 2). For ex-
ample, in the spring of 2007 – a peak year – infected bank
voles were present in 38 out of 58 1-ha trapping plots
(Additional file 2), whereas by the end of the cycle in
spring 2009 there was only one plot with infected bank
voles (Fig. 2).
In the four models predicting overall bank vole and

infected bank vole presence in spring and fall, micro-
habitat variables related to availability of cover and
food were important. All models performed well;
AUC was ≥84 and 25–40% of the deviance was ex-
plained (Table 2). Among the minimum number of
variables that cumulatively explained 85% of the devi-
ance, ‘Bilberry’ and ‘Large holes’ were present in all
four models (Table 3, Fig. 4a-h). The relative importance
(%) of ‘Large holes’ was above 10% in three models out of
four (Table 3). ‘Shrubs’ and ‘Spruce’ were present in three
models out of four, while ‘CWD’ (coarse woody debris)
was important for the two spring models (Fig. 4i, j). Fur-
ther, ‘FWD’ (fine woody debris), ‘Tree layer 1’, ‘Tree layer 2’,

‘Uveg’ (umbrella vegetation), and ‘Lingonberry’ were
present in two models.
To contextualize habitat variables that were import-

ant for predicting overall bank vole and infected bank
vole presence, we overlaid the results of the spring
and fall models on a PCA bi-plot defined by the
trapping plots and micro-habitat variables (Fig. 5).
Plots in old forests and in non-forests were clearly
separated by the PCA, whereas plots in intermediate-
aged forests were spread along the environmental
gradients, overlapping with plots in both old forests
and clear-cuts and meadows.
In spring, the models predicting overall bank vole

presence and infected bank vole presence were similar
and shared seven out of the eight most important
micro-habitat variables, e.g. ‘CWD’ (Table 3, Fig. 4i, j,
5a). The presence of bank voles in general and infected
bank voles was predicted by micro-habitat variables typ-
ical of spruce forests, and variables related to cover
and food availability, such as ‘Coarse woody debris’,
‘Bilberry’, and ‘Lingonberry’, were important. However,
fall models diverged and only shared four variables
out of ten (Fig. 5b). For example, ‘Spruce’ was not an
important predictor of overall bank vole presence in
fall (Fig. 4k, l), but was important for the presence of
infected bank voles, the latter more likely to occur in
plots rich in cover such as ‘Large holes’, ‘FWD’, and
‘Uveg’ (umbrella vegetation) (Table 3).

Fig. 2 No. of infected bank voles trapped per 100 trap nights in each of the 58 1-ha trapping plots in spring over the course of a complete bank vole
population cycle; the only 4-yr. cycle (increase phase to low phase: a-d: 2009–2012). Six plots encompassed water bodies or other untrappable sites
and were not sampled. In 2009 and 2012, infected bank voles were trapped in one plot only
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Both spring and fall models predicted the presence of in-
fected bank voles in an independent area well (total number
of predictions was 17 1-ha plots × 5 years = 85 instances).
Model performance was fair in spring (AUC = 74) and
good in fall (AUC = 83) [55] (Table 4). TPR was 0.95 and

0.91 in spring and fall, respectively. TNR was 0.50 and 0.77
in spring and fall, respectively. Hence in both seasons, the
models predicted the presence of infected bank voles well,
but performed worse in predicting absences, especially in
spring (Table 4).

Fig. 3 Number of years when infected bank voles were trapped per season and phase of the population cycle. Data were available for three
cycles, two 3-year cycles (including fall 2003–fall 2008; fall 2013) and one 4-year cycle (2009–2012). We excluded year 2012, which was the only
“low” phase in our study (but see Additional file 2), and thus values ranged between zero and three. The photos (a and b) show examples of plots
where (a) infected bank voles were not trapped in either season over the study period, and in (b) infected bank voles were frequently trapped.
The plot in (a) is an open mire and lacks habitat properties related to structure and cover, whereas the plot in (b) is rich in large holes. Photo
Copyright: Magnus Magnusson

Table 2 Performance of spring and fall models predicting the presence of any bank voles and infected bank voles in 58 1-ha plots
in fall 2003–2013

Response Spring Fall

CV deviance explained (%) AUC CV deviance explained (%) AUC

Bank vole presence 27 0.84 40 0.90

Infected bank vole presence 25 0.84 26 0.84

CV = cross-validated, AUC = area under curve (see Methods)
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Discussion
Predicting zoonotic risk involves identifying spatial
determinants of host species and pathogen presence,
especially in a heterogeneous landscape modified by
humans. Bank voles are present in a variety of habitats
in Fennoscandia and tolerate anthropogenic disturbance
[23]. Their landscape distribution expands and contracts
following the phases of the 3–4 year population cycle
[35]. Using boosted regression trees, we showed that the
presence of PUUV-infected voles can be successfully
explained by micro-habitat properties and extrapolated
to an independent area. According to our knowledge,
this is the first study that utilizes boosted regression
trees to predict and then validate zoonotic hazard. We
found that during spring, variables related to the avail-
ability of cover and food in spruce forests predicted both
overall bank vole and infected bank vole presence. In
fall, the presence of PUUV-infected voles was more
likely in habitats where cover was abundant, despite the
broad bank vole landscape distribution.
Bank vole presence in the landscape varied seasonally,

due to summer reproduction followed by winter decline,
and inter-annually depending on the phase of the popu-
lation cycle. When host distribution declined in winter
and during low-density years, PUUV-infected voles were
frequently found in a few focal patches (Fig. 2,
Additional file 2). These habitats functioned as infection
“refugia” from which future colonization of the land-
scape may occur [6, 10, 49]. However, no plot harbored
infected bank voles throughout the 10-year study period

(Figs. 1, 3), and PUUV-infected voles were trapped in
different plots during lower density phases (“increase”
and “decline”) of different cycles (Fig. 3, Additional file 2).
This suggests that although some plots promoted persist-
ence of infected voles during adverse periods, there
remains an element of stochasticity in the occurrence of
infected voles at plot level.
In fall, bank voles were broadly distributed in the land-

scape (Fig. 1b). In spring after winter decline, bank voles
were trapped frequently in old spruce forests character-
ized by availability of micro-habitat structures that
provide cover (e.g. fine and coarse woody debris, large
holes, and shrubs) and food (e.g. lingonberry and blue-
berry) (Fig. 4, Table 3). Similarly, Ecke et al. [23] found
that although bank vole densities were high in clear-cuts
and young forests, their over-winter survival was lower
than that in old forests. In Belgium, bank voles were also
found in preferred habitats with dense cover during low
density years [56]. In the U.S., hantavirus hosts survived
in habitats with more cover where predation risk was
hypothesized to be lower [57].
The likelihood of infected vole presence in a given plot

appeared sensitive to temporal changes in micro-habitat
properties. Compared to an earlier study in the same
area on PUUV spatial dynamics between 1979 and 1986
[6], PUUV-status of several plots changed (see results
for specific examples). Detailed habitat data between
1979 and 1986 was not available, but clear-cutting and
forest succession led to habitat changes between 1986
and 2003. The corresponding change in PUUV-status of

Table 3 Relative importance (%) of micro-habitat variables in the four models (two per season) predicting overall bank vole presence
and infected (Inf.) bank vole presence in 58 1-ha plots between fall 2003 and 2013

Relative importance (%)

Spring Fall

Habitat variable Bank vole presence Inf. bank vole presence Bank vole presence Inf. bank vole presence

Bilberry 7.4 4.0 7.6 3.6

Shrubs 4.0 5.8 4.7 -

Cobbles - - - 3.0

CWD 6.8 4.3 - -

FWD 3.2 - - 5.1

Large holes 6.8 10.3 11.4 12.1

Lichens - - 2.6 -

Lingonberry 8.1 4.8 - -

Pine - - 4.2 -

Spruce 4.1 3.9 - 3.7

Stoneholes - - 4.9 -

Tree layer 1 - - 2.7 3.5

Tree layer 2 4.6 4.4 - -

Uveg - - 3.2 4.2

The three variables with highest relative importance (%) in each model are given in bold
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several plots increases our confidence in the importance
of micro-habitat variables in determining infection
presence.
For horizontally transmitted zoonoses, host presence

is a necessary but not sufficient prerequisite for patho-
gen presence. In spring, micro-habitat variables promot-
ing bank vole presence almost perfectly predicted the
presence of PUUV-infected bank voles. In plots where
bank voles survived winter and were subsequently
trapped, there was a high likelihood that they would
be PUUV-positive. This may be related to higher
PUUV-prevalence in spring in over-wintered voles
compared to fall [18, 36]. Whereas in fall, despite
broader overall bank vole distribution in the land-
scape in fall (Fig. 5b) [6], the presence of PUUV in-
fected voles was delimited by micro-habitat variables

related especially to cover and typical of old spruce
forests (see contrast between Fig. 5a and b).
The contrast between predictors of landscape occur-

rence of bank voles and infected bank voles in fall pro-
vides an opportunity to explore potential differences
between host and virus ecology, compared to an earlier
study that was limited to one fall season [28]. We sus-
pect that habitats with abundant cover can enhance
virus survival outside the host by maintaining moisture
and reducing penetration of UV radiation [32, 33].
Additionally, bank voles may survive longer in plots
where cover is abundant and predation rates are likely
lower. Large holes found under cobbles, logs, and
stumps were the most important predictor of the pres-
ence of PUUV-infected voles in fall (Table 3, Fig. 4d).
Bank voles may use these holes as nesting sites or

Fig. 4 Predicted relationships between mean micro-habitat variables and presence of all bank voles (a, c, e, g, i, k) and infected bank voles (b, d, f, h, j, l) in
spring (two left columns: a, b, e, f, I, j) and fall (two right columns: c, d, g, h, k, l) in fall 2003–2013. Large holes and bilberry cover were important predictors
in both spring and fall models predicting overall bank vole and infected bank vole presence (a-h). In spring, coarse woody debris was an important predictor
for both bank vole and infected bank vole presence (i, j). In fall, spruce cover (%) was an important predictor for the presence of infected bank voles (l) but
not of overall bank vole presence (k). The boxes encompass percentiles: 25%–50% and the error bars represent the 95% confidence intervals

Khalil et al. BMC Infectious Diseases  (2017) 17:523 Page 9 of 13



corridors leading to higher rates of encounter among in-
fected and susceptible individuals and possibly higher
exposure to environmental PUUV. We hypothesize that
such naturally occurring holes function as “infection
hubs”. Consequently, PUUV maintenance and transmis-
sion may be higher in moist and mesic spruce forests
compared to drier habitats with less undergrowth or
structures such as dry pine forests.
The discrepancy between bank vole and infected bank

vole distribution may also be related to bank vole dem-
ography. Dispersing voles after summer reproduction
may carry maternal antibodies and thus remain unin-
fected for a period of time [39]. Hence although we
excluded bank voles that were likely to carry maternal
antibodies, voles trapped in fall may have not had
sufficient time to be exposed and infected with PUUV,
which may introduce a lag between the presence of voles
in general and the presence of infected voles.
In the same study area, interspecific competition re-

duced infection prevalence and density of infected voles

through the dilution effect [36], whereby a reduction of
host density or contact rates between host individuals
due to the presence of a dominant co-occurring species
ultimately reduces pathogen transmission [58]. The main
forest competitor of bank voles, the grey-sided vole
(Myodes rufocanus) prefers large holes under stones in
pine forests [40]. Hence, after the dramatic decline of
the grey-sided vole in the 1980’s and 1990’s [40], bank
voles in spruce forests are undisputed in utilizing large
holes, which reduces the likelihood of a dilution effect
due to competition from grey-sided voles.
The importance of relatively wet and moist habitats

for hantaviruses was previously pointed out in temperate
Europe [59]. In Belgium, cover and resources, provided
by beech trees, can predict the presence of infected bank
voles [60]. In northern Sweden, core bank vole habitat is
theoretically ideal for PUUV survival, namely mesic and
moist forests rich in cover. In the U.S., persistently high
risk of Sin Nombre hantavirus was also associated with
moist habitats in deciduous or evergreen forests, com-
pared to pastures and bare ground [10]. In Paraguay,
animals infected with Jaborá hantavirus were more likely
to be found where forest cover was thicker and moisture
more likely retained. However, such habitat is less
suitable for its host Akodon montensis [61], which was
more abundant in human-disturbed habitats. The
difference in habitat association between infected and
non-infected Akodon montensis points to the importance
of micro-habitat structure for viral survival and inter-

Table 4 Results from the validation of models predicting
presences and absences of infected bank voles in an
independent area (17 plots in 2007–2010 and 2015)

Presence (TPR) Absence (TNR)

Spring 41 / 43 (0.95) 21 / 42 (0.50)

Fall 49 / 54 (0.91) 24 / 31 (0.77)

The values represent the proportion of correctly identified positive (TPR) and
negative (NPR) instances of infected bank vole presence in spring and fall

Fig. 5 PCA of habitat variables and their relation to individual plots in different habitat types (58 1-ha pltos). Colours of the variables represent whether
or not they were included in bank vole presence model, infected bank vole presence model, both, or neither (grey) in (a) spring and (b) fall
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specific encounter rate, and suggests a divergence
between host and pathogen ecology in that case.
The models developed for the 58 1-ha plots around

Umeå were able to predict presence of PUUV –infected
bank voles in an area approx. 200 km north. The micro-
habitat variables we measured were especially good at
identifying plots with PUUV-infected bank voles, which
makes it possible for practitioners and stakeholders to
identify such places. Nevertheless, spring models overes-
timated presence of PUUV-infected voles (TNR = 0.50),
which we propose was due to fewer positive plots in
both areas in spring compared to fall. This may have re-
sulted in the training data lacking sufficient number of
positive plots to produce a model better to discriminate
negatives from false positives in the validation area.
We attempted to maintain a balance between the

feasibility of data collection for the models and the gen-
erality of their predictions on one hand, and explanatory
power and interpretation on the other. For example,
given the variables included here, practitioners do not
need to trap bank voles to assess likelihood of presence
of infected bank voles; although bank vole density would
explain a large portion of the variation. Also, human
disease risk is expected to be more closely related to the
number of infected bank voles and human exposure to
PUUV [1, 19, 62], rather than only the presence of in-
fected voles. While evaluating the probability of finding
infected bank voles is necessary for risk assessment,
factors influencing human exposure to PUUV are also
important [62]. For example, during winter 1990 in
Germany, 15 out of 117 (8%) American soldiers camping
on a bank vole infested terrain fell ill with PUUV infec-
tion, while not a single civilian case was registered in the
region during that period. Soldiers who fell ill were more
likely to have sighted rodents or slept on hay, and were
hence more exposed to PUUV compared to uninfected
soldiers and civilians in the same region [63].
Moreover, Surrounding landscape structure and con-

nectivity is important for host movement and thus
pathogen presence [6, 64], and we cannot rule out the
possibility that bank voles moved into the plots just prior
to trapping. Different years are characterized by different
bank vole densities and landscape distribution [19]. Thus
by including ‘Year’ as a predictor in all models, we
attempted to account for landscape-scale processes,
including bank vole influx into the trapping plots.
Near our study area, isolated patches of old forests are

valued and maintained around urban and semi-urban
houses. Given our results, we suspect that in such forest
patches bank vole populations can persist and thus act
as infection ‘refugia’ even when regional bank vole dens-
ity declines. This is supported by earlier observations on
human exposure to the virus, where most infections
occur in or around human dwellings [62]. In the future,

the connection between high-quality isolated forest
patches and bank vole infestation of neighboring human
dwellings ought to be explored.

Conclusions
We demonstrated how micro-habitat variables can be
used to predict presence of PUUV –infected hosts
through boosted regression trees, whose predictive power
is superior to traditional statistical models. We are un-
aware of previous studies on hantaviruses that validated
habitat models and predicted infected host presence in in-
dependent data. In northern Sweden, moist and mesic old
spruce forests, with abundance of structures that provide
cover, e.g. large holes, and lingonberry and bilberry dwarf
shrubs that provide both cover and food were most likely
to harbor infected bank voles. For directly transmitted
zoonoses, especially those carried by small mammals,
similar predictive models based on habitat and micro-
habitat variables in a well-studied area can contribute to
rapid assessment of zoonotic risk in new locations in
boreal landscapes. This negates the need for continuous
sampling and processing of host individuals.
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