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Abstract

Background: Our previous studies indicated that heat stress can cause significant damage to the intestinal
epithelium and induce differential expression of many genes in rat small intestine. The transcription factors AP-1
and NF-κB, which act as important mediators by binding to specific DNA sequences within gene promoters,
regulate the transcription of genes associated with immune regulation, stress response and cell fate.

Methods: To determine whether AP-1 and NF-κB are involved in hyperthermia-induced injury in rat small intestine
and IEC-6 cells, we investigated their activity, and the expression of related proteins, by electrophoretic mobility shift
assays and western blotting, respectively.

Results: Heat stress resulted in severe damage to the epithelium of the small intestine. The cell morphology and
viability were obviously altered when IEC-6 cell was exposed to hyperthermia. AP-1 was activated in the small
intestine of heat-stressed rats, as was phosphorylation of the JNK signaling pathway. In IEC-6 cell line, AP-1
activation in groups exposed to 42 °C for 1 h, 2 h and 4 h was significantly increased. In contrast, NF-κB was
not activated in both in vivo and in vitro models.

Conclusion: These results reveal that AP-1 is likely to play an important role in regulating gene transcription in rat
small intestine and IEC-6 cells during exposure to heat stress.

Keywords: AP-1, NF-κB, Heat stress, Rat small intestine, IEC-6

Background
As one important physical stimulus, ambient temperature
can evoke a series of drastic changes in biological function
[1] including gastrointestinal injury and dysfunction [2].
Our previous studies have shown that heat stress can in-
duce damage in the rat small intestine, along with differ-
ential expression of many genes associated with immune
regulation and metabolism, and those encoding regulatory
peptides [3]. A number of growth-related molecules (such
as Gdf15, Gdf9, Ctgf, and Egfr) which are critical for cellu-
lar survival, proliferation and migration, have also been
shown to be differentially expressed in response to
hyperthermia-induced damage [4].

Transcription factors, important mediators involved in
signal transduction, bind to specific DNA sequences
within gene promoters, and thus regulate transcriptional
activity. Both NF-κB and AP-1 are well known pleiotropic
transcription factors that independently and/or comple-
mentarily regulate a large number of genes related to a
wide range of functions, including immune regulation,
proliferation, differentiation, and apoptosis [5, 6].
NF-κB is a ubiquitous transcription factor and a mem-

ber of a family of proteins that are important regulators
of a variety of responses. NF-κB exists as a dimer pre-
dominantly composed of p50 and p65 subunits, although
it also contains other family members, such as RelB, c-
Rel, v-Rel and p52 [7]. The activity of NF-κB is regulated
by a family of IκB inhibitor proteins [8], which sequester
NF-κB in the cytoplasm. In response to various external
pathogenic stimuli, IκB is phosphorylated, ubiquitinated,
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and subsequently degraded by a proteosome-dependent
pathway. Degradation of IκB allows NF-κB to translocate
into the nucleus, where it binds to specific promoter ele-
ments and induces gene transcription.
AP-1 is a central switch to convert extracellular signals

into genetic responses and to determine cell prolifera-
tion, differentiation, and apoptosis. AP-1 complex con-
sists of homodimers and heterodimers formed by a
group of transcription factors, including members of the
Jun, Fos, and ATF families [9]. Previous studies indicate
that the c-Jun/ATF-2 heterodimer is one of the main
components of expression pathways associated with
oncogenesis [9] and the extreme cellular stress of ische-
mia and reperfusion [10]. JNK is one member of the
mitogen-activated protein kinase (MAPK) family, which
play crucial roles in many responses [11]. JNK was ini-
tially described as a stress-induced protein kinase acting
to phosphorylate the NH2-terminus of the transcription
factor c-Jun; hence, this pathway is often referred to as
the stress-activated protein kinase (SAPK) pathway [12].
Multiple stresses increase JNK activity including UV, r-
irradiation, cytotoxic drugs, ischemia and reactive oxygen
species. JNK phosphorylates several transcription factors
including c-Jun, ATF-2, and p53 [13], which in turn regu-
late the expression of genes mediating cell proliferation,
differentiation or apoptosis. Many studies have shown that
there is crosstalk between JNK1 and NF-κB [14].
To further explore the mechanism of gene expression

involved in hyperthermia-induced damage and repair in
the rat small intestine, we investigated the activity of tran-
scription factors AP-1and NF-κB and determined the ex-
pression of proteins acting upstream in their respective
pathways, using both in vivo and in vitro models.

Methods
Animals and treatments
All protocols and procedures involving animals were
approved by the Beijing University of Agriculture Insti-
tutional Animal Care and Use Committee, and con-
ducted in accordance with the committee’s guidelines.
12 male Sprague–Dawley (SD) rats weighing 200 ± 20 g
(obtained from Beijing Vital River Laboratory, Animal
Technology Co., Beijing, China) were caged at 25 °C,
with a 12 h light:dark cycle and free access to food and
water for 7 days. Rats were then randomly divided into
control or heat-stress groups (6 rats per group) and
housed in an artificial climate chamber (HPG-400BX,
Harbin Donglian Electronic Technology, Heilongjiang,
China) under normal conditions (25 °C, 60 % relative
humidity). Rats in the heat treatment group were ex-
posed to 40 °C and 60 % RH from 11:00 to 13:00 for 3
consecutive days. The detail of heat-stress procedure
was previously described by Yu et al. [4]. Rat rectal
temperature was recorded daily before and after heat

treatment using a thermistor probe connected to a
digital thermometer. Body weight was recorded daily
during the 7 adaptation days and the 3 treatment days.

Sampling
All rats were euthanized by decapitation without anesthesia
immediately after the final 2 h heat treatment period. After
euthanasia, trunk blood was collected and centrifuged at
3,000 × g for 10 min and the sera stored at −20 °C until re-
quired. Sections of the duodenum, jejunum and ileum were
rapidly excised and washed with physiological saline. All in-
testinal segments were divided into two parts: 1) a section
of 1 cm length was fixed in 10 % neutral formalin for paraf-
fin embedding; 2) a section of 3 cm length was minced and
separated into three sample tubes, snap frozen in liquid ni-
trogen and stored at −80 °C until required.

Serum cortisol analysis and morphological examination
Serum cortisol concentration was determined using an
I125 cortisol radioimmunoassay kit, according to the man-
ufacturer’s instructions (Beijing Chemclin Biotech Co.,
Ltd, China). Formalin-fixed samples were embedded in
paraffin and sectioned (5 μm thick) in transverse orienta-
tion. After deparaffinization and dehydration, sections
from the duodenum, jejunum and ileum were stained with
hematoxylin and eosin. The structure of the mucosa was
observed using an Olympus BH2 microscope (Olympus,
Tokyo, Japan).

Cell culture and treatments
Rat IEC-6 cells (#CRL21592, purchased from Peking
Union Medical College, Beijing, China) were cultured in
Dulbecco’s modified Eagle medium containing 5 % (v/v)
fetal bovine serum (HyClone, Logan, UT, USA), 2 mg/l
insulin, 50 IU/ml penicillin and 50 μg/ml streptomycin
and incubated at 37 °C under 5 % (v/v) CO2. The
medium was replaced 24 h following initial cell plating.
Control group cells were kept strictly at 37 °C under 5 %
CO2, while cells of the heat treatment groups were ex-
posed to 42 °C under 5 % CO2 in the incubator
(Thermo, Marietta, Ohio, USA) for 15 min, 30 min 1 h,
2 h, 4 h, and 8 h, respectively. To inhibit specific intra-
cellular agents, cells were pretreated with 10 μM
SP600125 (JNK inhibitor, #1496, Tocris Bioscience,
Bristol, UK) for 1 h prior to heat treatment. Changes in
cell morphology following all treatments were observed
using a phase-contrast inverted biological microscope
(IX71/IX2, Olympus).

MTT cell viability assay
To measure cell viability, equivalent numbers of IEC-6
cells were plated on 96-well multiplates and cultured in
DMEM containing 5 % fetal bovine serum at a density
of 1.2 × 105 cells /ml. After the cells were attached to the
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multiplate, control cells were maintained at 37 °C,
while heat-stressed cells were submitted to 42 °C for
15 min, 30 min, 1 h, 2 h, 4 h, and 8 h, respectively. Fol-
lowing the heat stress period, 10 μl of MTT (10 mg/ml)
was added to each well then incubated at 37 °C for 4 h.
Well media was aspirated and the formazan product
dissolved using dimethyl sulphoxide. The remaining
formazan product was analysed using a microplate
reader (BIO-RAD, USA) at a fixed absorption wave-
length of 570 nm. Survival rates were calculated as per-
cent OD570 of the untreated cells normalized to the
‘zero’ survival value.

Protein extraction and measurement
Nuclear and cytoplasmic extracts from rat small intes-
tine and IEC-6 cells were prepared using the Nuclear
and Cytoplasmic Extraction Reagent Kit (KeyGEN
Biotech, Nanjing, China). Protein content was deter-
mined using the Pierce BCA protein assay kit (Thermo
Fisher Scientific, Rockford, IL, USA) using bovine serum
albumin as a standard.

Electrophoretic mobility shift assay (EMSA)
The nuclear fraction was used for EMSA analysis of AP-
1 and NF-κB. IRDye700-labeled AP-1 (sense: 5’-CGC
TTG ATG ACT CAG CCG GAA-3’; antisense: 5’-TTC

CGG CTG AGT CAT CAA GCG-3’) and NF-κB (sense:
5’-AGT TGA GGG GAC TTT CCC AGG C-3’; anti-
sense: 5’-GCC TGG GAA AGT CCC CTC AAC T-3’) oli-
gonucleotides were purchased from LI-COR Biosciences
(Lincoln, NE, USA). Briefly, EMSA binding reactions were
performed by incubating 2 μg of nuclear extract with the
annealed oligonucleotides and binding reagents for
30 min at room temperature in the dark. For the super-
shift assay, antibodies (Cell Signaling Technology, Inc.,
Danvers, MA, USA) were incubated with samples after
the initial binding reaction between nuclear proteins
and the oligonucleotides. The reaction mixture was sub-
jected to electrophoresis on a 5 % native gel at 4 °C in
the dark. The gel was scanned using an Odyssey Infra-
red Imaging System (LI-COR Biosciences).

Western blotting
Twenty μg of either cytoplasmic or nuclear lysate were re-
solved on a 12 % polyacrylamide-sodium lauryl sulfate gel
via electrophoresis and transferred to nitrocellulose mem-
branes. After blocking, membranes were incubated over-
night at 4 °C with respective primary antibodies (Cell
Signaling Technology, Inc.) diluted to 1:1000. The blots
were then incubated with a 1:15000 dilution of the anti-
rabbit secondary antibody labeled with IRDye700 (LI-
COR Biosciences) at room temperature for approximately
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Fig. 1 Assessment of hyperthermia in an animal model. (a) Rat rectal temperature before and after heat treatment. Rat rectal temperatures were
significantly elevated following 2 h heat exposure at 40 °C. (b) Rat body weight before and after heat stress. Rat body weight was significantly
decreased after heat treatment. (c) Mean cortisol concentration in the heat-stressed group was significantly higher than that of the control group.
Values represent the mean ± S.E. for n = 6 rats per group. *p < 0.05, **p < 0.01 indicate a significant difference for the rats before and after heat
stress. #p < 0.01 indicates that the heat-stress group was significantly different from the control group
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1–2 h. Finally, the membranes were scanned using an
Odyssey Infrared Imaging System (LI-COR Biosciences).

Statistical analysis
Data analyses were carried out using SPSS12.0 (SPSS
Inc., USA) and graphs were created using Origin6.0

(OriginLab, Northampton, USA). Differences between
two groups were assessed using Student’s t-test, or for
more than two groups using an analysis of variance
(ANOVA) combined with the post-hoc LSD test. Data
are expressed as mean ± S.E. Differences were considered
statistically significant at p < 0.05.
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Fig. 2 Morphology of rat small intestine in response to heat stress. (I) Photomicrographs of hematoxylin and eosin-stained sections of rat small
intestine after 3 days of heat treatment. Upper panels show small intestine from control rats, lower panels show small intestine from heat-stressed rats.
Thermal injury to the intestinal villi is apparent, with hyperemia desquamation at the tips of the intestinal villi. (II) Morphology of rat small intestine at
higher magnification. Heat stress resulted in profound damage to the epithelium of the small intestine. Sloughing of epithelium off the basement
membrane at the villus tips and even exposing of the lamina propria are more obvious at higher magnification. Abnormal microstructures are
indicated by arrows
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Results and discussion
Assessment of heat treatment in the animal model
In mammals, rectal temperature, serum cortisol level
and body weight are used for a basic assessment of heat
stress [15]. Fig. 1 summarizes these main characteristics.
Compared with the results before heat stress, rectal
temperature was significantly increased after treatment.
Rat body weight was significantly decreased after heat
treatment (220.8 ± 8.5 g) compared with before treat-
ment (237.5 ± 7.8 g). There were no significant differ-
ences in either rectal temperature or body weight
between the control group and the heat-stress group

before treatment. Measurement of serum hormones
showed that heat stress induced a significant increase in
cortisol concentration compared with the control rats.
These results are consistent with our previous reports
[4, 16], in which the same model was used.

Histological analysis
Many environmental and biological stressors including
radiation, hyperthermia (heat stress), LPS, various drugs,
endotoxins, and ROS can cause significant damage to
the intestinal epithelium [17]. In the case of hyperther-
mia, significant injury to the intestine is sustained
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had a positive effect on cell viability (f). It was measured by MTT assay, in which IEC-6 survival rate was calculated as percent OD570 of the
untreated group (0 h). Data are mean ± S.E., n = 3 per treatment. * p < 0.05, compared to respective heat-stress group
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because of reduced blood flow to the gut [2], resulting in
ischemia within the small intestine [18]. Light micro-
graphs of hematoxylin and eosin-stained small intestine
tissue demonstrated that heat stress resulted in profound
damage to the epithelium of the small intestine (Fig. 2I).
Sloughing of epithelium off the basement membrane at
the villus tips was observed in the heat-stressed tissue
compared with the control tissue. Vacuolization of epithe-
lial cells was also observed at higher magnification and, in
severe cases, the lamina propria was exposed (Fig. 2II).

Cell morphology and viability
A previous report [19] indicated that the effect of heat
treatment on IEC-6 cells was dependent on temperature
and exposure time. According to methods used in our
own previous study [4], IEC-6 cells were subjected to
heat stress of 42 °C. Following heat exposure, cells were
examined under a phase-contrast inverted microscope.
The morphology was markedly altered, with a different
cell shape, and a greater dead cell mass was clearly ob-
served in the supernatant after 4 h (Fig. 3C) of the cells
being exposed to heat. In contrast, the damage was at-
tenuated with addition of JNK inhibitor SP600125
(Fig. 3d and e). Compared to control cells, IEC-6 dem-
onstrated 70 % reduction of viability after 4 h at 42 °C,
whereas cells pretreated with SP600125 were relatively
resistant to the toxic effect of heat (Fig. 3f ).

Effects of heat stress on AP-1 and JNK pathway
EMSA assessment of AP-1 activation was performed in
rat small intestine and IEC-6 cells. Fig. 4 shows the re-
sults of representative experiments in vivo and in vitro.
Compared with the control group, the activity of AP-1
in heat-stressed rats was increased (Fig. 4a). Following
heat exposure, IEC-6 cells were harvested at time 0 h,
then at 15 min, 30 min, 1 h, 2 h, 4 h, and 8 h. AP-1 acti-
vation in groups treated for 1 h, 2 h and 4 h was signifi-
cantly increased (P < 0.05) compared to 0 h (Fig. 4b).
To investigate the specificity of the AP-1 complex,

supershift experiments were carried out by adding anti-
bodies against c-Jun, JunB, JunD, c-Fos and ATF2 to the
nuclear extracts from IEC-6 cells exposed heat for 1 h.
Protein-antibody recognition can be visualized by a de-
crease in the mobility of the DNA-protein complex and
a diminution of the AP-1 complex. Fig. 5a implies that
the AP-1 complex is likely to consist of c-Jun and ATF2.
However, the hysteretic bands were too vague to confirm
this postulation and we could not get better results.
Then, western blot analysis was conducted to identify
the contributing family members. We found that heat
stress did induce the phosphorylation of c-Jun and ATF2
(Fig. 5b). What’s more, both c-Jun and ATF2 followed
similar kinetic profiles compared with that observed for
AP-1(Fig. 4b). Taparowsky et al. found that ATF2 and c-

Jun mutually regulate each other to function in the
stress response mainly through altering the dynamics of
subcellular localization and positively impacting tran-
scriptional activity [20].
The involvement of AP-1 activation in our heat-stress

models prompted us to ask whether the JNK pathway
might also be involved. To test this hypothesis, western
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blot analysis of JNK phosphorylation was performed
using the cytoplasmic extract from rat small intestine
and IEC-6 cells. In all three segments of small intestine,
heat stress was found to significantly increase JNK phos-
phorylation in contrast with the control group (Fig. 6a).
In IEC-6 cells, JNK phosphorylation was also increased.
This effect reached a maximum at 4 h and lasted for
several hours, and was reversible by the addition of JNK
inhibitor SP600125 (Fig. 6b). As the main protein up-
stream of AP-1, JNK is activated first, leading to the
phosphorylation of pre-existing c-Jun and ATF2 proteins
[21]. To investigate whether JNK inhibition influences
the activation of AP-1 during heat stress, IEC-6 cells
were subjected to heat combined with SP600125. Fig. 4b
and Fig. 5b show that AP-1 activity is significantly atten-
uated by the JNK inhibitor SP600125.

Assessment of NF-κB by EMSA and Western blot
It is widely known that rather than being a mediator of
the immune response, NF-κB more generally represents
a regulator of stress responses [22]. NF-κB activity can
be induced by various stressors including hyperglycemia,
hyperthermia, hyperosmotic shock, reactive oxygen spe-
cies, ischemia/reperfusion, and irradiation. Electrophor-
etic mobility shift assays were conducted towards
transcription factor NF-κB. To our surprise, NF-κB acti-
vation in both rats and IEC-6 cells was not observed
(Additional file 1: Figure S1). To confirm this result, we
investigated main proteins related to the NF-κB signal-
ing pathway by western-blot. Exposing rats and IEC-6
cells to hyperthermia did not induce significant phos-
phorylation of P50 and P65, compared with respective
control groups (Additional file 1: Figure S2). Our result
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was not consistent with previous report [23], in which
hyperthermia enhanced the transcriptional activity of
both AP-1 and NF-κB in PMA/ionomycin treated T
cells. Although Ap-1 activity was more rubost in this
model, NF-κB was obviously activated in the presence of
heat stress. It’s not clear why there was a lack of NF-κB
activation in our models. It may be related to the specifi-
city of both stimulus and cell type. Karin had pointed
out that not all cell types responded equally to a given
stimulus, and that not every stimulus could activate NF-
κB in every cell type examined [24]. On the other hand,
it’s reported that thermal stress could alter metabolic pro-
cesses impacting upon intracellular oxidation-reduction
status and thereby inhibit the activity of NF-κB [25].
Our published microarray analysis data had shown that
many genes related to oxidation-reduction and metab-
olism pathways did differently express in response to
heat stress [3].
In summary, we have demonstrated that the transcrip-

tion factor AP-1 (primarily its c-Jun and ATF-2 compo-
nents) can be activated in rat small intestine and IEC-6
cells exposed to heat stress, and that the JNK signaling
pathway is also involved in this response. However, it re-
mains to be established whether activation of c-Jun/
ATF2 leads to an enhanced level or activity of the genes
identified by DNA microarray. Also, the mechanism of
NF-κB inactivation needs more in-depth investigations.

Conclusion
Ap-1 was activated in rat small intestine and IEC-6 cells
when exposed to heat stress. It is likely to play an im-
portant role in regulating gene transcription in these
models.

Additional file

Additional file 1: Figure S1. Electrophoretic mobility shift assay for
NF-κB in vivo (A) and in vitro (B). NF-κB activation was not observed in
both rat small intestine and IEC-6 cells. Figure S2. Western blotting was
performed to detect nuclear p65 and p50 phosphorylation levels in vivo
(A) and in vitro (B). There were no significant differences. Data are mean ±
S.E., n = 6 per treatment. C: control; HS: heat stress.
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