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Microbiota-dependent metabolite and
cardiovascular disease marker
trimethylamine-N-oxide (TMAO) is
associated with monocyte activation but
not platelet function in untreated HIV
infection
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Abstract

Background: HIV infection is associated with increased risk of cardiovascular disease beyond that explained by
traditional risk factors. Altered gut microbiota, microbial translocation, and immune activation have been proposed
as potential triggers. The microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) predicts myocardial
infarction (MI) in the general population and has recently been shown to induce platelet hyperreactivity. In the
present study, we investigated if TMAO was associated with platelet function, microbial translocation, and immune
activation in both untreated and combination anti-retroviral therapy (cART) HIV infection.

Methods: TMAO and the pre-cursors betaine, choline, and carnitine were quantified by mass-spectrometry in plasma
samples from a previously established cross-sectional cohort of 50 untreated and 50 cART treated HIV-infected
individuals. Whole-blood impedance aggregometry, C-reactive protein, sCD14, and lipopolysaccharide were assessed as
measures of platelet function, inflammation, monocyte activation, and microbial translocation, respectively.

Results: TMAO was not associated with platelet aggregation response after stimulation with four different agonists, or
with overall hypo- or hyperreactivity in untreated or treated HIV-infected individuals. In contrast, sCD14 a marker of
both monocyte activation and microbial translocation was independently associated with TMAO in untreated HIV-
infection (R = 0.381, P = 0.008). Lower levels of carnitine [32.2 (28.4–36.8) vs. 38.2 (33.6–42.0), P = 0.001] and betaine [33.
1 (27.3–43.4) vs.37.4 (31.5–48.7, P = 0.02], but similar TMAO levels [3.8 (2.3–6.1), vs. 2.9 μM (1.9–4.8) P = 0.15] were found
in cART treated compared to untreated HIV-infected individuals, resulting in higher ratios of TMAO/carnitine [0.12 (0.
07–0.20) vs. 0.08 (0.05–0.11), P = 0.02] and TMAO/betaine [0.11 (0.07–0.17) vs. 0.08 (0.05–0.13), P 0.02].

Conclusions: In contrast to recent studies in HIV-uninfected populations, the present study found no evidence of
TMAO-induced platelet hyperreactivity in HIV infected individuals. Microbial translocation and monocyte activation may
affect TMAO levels in untreated individuals. Furthermore, the elevated ratios of TMAO/betaine and TMAO/carnitine in
cART-treated individuals could possibly suggest a role of cART in TMAO metabolism.
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Background
Since the introduction of combination antiretroviral therapy
(cART), AIDS and HIV-related mortality has declined in
HIV-infected individuals, while cardiovascular disease (CVD)
has emerged as one of the leading causes of morbidity and
mortality [1, 2]. Increasing evidence indicates that HIV infec-
tion is associated with increased risk of CVD beyond that ex-
plained by the higher burden of traditional risk factors
among HIV-infected individuals [3–5]. Numerous non-
traditional mechanisms have been proposed including HIV-
related disruption of the intestinal barrier and changes in the
composition of the intestinal microbiota [6–9]. Several stud-
ies have suggested an important link between intestinal mi-
crobial composition and metabolism and the development of
CVD [10–12]. In the general population, the microbiota
dependent metabolite trimethylamine-N-oxide (TMAO) has
been associated with development of clinical CVD independ-
ently of traditional CVD risk factors [13–21]. Previously,
TMAO was shown to promote atherosclerosis through foam
cell formation and interference with reverse cholesterol trans-
port from the atherosclerotic plaque [13, 17, 22]. In addition,
results from a recent study suggest that TMAO also induces
platelet hyperreactivity [23]. Altered platelet function has
been shown in HIV infection repeatedly [24–26]. We
recently found TMAO to be positively associated a sub-
clinical measure of coronary atherosclerosis in cART treated
HIV-infected individuals [27]. However, we did not find any
difference in TMAO levels in HIV-infected individuals com-
pared to uninfected controls, but an association between
TMAO and cART, especially PI use [27]. Surprisingly,
TMAO was not associated with myocardial infarction (MI)
in cART treated individuals in our previous study [27]. Con-
flicting results have also been found in the small number of
other studies investigating TMAO and CVD in HIV-infected
individuals, and thus the contribution of TMAO to CVD in
HIV infection remains unclear [27–30].
We hypothesized that TMAO would be associated with

platelet function in HIV-infected individuals. Further, as

viral replication, inflammation, monocyte activation,
microbial translocation, and cART have previously been
linked with platelet function in HIV-infected individuals,
we sought to investigate the potential influence of these
factors on TMAO levels in HIV-infected individuals. To
explore this hypothesis, we measured TMAO and the pre-
cursors choline, carnitine, and betaine in stored plasma
from untreated and treated HIV-infected individuals with
previously assessed biomarkers of coagulation activity, in-
flammation, monocyte activation, microbial translocation
and platelet function.

Methods
Cross-sectional cohort
The cohort included 50 HIV-infected, untreated individuals,
from the Department of Infectious Diseases, Copenhagen
University Hospital, and 50 HIV-infected individuals on
cART, selected to match the untreated group for age,
gender, and current CD4+ T-cell count. The cohort has
previously been described in detail [31]. One individual in
the treatment group had detectable viral replication and was
excluded from further analyses. Clinical characteristics of
the study population have previously been described [31].
Briefly, mean age was 40 and 42 years, 90 and 88% were
men, 90 and 86% were Caucasian, 42 and 41% were
current smokers, and mean current CD4+ T-cell count
was 600 and 674 in the HIV-infected untreated and
treated individuals, respectively [31]. Baseline character-
istics are summarized in Table 1.
Platelet function was determined at inclusion by whole-

blood multiple electrode impedance aggregometry, assessing
platelet aggregation in a time-dependent manner as area
under curve after 6 min after stimulation with adenosine di-
phosphate (ADP, concentration 6.5 mmol/l, arachidonic acid
(ASPI, concentration 0.5 mmol/l), collagen (COL, 3.2 mg/
ml), and thrombin receptor agonist peptide (TRAP, concen-
tration 32 mmol/l) on a Multiplate analyzer (Dynabyte
GmBH, Munich, Germany), as previously described [31].

Table 1 Clinical characteristics of the study cohort

Untreated (n = 50) ART-Treated (n = 49) P value

Age, years 41 (33–46) 43 (36–48) 0.249

Sex 90% (45) Male 88% (43) Male 0.722

Etnicity 90% (45) Caucasian 86% (42) Caucasian 0.514

Transmission of HIV 82% (41) MSM 74% (36) MSM 0.618

Current smoker 42% (21) 41% (20) 0.869

HIV-RNA, (copies/mL) 23,026 (5517–90,321) 19 (19–20) < 0.001

Current CD4+ T-cell count, (cells/μL) 560 (415–795) 610 (480–875) 0.363

Duration of HIVa (months) 28 (8–75) 73 (36–151) 0.009

Summary of clinical and demographic characteristics of the study population previously published in [31]. from Continuous data are presented as medians and
(interquartile ranges) and categorical data as percentages and (total numbers). Untreated and treated individuals were compared by Mann-Whitney U test
aDuration since 1st positive HIV-1 test
cART antiretroviral therapy, MSM Men who have sex with men
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Routine biochemistry including standard hemostatic
whole blood tests, and assessment of inflammation, mono-
cyte activation and microbial translocation with C-reactive
protein (CRP), soluble CD14 (sCD14), and lipopolysacchar-
ide (LPS) by quantification with enzyme linked immuno-
sorbent assay (ELISA) and Limulus amebocyte lysate (LAL)
test for LPS, respectively, have previously been performed
[31, 32].

Ethics and informed consent
Plasma samples collected from all participants were
stored at −80 °C until analysis.
The study was conducted in accordance with the

Helsinki-declaration and approved by the Committee on
Biomedical Research Ethics in Denmark (H-2-2009-089)
and the Danish Data Protection Agency. Written in-
formed consent including consent to store plasma and
perform further analysis on blood samples was obtained
from all participants after oral and written information.

Measurement of TMAO
Stable-isotope dilution liquid chromatography with tan-
dem mass spectrometry was used for quantification of
TMAO and pre-cursors choline, carnitine and betaine as
previously described [16, 33]. Valid measurements were
obtained from all samples for betaine, choline and carni-
tine. For TMAO measurements, one sample was a clear
outlier with a result of 52.5 μM, which is much higher
than the 98-percentile of 12.9 μM and therefore excluded
from further analyses.

Statistical analyses
Data are given as median and interquartile range (IQR).
Levels of TMAO and pre-cursors in untreated and treated
groups were compared using Student’s t test after natural
logarithmic (ln) transformation to obtain normal distribu-
tion. Univariate linear regression was performed to investi-
gate possible association with TMAO. Residuals were
checked for normal distribution and ln transformation was
performed when appropriate. Data are given as standard-
ized residuals. Significant univariate associations were in-
vestigated in a multivariate regression model. Independent
variables included sCD14, age and gender as the sample-
size was small. Models including a fifth variable were
created adding one variable at the time. A P-value < 0.05
was considered statistically significant. Analysis was
performed using SPSS 19 (IBM Inc., Armonk, NY).

Results
TMAO was not associated with platelet aggregation
No associations were found between TMAO and standard
coagulation markers i.e. D-dimer, fibrinogen, activated par-
tial tromboplastin time (APTT), coagulation factors II-VII-
X, and platelet count (Table 2). In addition, no associations

were found between TMAO and platelet function evaluated
as platelets aggregation response to ADP, ASPI, COL and
TRAP (Table 2). This was consistent in both untreated and
treated HIV-infected individuals, and platelet aggregation
was evaluated both as a continuous variable and categoric-
ally classified as hyper/hypocoagulable (Table 2). Regression
coefficients and p-values are given in Table 2.

sCD14 was an independent predictor of TMAO in
untreated HIV infection
A positive association was found between TMAO and
sCD14 in untreated HIV-infected individuals, but not in
treated HIV-infected individuals (Table 2). No associations
between TMAO and LPS or CRP were found (Table 2). In
multivariate linear regression models, sCD14 remained an
independent predictor of TMAO after adjustment for age,
gender, and smoking (Table 3). A fifth variable (viral load,
CD4+ T-cell count, LPS, or CRP) was added to the model
one at the time, and sCD14 remained an independent pre-
dictor of TMAO in untreated HIV-infected individuals
with each added variable (Table 3).

TMAO was not associated with HIV-related factors
TMAO was not associated with CD4+ T-cell count, nadir
CD4+ T-cell count, HIV duration or viral load in untreated
HIV-infected individuals, or with CD4+ T-cell count, nadir
CD4+ T-cell count or HIV duration in treated HIV-infected
individuals (Table 2). Neither was TMAO associated with
cART regimens (Table 2). No associations between TMAO
and gender or smoking status were found in either
untreated or treated HIV-infected individuals (Table 2). A
weak positive association was found between TMAO and
age in treated HIV-infected individuals. The association
with age was not found in untreated individuals.

TMAO and precursors in untreated vs. cART treated HIV-
infected individuals
TMAO levels were not significantly different in untreated
vs. treated HIV-infected individuals [2.9 μM (1.9–4.8) vs.
3.8 (2.3–6.1), P = 0.15] (Fig.1d). However, elevated carni-
tine [38.2 (33.6–42.0) vs. 32.2 (28.4–36.8), P = 0.001] and
betaine [37.4 (31.5–48.7 vs. 33.1 (27.3–43.4), P = 0.02],
but not choline [7.9 (6.8–10.3) vs. 8.4 (7.2–10.1), P = 0.40]
were found in untreated compared to treated HIV-
infected individuals (Fig. 1a, 1b, 1c). This resulted in
elevated ratios of TMAO/carnitine [0.12 (0.07–0.20) vs.
0.08 (0.05–0.11), P = 0.02] (Fig. 1e) and TMAO/betaine
[0.11 (0.07–0.17) vs. 0.08 (0.05–0.13), P 0.02] (Fig. 1f), but
not TMAO/choline [0.45 (0.31–0.69) vs. 0.35 (0.26–0.55),
P = 0.25] in treated compared to untreated HIV-infected
individuals. Elevated ratios remained after adjusting for
sCD14 and viral load using multivariate analysis of
variance (ANOVA) (data not shown).
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Discussion
In this study including 50 untreated and 50 cART treated
HIV-infected individuals no associations were found be-
tween TMAO and platelet function. In contrast, TMAO
was independently associated with sCD14 in untreated but
not in treated HIV-infected individuals. Furthermore, sig-
nificantly elevated ratios of TMAO over pre-cursors were
found in treated compared to untreated HIV-infection.
In the general population, there is increasing appreciation

that changes in the composition and function of the gut

microbiota can promote long-term susceptibility to CVD
[34]. The gut microbe-derived metabolite TMAO has been
recognized as an important contributor in this process, and
recent evidence points towards TMAO induced platelet hy-
perreactivity as a potential pathogenic mechanism [23]. We
were not able to confirm this finding in an HIV-infected co-
hort. The explanation of the lacking association between
TMAO and platelet function could be, that other factors
have a stronger effect on platelet function in HIV-infected
individuals than TMAO, thus diluting the direct effect of

Table 2 Univariate linear regression with TMAO as the dependent variable

Untreated (n = 49) ART Treated (n = 49)

Standardized β coefficients P Standardized β coefficients P

Clinical characteristics:

Age (years) 0.180 0.21 0.290 0.04

Gender, male 0.137 0.34 0.110 0.94

Current smoker, 0.129 0.39 −0.182 0.24

Current CD4+ T cell count (cells/μl) 0.035 0.81 0.084 0.57

Nadir CD4+ T cell count (cells/μl) −0.081 0.58 0.087 0.55

HIV-RNA (103 copies/ml) −0.010 0.94 NA NA

HIV duration 0.078 0.59 0.070 0.64

Class of ART

NRTI containing (n = 44) NA NA 0.043 0.78

NNRTI containing (n = 22) NA NA 0.135 0.38

PI containing (n = 23) NA NA 0.145 0.34

II containing (n = 4) NA NA −0.024 0.87

Abacavir containing (n = 16) NA NA −0.126 0.41

Standard coagulation

D-dimer 0.051 0.74 0.209 0.16

Fibrinogen 0.091 0.55 0.183 0.24

APTT 0.117 0.43 0.171 0.27

Coagulation factors 2–7-10 0.043 0.77 0.032 0.83

Platelet aggregation (Multiplate):

ADP test (Units) −0.074 0.62 −0.177 0.23

ASPI test (Units) −0.156 0.29 −0.243 0.10

COL test (Units) −0.080 0.59 −0.211 0.15

TRAP test (Units) −0.119 0.42 −0.220 0.13

Hypocoagulable in ≥2/4 tests 0.007 0.97 0.147 0.32

Hypercoagulable in ≥2/4 tests −0.172 0.24 NA NA

Markers of Microbial translocation and inflammation:

sCD14 (ρg/ml) 0.454 0.001 −0.157 0.28

LPS (ρg/ml) −0.019 0.90 0.047 0.75

hsCRP −0.016 0.92 0.028 0.37

Univariate linear regression with trimethylamine-N-oxide (TMAO) as the dependent variable. Standardized regression coefficients and P values are given. Standard
coagulation, and platelet impedance aggregometry are given as continuous variables and classified as hypo- and hypercoagulable according to normal range
APTT activated partial thromboplastin time, ART anti-retroviral therapy, ASPI arachidonic acid, COL collagen, FEU fibrinogen equivalent units, II integrase Inhibitor, n
number, NA not applicable, NRTI nucleotide/nucleoside reverse transcription inhibitor, NNRTI non-nucleoside reverse transcription inhibitor, PI protease Inhibitor,
sCD14 soluble CD14, TRAP thrombin-receptor activating peptide
Significant associations are marked in bold
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TMAO on platelet function. Indeed, previous studies in
HIV-infected populations indicate that both immune acti-
vation, viral replication, specific cART drug classes lead to
platelet activation and dysfunction [24, 31, 35, 36].
Further, some of these factors might potentially interfere

with TMAO levels. Indeed, a strong association was found
between sCD14 and TMAO in untreated HIV-infected in-
dividuals. This association remained significant after ad-
justment for demographic and HIV-related factors. sCD14
is secreted from activated monocytes upon binding of the
microbial product LPS to the toll like receptor (TLR)-4
[37, 38]. Thus, sCD14 can be used as a marker of both
monocyte activation and microbial translocation. Recent
evidence suggests that microbial translocation is accom-
panied by alterations in the composition of the gastro-
intestinal microbiota [6–8, 39]. Hence, the association
between sCD14 and TMAO in our study could imply that
a gut microbiota composition associated with microbial
translocation might be of a phenotype that produce higher

Table 3 Multiple Linear Regression Models with TMAO as
Dependent Variable

Characteristics Standardized β coefficient P

Age 0.233 0.10

Gender 0.079 0.58

Smoking 0.123 0.39

sCD14 0.381 0.008

Model with additional adjustment for each of the following variables

CD4+ T-cell count 0.379 0.010

Viral load 0.452 0.003

hsCRP 0.304 0.045

LPS 0.384 0.009

Multivariate linear regression analyses with TMAO as dependent variable.
Standardized β coefficients for TMAO are given after adjustment for a fifth
variable. sCD14, soluble CD14, TMAO, Trimethylamine-N-oxide

Fig. 1 Trimethylamine-N-oxide (TMAO), pre-cursors and TMAO/pre-cursor ratios in untreated compared to cART treated individuals. Comparison
of untreated (n = 49) and treated (n = 49) HIV-infected individuals of levels of Carnitine (a), Betaine (b), Choline (c), and TMAO (d), and ratios of
TMAO/Carnitine (e), TMAO/Betaine (f) For each group median and interquartile ranges are shown. Data was ln-transformed and student t-test
was used to compare groups, and P-values are given for each comparison
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levels of TMAO. To our knowledge, no previous studies
have found a link between microbial translocation, mono-
cyte activation, and TMAO. However, associations be-
tween TMAO and systemic inflammatory marker CRP or
microbial translocation marker LPS were not found. Both
markers are known to be volatile, and previous studies
have reported lacking or weak associations between LPS
and CRP and other markers of microbial translocation
and systemic inflammation [40–43]. Further, interpret-
ation of the association between sCD14 and TMAO as
proof of the impact of microbial translocation on plasma
TMAO cannot be inferred. CD14 is also a co-receptor for
other TLRs and microbial products other than LPS. Thus,
elevated sCD14 is not strictly induced by microbial trans-
location and therefore also a marker of more general
monocyte activation.
Elevated betaine and carnitine were found in untreated

compared to treated HIV-infected individuals. Both the
endogenously produced metabolite betaine and the diet-
ary metabolite carnitine can be metabolized to TMAO
by gut microbiota [12, 18]. Both pre-cursors have also
been associated with CVD [44], although a recent study
suggests that this association is mediated through the
concomitant increase in TMAO [18]. As we do not have
any information on dietary intake, an effect of diet on
carnitine levels, particularly increased intake of red meat,
cannot be excluded. However, the increased ratios of
TMAO over both endogenous and diet dependent pre-
cursors in cART treated individuals suggest the involve-
ment of other mechanisms. We and others have previ-
ously found elevated TMAO associated with cART
treatment, especially PI-treatment [27, 45]. The elevated
ratios of TMAO over pre-cursors in cART treated indi-
viduals may suggest that cART interferes with TMAO
metabolism, possibly by inducing hepatic flavin-
containing monooxygenases resulting in increased con-
version from TMA to TMAO. Commencement of cART
therapy leads to several other changes including sup-
pression of viral replication and concomitant attenuation
of immune activation. Thus, changes in these factors
could also be the cause of the observed changes in
TMAO production and metabolism observed in the
study. However, even after adjusting for viral replication
and monocyte activation increased ratios of TMAO over
precursors betaine and carnitine remained in cART
treated individuals. These results offer a possible explan-
ation for the lacking power of TMAO in predicting MI
in cART treated HIV-infected individuals [27], and for
the association between TMAO and sCD14 found in
only untreated and not cART treated individuals in this
study. However, as the study populations of untreated
and cART treated HIV-infected infected individuals dif-
fer on several important known and unknown factors
e.g. HIV duration, illicit drug use, socioeconomic status,

dietary habits. These additional factors might also ac-
count for the elevated ratios and pre-cursors in cART
treated individuals.
The study was limited by the cross-sectional design, ren-

dering conclusions on causality unanswered. In contrast to
previous results [27, 45], no association of TMAO and PI
use was found. However, this might be due to the small
number of participants on different ART regimens (n = 23,
PI), increasing the risk of type two statistical errors. Lacking
power due to limited number of participants and high vari-
ance in TMAO concentrations, might also explain why the
elevation of TMAO in treated compared to untreated indi-
viduals did not reach statistical significance. Methodology
for assessing platelet function differed from the study that
found TMAO induced hyperreactivity in platelets from
HIV-uninfected individuals [23]. Platelet aggregation was
assessed by measuring changes of impedance in electrodes
after stimulation with four different stimulants including
ADP (Multiple electrode aggregation, Multiplate) [31]. In
the study by Zhu et al. aggregation was assessed by changes
in light transmission after stimulation with ADP and
thrombin (light transmission aggregation, LTA) [23]. Even
though one of the same stimulants was used in both stud-
ies, the slight differences in methodology might account for
the different findings, and concentrations of stimulants can-
not be directly compared [46]. Further, impedance aggrego-
metry utilizes whole-blood samples without prior
manipulation, rendering the method closer to the biological
environment compared to the platelet rich plasma utilized
in LTA, where platelets prior to use have been centrifuged
possibly inducing activation or damage. Additional methods
for evaluating platelet function and an HIV-uninfected con-
trol group could have helped distinguish between specific
HIV-related effects and missing associations due to meth-
odical issues. Furthermore, additional markers of immune
activation independent of microbial translocation, other
markers specifically assessing microbial translocation in
addition to LPS, and an assessment of the microbial com-
position of the study participants would have facilitated the
exploration of the specific effects of immune activation in
opposition to microbial translocation and composition on
TMAO levels. Finally, the analyses were conducted on a
previously established study population.

Conclusions
In conclusion, no evidence of TMAO being associated with
platelet hyperreactivity was found in an HIV-infected study
population. This result is in contradiction to findings from a
study in HIV-uninfected individuals. Interestingly, TMAO
was independently associated with sCD14 in untreated HIV-
infected individuals, suggesting that microbial translocation
and monocyte activation may affect TMAO levels. Further-
more, the elevated ratios of TMAO/betaine and TMAO/
carnitine in cART-treated individuals suggest an altered
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TMAO metabolism in cART treated-individuals. Our
findings call for further studies in HIV-infected populations
specifically designed to investigate the potential role of gut
microbiota composition and related metabolites, beyond
TMAO, on CVD risk. Furthermore, the elevated ratios of
TMAO/betaine and TMAO/carnitine in cART-treated indi-
viduals suggest an altered TMAO metabolism in cART
treated-individuals. This is also an important avenue of fu-
ture research to explore, as the altered metabolism sug-
gested from these and previous findings, might have an
impact on CVD risk in cART treated HIV-infected
individuals.

Abbreviations
ADP: Adenosine diphosphate; AIDS: Acquired immunodeficiency syndrome;
ANOVA: Analysis of variance; APTT: Activated partial thromboplastin time;
ASPI: Arachidonic acid; cART: Combination antiretroviral therapy; CRP: C-reactive
protein; CVD: Cardiovascular disease; ELISA: Enzyme linked immunosorbent assay;
FEU: Fibrinogen equivalent units; HIV: Human immunodeficiency virus; II: Integrase
Inhibitor; IQR: Interquartile range; LAL: Limulus amoebocyte lysate; Ln: Natural
logarithmic; LPS: Lipopolysaccharide; LTA: Light transmission aggregation;
MI: Myocardial infarction; N: Number; NA: Not applicable; NNRTI: Non-nucleoside
reverse transcription inhibitor; NRTI: Nucleotide/nucleoside reverse transcription
inhibitor; PI: Protease Inhibitor; sCD14: Soluble CD14; TLR: Toll like receptor;
TMAO: Trimethylamine-N-oxide; TRAP: Thrombin receptor agonist peptide

Acknowledgements
All study participants are thanked sincerely for their participation in the
studies. We thank Professor Asbjørn Svardal, Department of Clinical Science,
University of Bergen, Norway for his contributions to the assessment of
TMAO and Professor Ingebjørg Seljeflot, Department of Cardiology, Oslo
University Hospital Ullevål, Oslo Norway for reviewing the manuscript.

Funding
The study was funded by grants from Copenhagen University Hospital
(Rigshospitalet) Research Council, Oslo University Hospital, Novo Nordisk
Foundation, Lundbeck Foundation and the Danish Heart Foundation.

Availability of data and materials
The datasets analyzed during the current study are not publicly available, but
are available from the corresponding author on reasonable request.

Authors’ contributions
JMH, MT, SDN planned and designed the study. RKB and JERH analyzed TMAO,
carnitine, betaine and choline. AKH collected the clinical cohort, AKH and SRO
analyzed impedance aggregometry. JMH performed statistical analyses. JMH,
SDN and MT drafted the manuscript. All authors critically reviewed and
approved the final version of the manuscript.

Competing interests
JMH, SRO, RKB, JRH, and MT: No conflicts of interest. SDN is an Associate
Editor of BMC Infectious Diseases and has received research funding from
Janssen and honoraria from Gilead and GlaxoSmithKline. AKH received travel
grant from MDS and Gilead.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The study was conducted in accordance with the Helsinki-declaration and
approved by the Committee on Biomedical Research Ethics in Denmark
(H-2-2009-089) and the Danish Data Protection Agency. Written informed
consent including consent to store plasma and perform further analysis on blood
samples was obtained from all participants after oral and written information.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Viro-immunology Research Unit, Department of Infectious Diseases,
Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen,
Denmark. 2Department of Clinical Immunology, Capital Region Bloodbank,
Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
3Department of Clinical Science, University of Bergen, Bergen, Norway.
4Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway.
5Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo,
Norway. 6K.G. Jebsen Centre for Inflammation Research, University of Oslo,
Oslo, Norway. 7Research Institute of Internal Medicine, Division of Surgery,
Inflammatory diseases and Transplantation, Oslo University Hospital
Rikshospitalet, Oslo, Norway. 8Norwegian PSC Research Centre, Department
of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo,
Norway. 9Section of Gastroenterology, Oslo University Hospital Rikshospitalet,
Oslo, Norway. 10Section of Clinical Immunology and Infectious Diseases, Oslo
University Hospital Rikshospitalet, Oslo, Norway.

Received: 12 January 2017 Accepted: 13 June 2017

References
1. Smith CJ, Ryom L, Weber R, Morlat P, Pradier C, Reiss P, et al. Trends in

underlying causes of death in people with HIV from 1999 to 2011 (D:a:D): a
multicohort collaboration. Lancet. 2014;384:241–8.

2. Triant VA. Epidemiology of coronary heart disease in patients with human
immunodeficiency virus. Rev Cardiovasc Med. 2014;15(Suppl 1):S1–8.

3. Kaplan RC, Hanna DB, Kizer JR. Recent insights into cardiovascular disease
(CVD) risk among HIV-infected adults. Curr HIV /AIDS Rep. 2016;13:44–52.

4. Feinstein MJ, Bahiru E, Achenbach C, Longenecker CT, Hsue P, So-Armah K,
et al. Patterns of Cardiovascular Mortality for HIV-Infected Adults in the
United States: 1999 to 2013. Am J Cardiol. 2016;(117):214–20.

5. Freiberg MS, Chang CC, Kuller LH, Skanderson M, Lowy E, Kraemer KL, et al.
HIV infection and the risk of acute myocardial infarction. JAMA Intern Med.
2013;173:614–22.

6. Lozupone CA, Rhodes ME, Neff CP, Fontenot AP, Campbell TB, Palmer BE.
HIV-induced alteration in gut microbiota: driving factors, consequences, and
effects of antiretroviral therapy. Gut Microbes. 2014;5:562–70.

7. Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, et al.
Intestinal microbiota, microbial translocation, and systemic inflammation in
chronic HIV infection. J Infect Dis. 2015;211:19–27.

8. Mutlu EA, Keshavarzian A, Losurdo J, Swanson G, Siewe B, Forsyth C, et al. A
compositional look at the human gastrointestinal microbiome and immune
activation parameters in HIV infected subjects. PLoS Pathog. 2014;10:
e1003829.

9. Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ
et al.: Dysbiosis of the gut microbiota is associated with HIV disease
progression and tryptophan catabolism. Sci Transl Med S, 5: 193ra91.

10. Tremaroli V, Backhed F. Functional interactions between the gut microbiota
and host metabolism. Nature. 2012;489:242–9.

11. Org E, Mehrabian M, Lusis AJ. Unraveling the environmental and genetic
interactions in atherosclerosis: central role of the gut microbiota.
Atherosclerosis. 2015;241:387–99.

12. Tang WH, Hazen SL. The contributory role of gut microbiota in
cardiovascular disease. J Clin Invest. 2014;124:4204–11.

13. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal
microbiota metabolism of L-carnitine, a nutrient in red meat, promotes
atherosclerosis. Nat Med. 2013;19:576–85.

14. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal
microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl
J Med. 2013;368:1575–84.

15. Tang WH, Wang Z, Shrestha K, Borowski AG, Wu Y, Troughton RW, et al.
Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic
dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J
Card Fail. 2015;21:91–6.

16. Troseid M, Ueland T, Hov JR, Svardal A, Gregersen I, Dahl CP, et al.
Microbiota-dependent metabolite trimethylamine-N-oxide is associated with

Haissman et al. BMC Infectious Diseases  (2017) 17:445 Page 7 of 8



disease severity and survival of patients with chronic heart failure. J Intern
Med. 2015;277:717–26.

17. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora
metabolism of phosphatidylcholine promotes cardiovascular disease.
Nature. 2011;472:57–63.

18. Wang Z, Tang WH, Buffa JA, Fu X, Britt EB, Koeth RA, et al. Prognostic value
of choline and betaine depends on intestinal microbiota-generated
metabolite trimethylamine-N-oxide. Eur Heart J. 2014;35:904–10.

19. Tang WH, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM, et al.
Prognostic value of elevated levels of intestinal microbe-generated
metabolite trimethylamine-N-oxide in patients with heart failure: refining
the gut hypothesis. J Am Coll Cardiol. 2014;64:1908–14.

20. Stubbs JR, House JA, Ocque AJ, Zhang S, Johnson C, Kimber C, et al. Serum
trimethylamine-N-oxide is elevated in CKD and correlates with coronary
atherosclerosis burden. J Am Soc Nephrol. 2016;27:305–13.

21. Mente A, Chalcraft K, Ak H, Davis AD, Lonn E, Miller R, et al. The relationship
between trimethylamine-N-oxide and prevalent cardiovascular disease in a
multiethnic population living in Canada. Can J Cardiol. 2015;31:1189–94.

22. Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, et al.
Trimethylamine-N-oxide, a metabolite associated with atherosclerosis,
exhibits complex genetic and dietary regulation. Cell Metab. 2013;17:49–60.

23. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, et al. Gut microbial
metabolite TMAO enhances platelet Hyperreactivity and thrombosis risk.
Cell. 2016;165:111–24.

24. Satchell CS, Cotter AG, O'Connor EF, Peace AJ, Tedesco AF, Clare A, et al.
Platelet function and HIV: a case-control study. AIDS. 2010;24:649–57.

25. O'Halloran JA, Dunne E, Gurwith M, Lambert JS, Sheehan GJ, Feeney ER, et al.
The effect of initiation of antiretroviral therapy on monocyte, endothelial and
platelet function in HIV-1 infection. HIV Med. 2015;16:608–19.

26. Gresele P, Falcinelli E, Momi S, Francisci D, Baldelli F. Highly active
antiretroviral therapy-related mechanisms of endothelial and platelet
function alterations. Rev Cardiovasc Med. 2014;15(Suppl 1):S9–20.

27. Haissman JM, Knudsen A, Hoel H, Kjaer A, Kristoffersen US, Berge RK, et al.
Microbiota-dependent marker TMAO is elevated in silent ischemia but is
not associated with first-time myocardial infarction in HIV infection. J Acquir
Immune Defic Syndr. 2016;71:130–6.

28. Miller PE, Haberlen SA, Brown TT, Margolick JB, DiDonato JA, Hazen SL, et al.
Intestinal microbiota-produced trimethylamine-N-oxide and its association
with coronary stenosis and HIV Serostatus. J Acquir Immune Defic Syndr.
2016;72:114–8.

29. Srinivasa S, Fitch KV, Lo J, Kadar H, Knight R, Wong K, et al. Plaque burden in
HIV-infected patients is associated with serum intestinal microbiota-
generated trimethylamine. AIDS. 2015;29:443–52.

30. Knudsen A, Christensen TE, Thorsteinsson K, Ghotbi AA, Hasbak P, Lebech AM,
et al. Microbiota-dependent marker TMAO is not associated with decreased
myocardial perfusion in well-treated HIV-infected patients as assessed by
82Rubidium PET/CT. J Acquir Immune Defic Syndr. 2016;72:e83–5.

31. Haugaard AK, Lund TT, Birch C, Ronsholt F, Troseid M, Ullum H, et al.
Discrepant coagulation profile in HIV infection: elevated D-dimer but
impaired platelet aggregation and clot initiation. AIDS. 2013;27:2749–58.

32. Haissman JM, Haugaard AK, Knudsen A, Kristoffersen US, Seljeflot I, Pedersen
KK, et al. Marker of endothelial dysfunction asymmetric dimethylarginine is
elevated in HIV infection but not associated with sub-clinical atherosclerosis.
J Acquir Immune Defic Syndr. 2016;73:507–13.

33. Bjorndal B, Burri L, Wergedahl H, Svardal A, Bohov P, Berge RK. Dietary
supplementation of herring roe and milt enhances hepatic fatty acid catabolism
in female mice transgenic for hTNFalpha. Eur J Nutr. 2012;51:741–53.

34. Tang WH, Hazen SL. Microbiome, trimethylamine N-oxide, and
cardiometabolic disease. Transl Res. 2016;179:108–15.

35. Tunjungputri RN, Van Der Ven AJ, Schonsberg A, Mathan TS, Koopmans P,
Roest M, et al. Reduced platelet hyperreactivity and platelet-monocyte
aggregation in HIV-infected individuals receiving a raltegravir-based
regimen. AIDS. 2014;28:2091–6.

36. Falcinelli E, Francisci D, Belfiori B, Petito E, Guglielmini G, Malincarne L, et al.
In vivo platelet activation and platelet hyperreactivity in abacavir-treated
HIV-infected patients. Thromb Haemost. 2013;110:349–57.

37. Sabroe I, Jones EC, Usher LR, Whyte MK, Dower SK. Toll-like receptor (TLR)2 and
TLR4 in human peripheral blood granulocytes: a critical role for monocytes in
leukocyte lipopolysaccharide responses. J Immunol. 2002;168:4701–10.

38. Zanoni I, Granucci F. Role of CD14 in host protection against infections and
in metabolism regulation. Front Cell Infect Microbiol. 2013;3:32.

39. Nowak P, Troseid M, Avershina E, Barqasho B, Neogi U, Holm K, et al. Gut
microbiota diversity predicts immune status in HIV-1 infection. AIDS. 2015;
29:2409–18.

40. Kelesidis T, Kendall MA, Yang OO, Hodis HN, Currier JS. Biomarkers of
microbial translocation and macrophage activation: association with
progression of subclinical atherosclerosis in HIV-1 infection. J Infect Dis.
2012;206:1558–67.

41. Sandler NG, Wand H, Roque A, Law M, Nason MC, Nixon DE, et al. Plasma
levels of soluble CD14 independently predict mortality in HIV infection. J
Infect Dis. 2011;203:780–90.

42. Borges AH, O'Connor JL, Phillips AN, Neaton JD, Grund B, Neuhaus J, et
al. Interleukin 6 is a stronger predictor of clinical events than high-
sensitivity C-reactive protein or D-dimer during HIV infection. J Infect
Dis. 2016;214:408–16.

43. Pedersen KK, Manner IW, Seljeflot I, Kvale D, Os I, Gerstoft J, et al. Monocyte
activation, but not microbial translocation, is independently associated with
markers of endovascular dysfunction in HIV-infected patients receiving
cART. J Acquir Immune Defic Syndr. 2014;67:370–4.

44. Ueland PM. Choline and betaine in health and disease. J Inherit Metab Dis.
2011;34:3–15.

45. Sinha A., Ma Y., Carroll C.. TMAO and HIV-associated atherosclerosis.
Conference on Retroviruses and Opportunistic Infections, Seattle, WA
Abstract No 755. 2015.

46. Paniccia R, Priora R, Liotta AA, Abbate R. Platelet function tests: a
comparative review. Vasc Health Risk Manag. 2015;11:133–48.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Haissman et al. BMC Infectious Diseases  (2017) 17:445 Page 8 of 8


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Cross-sectional cohort
	Ethics and informed consent
	Measurement of TMAO
	Statistical analyses

	Results
	TMAO was not associated with platelet aggregation
	sCD14 was an independent predictor of TMAO in untreated HIV infection
	TMAO was not associated with HIV-related factors
	TMAO and precursors in untreated vs. cART treated HIV-infected individuals

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher’s Note
	Author details
	References

