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Abstract

Background: Methods for estimating relative survival are widely used in population-based cancer survival studies.
These methods are based on splitting the observed (the overall) mortality into excess mortality (due to cancer) and
background mortality (due to other causes, as expected in the general population). The latter is derived from life
tables usually stratified by age, sex, and calendar year but not by other covariates (such as the deprivation level or
the socioeconomic status) which may lack though they would influence background mortality. The absence of
these covariates leads to inaccurate background mortality, thus to biases in estimating the excess mortality. These
biases may be avoided by adjusting the background mortality for these covariates whenever available.

Methods: In this work, we propose a regression model of excess mortality that corrects for potentially inaccurate
background mortality by introducing age-dependent multiplicative parameters through breakpoints, which gives
some flexibility. The performance of this model was first assessed with a single and two breakpoints in an intensive
simulation study, then the method was applied to French population-based data on colorectal cancer.

Results: The proposed model proved to be interesting in the simulations and the applications to real data; it
limited the bias in parameter estimates of the excess mortality in several scenarios and improved the results and
the generalizability of Touraine’s proportional hazards model.

Conclusion: Finally, the proposed model is a good approach to correct reliably inaccurate background mortality by
introducing multiplicative parameters that depend on age and on an additional variable through breakpoints.
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Background
Many medical research works dedicated to prognosis or
to the impact of some covariates on a given disease out-
come rely largely on population-based indicators. In can-
cer epidemiology, using observational data from cancer
registry, survival after cancer diagnosis is the most

widely used indicator but there are now several aspects
of survival. Among these aspects, net survival is espe-
cially interesting because it provides the survival that
would be observed if only deaths from cancer were con-
sidered [1]; it eliminates the part of mortality due to
other causes and allows then fair comparisons between
populations or periods [2]. Unfortunately, in cancer
registries, the causes of death are often unreliable [3, 4].
For this purpose, methods for estimating excess mortal-
ity that do not rely on the cause of death have been
developed.
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These methods may be applied in a parametric frame-
work [5–8] or a non-parametric framework [9–12]. In
the parametric framework, the models consist in split-
ting λO, the observed (or overall) mortality, into two
components: λE, the excess mortality due to the disease,
and λP, the background mortality (i.e., the expected mor-
tality due to other causes in the general population). The
latter component is usually derived from life tables ad-
justed for age, sex, and calendar year. More formally,

λO tjzð Þ ¼ λE tjzð Þ þ λP aþ tjzDð Þ:

a represents the age at diagnosis, t the time since diag-
nosis, and z a vector of covariates that includes vector
zD. The availability of covariates zD varies between coun-
tries and some are not available at the population level;
this may affect the estimates of both the excess mortality
and the background mortality. For instance, both
cancer-specific mortality and all-cause mortality may dif-
fer according to the socioeconomic status [13, 14] and,
in some populations, the deprivation level is associated
with reduced life expectancy [15]. Moreover, it has been
shown that overlooking certain relevant covariates in es-
timating the background mortality induces a bias in esti-
mating the effects of these covariates on the excess
mortality [16, 17]. Thus, searching for more accurate es-
timates of excess mortality should take into account dif-
ferences in background mortality due to specific
covariates.
When population data are not available, several ap-

proaches have been proposed to overcome the problem
of insufficiently stratified life tables using individual in-
formation. For instance, in a Bayesian framework, Mor-
feld and McCunney [18] proposed standardized
mortality ratios (SMRs) using some prior distributions.
Other authors proposed methods to construct life tables
stratified by additional variables such as ethnicity [19,
20], socioeconomic deprivation [16, 21, 22], or smoking
status [23]. Bower et al. [24] proposed adjusting the
background mortality for covariates other than age, sex,
and calendar year using information from a control
population that would accurately match the reference
population. Such approaches allow to improve the esti-
mate of the excess mortality by correcting the back-
ground mortality through involving a specific variable,
which may be of particular interest in some epidemio-
logical studies. However, although it is best to use exter-
nal information, on the whole or on a part of the
reference population, to construct life tables stratified by
additional variables, it is important to note that this is
not always possible. Indeed, such external information
do not exist and/or are not available at regional or na-
tional level. An alternative approach focusing on correc-
tion involving a specific variable is based on modelling.

Within the context of long-term clinical trials of cancer
treatment, Cheuvart and Ryan [25] proposed a model for
rescaling patients’ background mortality using a single
multiplicative parameter. However, this model relied on
aggregate data, which may have involved a loss of infor-
mation. Furthermore, this scale parameter was common
to all patients and allowed the mortality from other
causes to differ between the studied group and the gen-
eral population. Therefore, Touraine et al. [26] proposed
a model where the population hazard is modelled using
life table mortality rates and multiplicative parameters
that depend on the level of an additional variable. How-
ever, this model relies on an assumption of proportional
hazards; i.e., the background mortality differs from the
life table mortality in a multiplicative way. This assump-
tion (which cannot always be checked) may not be true
with certain covariates or at certain age intervals. For in-
stance, in the American life tables (that include ethni-
city), the background mortality functions of Blacks and
Whites deviate from proportionality and intersect be-
tween ages 80 and 90.
In line with the modelling approach of correcting a life

table by adjusting the population hazard for an add-
itional variable, the aim of the present study was to relax
the assumption of proportional hazards between the
levels of the additional variable. To this end, the study
proposes a model with age-dependent multiplicative pa-
rameters using breakpoints. This allows the effect of the
additional variable on the background mortality to
change according to age.
The present manuscript is organized as follows: the

Methods section presents Estève’s model --considered as
the classical model for estimating the effects of certain
covariates on the excess mortality--, Touraine’s model,
the proposed model, and the simulation study. The Re-
sults section presents the results of the assessment of
the empirical performance of each model through inten-
sive simulations. This section also illustrates the use of
these methods on French population-based colorectal
cancer data. The manuscript ends with practical recom-
mendations, a discussion about the study limitations,
and ways for further research.

Methods
Estève’s model (Model 1)
The model proposed by Estève et al. [5] assumes that, at
time t after diagnosis of a subject aged a at diagnosis
and considering a vector of covariates z that includes a
vector of demographic variables zD, the observed hazard
of death λO may be written:

λO tjzð Þ ¼ λE tjzð Þ þ λ�P aþ tjzDð Þ ð1Þ
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The first component, λE, is the excess hazard. It repre-
sents the disease-related mortality function and may be
expressed as:

λE tjzð Þ ¼
XK

k¼1
exp τkð ÞIk tð Þ exp βTz

� �

In this expression, βT is the transpose matrix of vector
β (the latter being the vector of regression parameters
which are the logarithms of the hazard ratios), τk is the
logarithm of the baseline excess hazard in the k th inter-
val for a subject with z = 0, Ik is an indicator function (Ik
=1 when tk − 1 < t < tk, 0 otherwise. These time points are
predefined if there is an a priori epidemiological know-
ledge or they are chosen according to the proportion of
deaths in each interval). The baseline excess hazard is a
piecewise constant over K intervals. The vector of re-
gression parameters β and the baseline parameters τk
(k = 1, …, K) are estimated by the maximum likelihood
method.
The second component, λ�P , is the background mor-

tality. This population-hazard term is not estimated
from the data but derived from a life table adjusted
for some common variables such as age, sex, and
calendar year. These variables belong to zD, which is
a subset of z.

Touraine’s model (Model 2)
Touraine et al. [26] proposed a model that allows the
background mortality of the studied population to differ
from that of the general population using a multiplica-
tive parameter. Unlike Estève’s model, Touraine’s model
takes into account an additional variable by which the
life table is not initially stratified. This parameter that
multiplies the potentially inaccurate background mortal-
ity represents the effect of the additional variable on the
background mortality. There may exist as many multi-
plicative parameters as levels of the additional variable.
More formally, considering a categorical variable x with
M levels (included in z) and a life table not stratified by
x (i.e., vector of variables zD does not include x), Tour-
aine’s model may be written:

λO tjzð Þ ¼ λE tjzð Þ
þ
X

m
αmI x ¼ mð Þλ�P aþ tjzDð Þ with m

¼ 1;…;M

ðModel 2Þ
In this expression, λE and λ�P are defined as in Model

1, I is an indicator function (I =1 when x =m, 0 other-
wise), and αm are multiplicative parameters that correct
a potentially inaccurate background mortality of subjects
whose additional variable x =m. As in Model 1, parame-
ters β and τk of the excess mortality and αm are simul-
taneously estimated by the maximum likelihood method,

~αm is estimated so that e~αm ¼ αm . Similarly, λ�P is not es-
timated from the data but derived from a life table.

Proposed model (Model 3)
The proposed model is an extension of Touraine’s
model; it allows the background mortality of the studied
population to differ from that of the general population
by introducing an age-dependent multiplicative param-
eter through breakpoints. This means that the effect of
the additional variable on the background mortality
could be not constant over time and that there may not
be constant proportionality between the background
mortality functions associated with the levels of the add-
itional variable.

The model with B breakpoints
As in Model 2, let us consider x with M levels and a vec-
tor Ɛ (ε1 < ε2 <… < εB) of B breakpoints. The proposed
model may be written:

λO tjzð Þ ¼ λE tjzð Þ
þ
X

m

X
b
αmbIb aþ tjx ¼ mð Þλ�P aþ tjzDð Þ

ðModel 3Þ

with m= 1, …, M; b = 1, …, B + 1. In this equation, λE
and λ�P are defined as in Models 1 and 2, αmb are multi-
plicative parameters that correct a potentially inaccurate
background mortality of subjects whose additional vari-
able x =m over segment b, and Ib is an indicator func-
tion (Ib =1 when εb − 1 ≤ a + t < εb, 0 otherwise). As in
Models 1 and 2, parameters β and τk of the excess mor-
tality and αmb (m= 1, …, M; b = 1, …, B + 1) are simul-
taneously estimated by the maximum likelihood method,

~αmb is estimated so that e~αmb ¼ αmb . Similarly, λ�P is not
estimated from the data but derived from a life table.
The log-likelihood is defined as:

l ψð Þ ¼
Xn

i¼1

�
−ΛE tijzið Þ

−
X

m

X
b
αmbIb ai þ tijxi ¼ mð ÞΛ�

P ai þ tijzDið Þ
þδi log λE tijzið Þ þ

X
m

X
b
αmbIb ai þ tijxi ¼ mð Þλ�P ai þ tijzDið Þ

h i
Þ

where ψ = (β, τk, αmb) represents the vector of model pa-
rameters, n the number of subjects, δi the indicator of
death for subject i, ΛE the cumulative excess hazard
function, and Λ�

P the cumulative population hazard func-
tion. Unlike Model 1, the latter does not cancel when
maximizing the log-likelihood. It is easily computed be-
cause λ�P is a piecewise constant function derived from a
life table that provides mortality rates by age and calen-
dar year units.
From this log-likelihood, the first derivatives are:
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In these derivatives, zil is the component l of the vec-
tor of covariates of subject i and tki is the time spent in
the kth interval by subject i.

Breakpoint number and location
Model 3 assumes that both the number and the locations
of the breakpoints are fixed. The literature has reported
several approaches for determining the number and the
locations of the breakpoints. In the case of a single break-
point, Kunst et al. [27] proposed a graphical method to
determine the location of the breakpoint by a simple exam-
ination of a scatter plot. Some authors developed an exact
or grid-search type algorithm for breakpoint determination
[28–30]. Others proposed a Bayesian MCMC approach [31,
32] but faced a computational bulk even with simple
models. Braun et al. [33] proposed an approach using
quasi-deviance to measure the quality of the fitted model
and adapted the Schwarz criterion for the choice of the
number of breakpoints. Molinari et al. [34] and Bessaoud
et al. [35] proposed a heuristic approach. More specifically,
the range of the variable of interest is divided into 10
segments (i.e. 9 breakpoints since there are the lower and
upper bounds of the variable). Thus, in case of B break-
points, there are ð9BÞ ¼ 9!

B!ð9 − BÞ! potential vectors of location.
For each combination of potential locations, a Bayesian In-
formation Criterion (BIC) is calculated and used to select
the best model (the one with lowest criterion). Muggeo [36]
proposed a linearization technique where a single or more
breakpoints are parameters of the model. Goodman et al.
[37] proposed a sequential process. To find the model with
the optimal number of breakpoints k (k = 0, …, K) that best

fits the data, they performed sequential testings; i.e., they
compared successively model pairs (with k vs. k + 1
breakpoints) until failing to reject the null hypothesis (no
breakpoint against the alternative of a single breakpoint),
which made them retain k and not k + 1 breakpoints.
In this work, we investigated more specifically models

with a single (ε) and two breakpoints (ε1, ε2). Indeed, we
have chosen this limited number of breakpoints since it
allows the number of parameters to remain low while
ensuring a sufficient flexibility to reflect plausible patterns
of changes in background mortality over age. Model 3
with a single (Model 3.1) and two (Model 3.2) breakpoints
may then be written, respectively:

λO tjzð Þ ¼ λE tjzð Þ þ
X

m

�
αm1 I aþ t≤εjx ¼ mð Þ

þαm2 I aþ t > εjx ¼ mð Þ�λ�P aþ tjzDð Þ
ðModel 3:1Þ

λO tjzð Þ ¼ λE tjzð Þ þ
X

m

�
αm1 I aþ t≤ε1jx ¼ mð Þ

þαm2 I ε1 < aþ t≤ε2jx ¼ mð Þ

þαm3 I aþ t > ε2jx ¼ mð Þ�λ�P aþ tjzDð Þ
ðModel 3:2Þ

To determine the location of breakpoint(s), we retained
the strategy of Molinari et al. [34] and Bessaoud et al. [35].
Thus, there are 9 potential locations with a single break-
point and 36 combinations of potential locations with two
breakpoints. The one with the lowest Akaike Information
Criterion (AIC) is selected.

∂l ψð Þ
∂βl

¼
Xn
i¼1

− zilΛE tijzið Þ þ δi
zilλE tijzið Þ

λE tijzið Þ þ
X
m

X
b

αmbIb ai þ tijxi ¼ mð Þλ�P ai þ tijzDið Þ

0
BB@

1
CCA

∂l ψð Þ
∂τk

¼
Xn
i¼1

− exp τkð Þtki exp βTzi
� �þ δi

exp τkð ÞIk tið Þ exp βTzi
� �

λE tijzið Þ þ
X
m

X
b

αmbIb ai þ tijxi ¼ mð Þλ�P ai þ tijzDið Þ

0
BB@

1
CCA

∂l ψð Þ
∂~αmb

¼
Xn
i¼1

− αmbIb ai þ tijxi ¼ mð ÞΛ�
P ai þ tijzDið Þ þ δi

αmbIb ai þ tijxi ¼ mð Þλ�P ai þ tijzDið Þ
λE tijzið Þ þ

X
m

X
b

αmbIb ai þ tijxi ¼ mð Þλ�P ai þ tijzDið Þ

0
BB@

1
CCA
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To estimate the parameters of the proposed model, stand-
ard optimization functions from R software were used to
maximize the log-likelihood (programs available on request).

Simulations
Intensive simulations were used to assess the perform-
ance of the proposed Model 3 (Models 3.1 and 3.2). We
also considered selecting between Models 3.1 and 3.2
using AIC, in order to identify the model favoured by
the data, and this model is referred to as Model 4. Com-
parisons were made with the performance of Estève’s
and Touraine’s models.

Design
Each simulation considered N = 1000 samples of n =
2000 subjects. A first life table --considered as ‘incom-
plete’-- was used to construct a ‘complete’ life table; i.e.,
a life table adjusted for an additional variable. The
complete life table was used to generate TP, the time to
death from other causes than cancer (which allows de-
riving the background mortality), TE, the time to death
from cancer (which allows deriving the excess mortality),
and a censoring time. These times are assumed to be in-
dependent conditionally on z. The observed time to
death was considered as the lowest value between TP,
TE, and the censoring time.
Within each simulation, several scenarios were consid-

ered by varying the impact of the additional variable on
the background mortality. The models’ parameters were
estimated from the incomplete life table and the esti-
mates of the covariate effects on the excess mortality
were used to compare model performances. The per-
formance criteria were: the bias, the relative bias, the
empirical coverage rate (ECR), and the root mean
squared error (RMSE). Model selection used the AIC
which allows model penalization according to the num-
ber of parameters to satisfy parameter parsimony. The
model with the lowest AIC was the best model.

Simulated data

Patient covariates and excess mortality The age at
cancer diagnosis (a) and the additional variable (x) were
the covariates that influenced the excess mortality. a was
simulated from a mixture of uniform distributions with
25% of subjects in age class [30–65[, 35% in [65–75[,
and 40% in [75–85[. x was simulated as a binary variable
with occurrence probability p = 90% or 10%. The base-
line excess hazard was the hazard function of a general-
ized Weibull distribution [38] with parameters (k, λ, θ) =
(2, 0.2, 0.5), where k is the shape parameter, λ the scale
parameter and θ the location parameter. TE was then
simulated using the inverse transformation method with
covariate effects βa = 0.3 and βx = − 0.2. The excess

mortality was obtained by: λE(t| a, x) = λ0EðtÞeβaaþβxx . An
administrative censoring was assumed at 6 years, which
resulted 40% of censoring rate in generated data. All
subjects were considered to be men diagnosed within
the same year.

Background mortality The incomplete life table was
the one available from function survexp.us in pack-
age survival of R. This table provides the background
mortality of the American population by age, sex, and
calendar year from 1940 to 2014. For simplicity, the in-
complete life table was considered as adjusted for age
only and the selected background mortality was that of
men in year 1990. As a and x may also influence the
background mortality, the complete life table was strati-
fied by a and x and TP was simulated from this complete
life table. Various mismatches in the life table were con-
sidered by varying the impact of x on the background
mortality. This led to six scenarios:

Scenario A: No mismatch; i.e., x has no effect on the
background mortality.
Scenario B: Proportional mismatch; i.e., the two levels
of x have proportional effects on the background
mortality.
Scenario C: Non-proportional crossover mismatch; i.e.,
the two levels of x have non-proportional effects on the
background mortality and the background mortality
functions intersect.
Scenario D: Non-proportional converging mismatch;
i.e., the two levels of x have non-proportional effects on
the background mortality and the background mortality
functions converge.
Scenario E: Non-proportional diverging mismatch; i.e.,
the two levels of x have non-proportional effects on the
background mortality and the background mortality
functions diverge.
Scenario F: Non-proportional three-level mismatch; i.e.,
the three levels of x have non-proportional effects on
the background mortality.

All models were run with each of these scenarios. Sce-
nario A ensures that Models 3.1 and 3.2 perform well in
the absence of an additional variable. Scenario B ensures
that Models 3.1 and 3.2 perform well in the situation
taken into account by Model 2. The other scenarios en-
sure that Models 3.1 and 3.2 improve the performance
of Model 2 in some realistic cases. Figure 1 illustrates all
these scenarios. It shows, in each scenario, the back-
ground mortality according to the incomplete life table
(solid line) and the background mortalities associated
with various levels of the additional variable of the
complete life table (dotted or dashed lines). For a much
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clearer view, an additional figure shows the mismatches
in the life table used for the simulations in patients
under 65 years (see Additional file 1).

Results
Simulation results
Table 1 displays the bias, the relative bias, the ECR, and
the RMSE for a and x from all models with Scenarios A
to E when the proportion of subjects with x = 1 is 90%
(for proportion = 10%, see Additional file 2). The results
from Scenario F when the proportions of subjects with
x = 1 and x = 2 are respectively 10 and 80% are presented
in Additional file 3.
Table 2 displays the percentage of times each model

was retained (%AIC) with Scenarios A to E when the

proportion of subjects with x = 1 is 90% (for propor-
tion = 10%, see Additional file 4) and Scenario F.
Figure 2 shows the boxplots of the estimates of the ef-

fects of covariates a and x on the excess mortality in
Scenarios A to E when the proportion of subjects with
x = 1 is 90% (for proportion = 10%, see Additional file 5,
and for Scenario F, see Additional file 6). The true values
of the parameters lay on the horizontal line.
In Scenario A (No mismatch), the incomplete and

complete life table were the same (no use of additional
variable); they provided a true value of the background
mortality. For βa, Models 3.1 and 3.2 provided unbiased
estimates and ECRs equal to 91.4 and 90.4% respectively;
for βx, they provided biases close to 0 and ECRs equal to
96.9% and 96.6 respectively. Models 1 and 2 yielded

Fig. 1 Mismatches (Scenarios A to F) in the life table used for simulation. Note: The solid lines represent the background mortality functions from
the incomplete life table. The dotted or dashed lines represent the background mortality functions from the complete life table adjusted for x
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practically the same results. Thus, in the absence of add-
itional variable, Models 3.1 and 3.2 are as performant as
Model 1 or 2 although they showed a higher variability
vs. Model 1. Model 1 performed better than Models 2,
3.1 and 3.2 in terms of AIC; it was selected nearly seven
times out of ten (66.70 and 73.99%). Model 4 was also
centered around the true generated values and tended to
favour Model 3.1 (90.89%) vs. Model 3.2.
In Scenarios B to F below, the incomplete and

complete life tables were different (use of an additional
variable). The incomplete life table was used for estima-
tion; it provided inaccurate values of the background
mortality.
In Scenario B (Proportional mismatch), for βa, Models

3.1 and 3.2 provided unbiased estimates and ECRs close
to 90%; for βx, they provided biases close to 0 and ECRs
close to 95%. Model 2 provided the same results. Thus,
Models 3.1 and 3.2 performed as well as Model 2 though
Model 3.1 was selected only a little more than once in
two times (50.56%) while Model 3.2 was selected nearly

three times out of ten (26.87%), and Model 4 favoured
Model 3.1 (89.58%) vs. Model 3.2. In contrast, Model 1
led to biased parameter estimates, poor ECR, and low
AIC-based selection.
In Scenario C (Non-proportional crossover mismatch),

Models 3.1 and 3.2 provided biases close to 0 and ECRs
greater than 90%; they showed also a lower variability
than Models 1 and 2. Model 2 provided biased param-
eter estimates (of βx in particular) and ECRs lower than
90%. It underestimated the effect of x on the excess
mortality. Model 1 provided biased parameter estimates,
poor ECRs, and low AIC-based selection. It overesti-
mated the effects of the covariates on the excess mortal-
ity. As expected, Models 1 and 2 performed poorly while
Model 3.1 performed well and was selected nearly three
times out of four (74.37%), and Model 4 favoured Model
3.1 vs Model 3.2.
In Scenario D (Non-proportional converging mis-

match), for βa, Models 2, 3.1 and 3.2 provided unbiased
estimates and ECRs close to 90%, whereas Model 1

Table 1 Performance criteria stemming from the simulation study with Scenarios A to E

Scenario Model βa = 0.3 βx = − 0.2

Bias Rel. bias ECR RMSE Bias Rel. bias ECR RMSE

A 1 −0.012 − 0.039 95.1 0.05 0.002 − 0.012 95.1 0.13

2 0.006 0.019 94.0 0.08 0.029 −0.146 96.4 0.21

3.1 −0.001 −0.003 91.4 0.09 0.064 −0.322 96.9 0.25

3.2 −0.003 −0.009 90.4 0.09 0.077 −0.386 96.6 0.27

4 0.000 −0.002 91.1 0.09 0.070 −0.348 96.5 0.26

B 1 −0.111 −0.370 30.1 0.12 −0.366 1.832 18.2 0.39

2 0.008 0.026 90.5 0.08 0.010 −0.050 95.6 0.23

3.1 0.001 0.003 90.6 0.08 0.040 −0.201 94.9 0.27

3.2 0.000 −0.001 91.4 0.08 0.050 −0.252 94.7 0.29

4 0.000 0.000 91.4 0.08 0.045 −0.224 94.6 0.28

C 1 0.135 0.450 14.6 0.14 0.388 −1.940 17.7 0.41

2 −0.068 −0.227 88.5 0.11 −0.181 0.904 82.0 0.27

3.1 −0.049 −0.163 90.9 0.10 −0.068 0.338 93.3 0.25

3.2 − 0.051 − 0.171 91.7 0.10 −0.051 0.256 94.1 0.25

4 −0.049 − 0.163 91.2 0.10 −0.063 0.316 93.6 0.25

D 1 −0.102 −0.340 40.1 0.11 −0.536 2.681 00.6 0.55

2 −0.052 −0.174 89.2 0.09 −0.329 1.644 57.9 0.39

3.1 −0.037 −0.122 91.7 0.09 −0.195 0.974 76.7 0.32

3.2 −0.036 −0.120 91.4 0.08 −0.172 0.860 79.2 0.32

4 −0.037 − 0.122 91.7 0.09 −0.185 0.927 77.7 0.32

E 1 −0.212 −0.707 00.7 0.22 −0.694 3.468 00.1 0.70

2 −0.006 −0.019 94.7 0.05 −0.061 0.307 92.3 0.24

3.1 −0.015 −0.051 94.6 0.06 −0.001 0.004 93.7 0.29

3.2 −0.020 −0.067 95.3 0.06 0.017 −0.087 94.3 0.30

4 −0.016 −0.052 94.7 0.06 0.003 −0.013 94.0 0.29

Scenarios A to E: Proportion of subjects with x = 1 is 90%
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provided biased estimates and a poor ECR (40.1%).
Models 3.1 and 3.2 provided less biased effects of x on
the excess mortality and ECRs greater than that of
Model 2. All models underestimated the effect of x on
the excess mortality. Models 3.1 and 3.2 presented low
variability vs. Model 1 or Model 2 and were selected
nearly six times out of ten (63.36%) and four times out
of ten (43.05%) respectively. Model 4 favoured Model
3.1 vs Model 3.2.
In Scenario E (Non-proportional diverging mismatch),

Models 2, 3.1 and 3.2 provided biases close to 0 and
ECRs greater than 90%, whereas Model 1 provided
biased estimates, ECRs close to 0 and underestimated
the effects of the covariates on the excess mortality.
Model 3.1 is always favoured over Model 3.2 (89.97% vs.
10.03%). This scenario highlighted significantly the fact
that Model 1 does not apply to life tables stratified by an
additional variable.
In Scenario F (Non-proportional 3-level mismatch),

Models 3.1 and 3.2 provided less biased effects of the co-
variates than Model 1 or Model 2 and ECRs greater than
90%. Model 1 provided small ECRs and overestimated
the effects of the covariates on the excess mortality,
whereas the other three models underestimated them. In
addition, Model 3.1 was selected about half the times

(51.56%) and favoured over Model 3.2. Furthermore,
whenever the levels of the additional variable had small
effects on the background mortality (not shown here),
the four models gave comparable results.

Applications to population-based data on colorectal
cancer
The interest of the proposed model and performance
comparison between Models 1 and 2 were tested on
population-based data on colorectal cancer from nine
French cancer registries of network FRANCIM. This
testing analyzed mortality data on 1398 patients with
colorectal cancer diagnosed between January 1 and De-
cember 31, 1995.
Two applications studied the effects of three prognos-

tic factors on the excess mortality: sex, age at diagnosis,
and cancer stage at diagnosis. These applications ex-
cluded patients with missing data on any factor and pa-
tients aged > 90 years. Age at diagnosis was considered
under three categories (≤ 64, 65–74, and 75–90) and
cancer stage categories III and IV were merged to bal-
ance the number of patients into three categories.

Application 1

Method In Application 1, Model 1 was used with the
‘complete’ French life table that included covariates age,
sex, and calendar year and was considered as the gold
standard (Model 1*). The purpose of this model was to
provide reference values as in a simulation study. Models
1, 2, and 3 (3.1 and 3.2) were used with the ‘incomplete’
life table that included covariates age and calendar year
only; covariate sex was considered as the additional
variable.

Results Table 3 shows the covariates used for the esti-
mation of the excess mortality.
Patients’ ages ranged from 21 to 90 years (mean = 69.8)

and category sizes were rather balanced. At 10 years
post-diagnosis, 664 deaths had occurred (i.e., 50.3% of
1304 included patients). The results of the application of
the models are summarized in Table 4. AIC values for
Model 3 with a single and two breakpoints were calcu-
lated (4230 and 4228, respectively), resulting in the se-
lection of a model with two-breakpoints, located at 83
and 88 years.
Using the incomplete life table, all three models

(Models 1, 2, and 3) found that age and cancer stage at
diagnosis were significantly associated with excess mor-
tality. With Model 3, the estimated excess hazard effects
(EHR) of these two factors were the closest to the refer-
ence values given by Model 1*. With ‘sex’ as an add-
itional variable, Model 1 found wrongly a significant
effect (EHR = 0.69 [0.53–0.90]) because this effect was

Table 2 Percentage of times each model was retained on the
basis of its AIC

Scenario Model %AIC Model %AIC Model %AIC

A 1 66.70 1 66.70 1 64.78

2 08.40 2 13.46 2 08.40

3.1 24.90 3.2 12.55 4 26.82 (90.89,09.11)a

B 1 04.50 1 05.82 1 04.29

2 44.94 2 67.31 2 43.62

3.1 50.56 3.2 26.87 4 52.09 (89.58,10.42)a

C 1 00.60 1 01.30 1 00.60

2 25.03 2 51.65 2 24.02

3.1 74.37 3.2 47.05 4 75.38 (87.49,12.51)a

D 1 24.33 1 33.63 1 23.82

2 12.31 2 23.32 2 12.21

3.1 63.36 3.2 43.05 4 63.97 (87.69,12.31)a

E 1 00.00 1 00.00 1 00.00

2 54.96 2 77.58 2 52.81

3.1 45.04 3.2 22.42 4 47.19 (89.97,10.03)a

F 1 13.94 1 17.85 1 13.84

2 34.50 2 55.47 2 33.70

3.1 51.56 3.2 26.68 4 52.46 (91.27,08.73)a

%AIC: Percentage of times each model (between compared models) was
retained according AIC
aPercentage of times Models 3.1 and 3.2 were retained
Scenarios A to E: Proportion of subjects with x = 1 is 90%; Scenario F:
Proportions of subjects with x = 1 and x = 2 are respectively 10 and 80%
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not found with Model 1* (EHR = 0.93 [0.72–1.20]). The
estimates of α from Model 2 and Model 3 were broadly
consistent with the values obtained with the complete
life table because men had a higher and women a lower
background mortality than that of the general popula-
tion from the incomplete life table. Specifically, Model 2
found that, irrespective of age, the background mortal-
ities in men and women were respectively 1.33 and 0.74
times the overall mortality as per the incomplete life
table. In contrast, Model 3 showed that the background
mortality was different before and after 88 years. More-
over, the AIC values for Model 2 and Model 3 were
4230 and 4228, respectively; and Model 3 was less

biased. Model 1 performed the worst in terms of AIC
(4238) and had the most biased effects.

Application 2

Method In addition to the prognostic factors considered
in Application 1, the socioprofessional category (SPC)
has also shown an impact on the survival of patients
with colorectal cancer [39, 40]. The present application
considered four SPCs: no occupational activity, clerical
and manual workers, farmers, and other occupational
activities.

Fig. 2 Boxplots of the estimates from the simulation study with Scenarios A to E. Note: Panels from top to bottom correspond to Scenarios A to
E, respectively. 1, 2, 3.1, 3.2 and 4 correspond to Models 1, 2, 3.1, 3.2 and 4, respectively. Scenarios A to E: Proportion of subjects with x = 1 is 90%

Mba et al. BMC Medical Research Methodology          (2020) 20:268 Page 9 of 14



The use of all models with the available French life
table that included covariates age, sex, and calendar year.
This life table was not stratified by SPC. Thus, SPC was
considered as the additional variable.

Results Patients’ ages ranged from 21 to 90 years
(mean = 68.2). Age and stage category sizes were rather
balanced; however, clerical or manual workers formed
the largest category (Table 3). At 10 years post-
diagnosis, 394 deaths had occurred (i.e., 50% of 788 in-
cluded patients). All models used the inaccurate back-
ground mortality from the incomplete life table. The
results are summarized in Table 5. The AIC values for
Model 3 with single and two breakpoints were the same
(2539). We have chosen the model with a single-
breakpoint, located at 75 years, which is more
parsimonious.
In this application, all three models (Models 1, 2, and

3) showed that the excess mortality increased signifi-
cantly with age at diagnosis and cancer stage but no sig-
nificant difference between men and women. The three
models gave close estimates of the effect of age but the
effect of cancer stages III-IV (versus I) was greater with
Model 1 (EHR = 10.96 [4.70–25.53]) than with Model 2
(EHR = 8.61 [3.40–21.78]) or Model 3 (EHR = 7.33
[2.48–21.62]).

Table 3 Covariate categories of the study’s colorectal cancer
patients

Covariates Application 1 Application 2

Cohort size 1304 788

Age

≤ 64 years 374 (28.7)a 273 (34.6)a

65–74 years 460 (35.3) 267 (33.9)

75–90 years 470 (36.0) 248 (31.5)

Sex

Men 704 (54.0) 454 (57.6)

Women 600 (46.0) 334 (42.4)

Cancer stage

I 391 (30.0) 229 (29.1)

II 486 (37.3) 289 (36.6)

III-IV 427 (32.7) 270 (34.3)

Socioprofessional category

No occupational activity 119 (15.1)

Clerical and manual workers 340 (43.1)

Farmers 125 (15.9)

Other occupational activities 204 (25.9)
aColumn percentage

Table 4 EHR estimates with data on colorectal cancer using life tables stratified and not stratified by sex

Model 1* Model 1 Model 2 Model 3 (Ɛ1 = 83, Ɛ2 = 88)

Variables EHR [95% CI] EHR [95% CI] EHR [95% CI] α̂ [95% CI] EHR [95% CI] α̂ [95% CI]

Age

≤ 64 ref. ref. ref. ref.

65–74 1.37 [1.01–1.87] 1.35 [1.00–1.82] 1.36 [1.00–1.85] 1.37 [1.01–1.87]

75–90 1.67 [1.21–2.31] 1.69 [1.23–2.33] 1.67 [1.16–2.40] 1.66 [1.15–2.38]

CS

I ref. ref. ref. ref.

II 5.92 [2.35–14.90] 5.26 [2.32–11.88] 6.47 [1.82–22.95] 5.75 [1.66–19.91]

III-IV 14.65 [5.91–36.33] 12.57 [5.65–27.99] 16.07 [4.28–60.32] 14.31 [3.85–53.10]

Sex

Men ref. ref. ref. 1.33 [0.92–1.92] ref. 1.42 [0.90–2.24]a

1.24 [0.74–2.07]b

0.66 [0.32–1.39]c

Women 0.93 [0.72–1.20] 0.69 [0.53–0.90] 0.91 [0.67–1.24] 0.74 [0.59–0.93] 0.94 [0.70–1.29] 0.62 [0.45–0.84]a

0.77 [0.57–1.02]b

1.74 [0.59–5.11]c

AIC 4223 4238 4230 4228

Note: Model 1* (Gold standard) is estimated using a life table stratified by sex and Models 1, 2, and 3 are estimated using the same life table not stratified by sex.
Excess hazard ratio (EHR) with 95% confidence interval (95% CI) are estimated for Models 1*,1,2 and 3, while α with 95% CI are estimated for Model 2 and 3. Ɛ1,
Ɛ2, Determined breakpoints; CS, Cancer stage; a Estimate of α before Ɛ1; b Estimate of α between Ɛ1 and Ɛ2, c Estimate of α after Ɛ2; AIC, Akaike
information criterion
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In this application, no model found that additional
variable SPC was significantly associated with excess
mortality. Model 2 found a lower background mortality
in patients with ‘No occupational activity’ and ‘Other oc-
cupational activities’ (respectively 0.72 and 0.70 times
that provided by the life table) but a higher background
mortality in ‘Farmers’ and ‘Clerical and manual workers’
(respectively, 1.10 and 1.05 times that provided by the
life table), irrespective of age. In contrast, Model 3
showed that the effect of SPC on the background mor-
tality was not constant over time. Indeed, only patients
with “Other occupational activities” had practically the
same background mortality before and after 75 years;
e.g., ‘Farmers’ had a lower background mortality than
the overall mortality from the life table before 75 years
but a higher one after that age. In addition, ‘Other occu-
pational activities’ --including intermediate and higher
occupations-- had a lower background mortality than
the overall mortality from the life table. Furthermore,
Model 1 and Model 3 had the same AIC whereas Model
2 performed the worst in terms of AIC (2545).

Discussion
The present work proposes a regression model of excess
mortality (Model 3) able to correct for potentially in-
accurate background mortality due to the unavailability
of a specific variable on population level. It thus provides
an interesting alternative to answer epidemiological
questions involving a specific variable affecting both the
excess mortality and the background mortality in the ab-
sence of life table stratified by this variable and when no
external information exists and/or is available to con-
struct such a stratified life table. Specifically, it increases
the flexibility of Touraine’s model (Model 2) [26] by
introducing age-dependent multiplicative parameters
through breakpoints. Whenever a currently available life
table is not stratified by an additional variable x, Model
3 considers an x-specific age-dependent corrective par-
ameter that multiplies the background mortality. In
practice, for the proposed Model 3, with a particular
focus on model with a single or two breakpoints, we
used a heuristic approach to determine the number and
locations of breakpoints [34, 35]. We divide age into seg-
ments and calculate the AIC for all combinations of 1, 2,

Table 5 EHR estimates with data on colorectal cancer using a life table not stratified by SPC

Model 1 Model 2 Model 3 (Ɛ = 75)

Variables EHR [95% CI] EHR [95% CI] α̂ [95% CI] EHR [95% CI] α̂ [95% CI]

Age

≤ 64 ref. ref. ref.

65–74 1.69 [1.15–2.50] 1.70 [1.16–2.49] 1.74 [1.25–2.43]

75–90 2.14 [1.43–3.18] 2.21 [1.43–3.42] 2.14 [1.41–3.24]

Sex

Men ref. ref. ref.

Women 0.93 [0.65–1.33] 0.94 [0.63–1.38] 0.80 [0.53–1.21]

CS

I ref. ref. ref.

II 3.71 [1.53–8.99] 2.94 [1.27–6.79] 2.91 [1.21–6.98]

III-IV 10.96 [4.70–25.53] 8.61 [3.40–21.78] 7.33 [2.48–21.62]

SPC

NOA ref. ref. 0.72 [0.27–1.90] ref. 1.54 [0.15–15.96]a

0.53 [0.23–1.24]b

CMW 1.23 [0.75–2.03] 1.07 [0.57–2.00] 1.05 [0.59–1.88] 1.31 [0.63–2.70] 0.37 [0.12–1.11]a

1.19 [0.62–2.30]b

Farmers 0.72 [0.37–1.39] 0.59 [0.25–1.40] 1.10 [0.63–1.93] 0.85 [0.37–1.94] 0.11 [0.05–0.24]a

1.41 [0.69–2.87]b

OOA 1.17 [0.68–2.03] 1.19 [0.61–2.31] 0.70 [0.41–1.20] 1.24 [0.56–2.76] 0.65 [0.23–1.81]a

0.66 [0.38–1.15]b

AIC 2539 2545 2539

Note: Excess hazard ratio (EHR) with 95% confidence interval (95% CI) are estimated for Models 1, 2 and 3, while α with 95% CI are estimated for Model 2 and 3.
Ɛ, Determined breakpoint; CS, Cancer stage; NOA, No occupational activity; CMW, Clerical and manual workers; OOA, Other occupational activities; a Estimate of α
before Ɛ; b Estimate of α after Ɛ; AIC, Akaike information criterion
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..., B breakpoints. We retain the one with lowest AIC. As
explained above, the choice of this limited number of
breakpoints is based on both statistical and epidemio-
logical criteria.
As detailed in the Breakpoint number and location

sub-section, other approaches may be used concerning
the determination of breakpoint number and location. In
addition to graphic and numerical approaches [27–33,
36, 37], it is also possible to “fix” the number and the lo-
cation based on prior information, for example when a
life table stratified by the additional variable x exist in
another country. More generally, the approaches and
strategy are similar to those proposed in the framework
of the use of spline functions concerning the choice of
the number and location of nodes.
In the simulations, Model 3, whether it’s with a single

or two breakpoints, showed a good performance; its esti-
mated parameters and ECRs were close to the nominal
values. In all scenario, Model 3 with a single-breakpoint
has been favoured over two breakpoints. Thus, Model 3
with a single-breakpoint was sufficient. The simulations
also showed that Model 3 was as performant as Model 1
in the absence of additional variable and as performant
as Model 2 in case of proportional mismatch. Further-
more, Model 3 eliminated or limited the bias in param-
eter estimates of the excess mortality in several other
mismatch scenarios. However, although it has lower
bias, it had a higher variability than Model 2, but was
better in terms of AIC. This cost of higher variance may
be explained by the additional parameters. Indeed, to es-
timate the effect of the additional variable on the back-
ground mortality, Model 3 has M*B additional
multiplicative parameters than Model 2 (M: levels of the
additional variable; B: number of the breakpoints).
In the two practical applications on registry colorectal

cancer data and an ‘incomplete’ life table (obtained by
removing a variable from a real complete table), Model
3 proved to be useful; it performed better than Models 1
and 2 vs. gold-standard estimates obtained with a
‘complete’ life table. Note that our results differ slightly
from those of Touraine et al. work [26] simply because
of minor modifications in the choice of criteria for the
inclusion of patients in our study. In the second applica-
tion (SPC as additional variable), Models 1 and 3 had
the same AIC. However, the simulations have shown
that these models may give comparable results in situa-
tions where the effect of the additional variable on the
background mortality is not significant (results not
shown). Although the 95% CIs of the multiplicative pa-
rameters overlap between the two age categories (before
and after the breakpoint), there is no interest in deter-
mining whether this difference is really significant, or
whether there is a way to test for such differences. In-
deed, our goal is to correct inaccurate background

mortality in excess hazard models in order to eliminate
or limit the bias in estimating the effects of prognostic
factors on excess mortality.
In addition, the results obtained with Model 3 are con-

sistent with the literature. Indeed, SPCs ‘Farmers’ and
‘Other occupational activities’ have a lower early back-
ground mortality (< 65) than the overall mortality from
the life table [41]; Farmers would be healthier than the
general population [42, 43]. The present study results
showed that, before age 75 years, the working population
had a lower background mortality than the overall mor-
tality from the general population. People with “No oc-
cupational activity” showed a higher background
mortality; this may relate to the ‘Healthy Worker Effect’
(healthy individuals keep being employable) [44]. In this
work, the socioprofessional category was defined as the
longest occupational activity of each subject. Another
but highly debatable choice would be the first subject’s
occupation.
Given the present results, Model 3 would improve the

results of Model 2 by making it more generalizable; spe-
cifically, when the assumption of proportionality is not
valid at certain age intervals (e.g. in the American life ta-
bles that include ethnicity, Black and White background
mortality functions deviate from proportionality and
intersect between ages 80 and 90). Nevertheless, Model
3 presents some limitations. First, it was found here es-
sentially suitable for estimating the parameters related to
a single and necessarily categorical additional variable
with no more than two breakpoints. It would be inter-
esting to carry out a study on three or several break-
points. Nevertheless, the use of several breakpoints may
lead to over-parameterization of the model. Fortunately,
in medical research, a low number of breakpoints is usu-
ally sufficient [34]. Second, Model 3 is still a piecewise
proportional population hazards where the parameters
related to the additional variable (used to correct the
background mortality) vary with age though they remain
constant within intervals. Another interesting work
would be the use of smooth or flexible functions, such
as splines or penalized splines. Then, a generalization to
situations where mismatch in the life table may be due
to numerous variables may be attractive. A model with a
random effect (i.e., a frailty term) was proposed [45].
This term corrects for the effects of several potentially
unavailable or unobservable covariates and may differ
between subjects, which is of epidemiological interest.
Possible limitation of this random effect model, pointed
out by the authors, is due to the challenges in estimating
the parameters in case of insufficient sample size (simu-
lations done with data sets of size n = 5000). Another
one may come from the difficulty in interpreting the epi-
demiological effects captured by the fragility term. How-
ever, such model tries to answer to another
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epidemiological question than the one investigated with
our Model 3. In line with multiple mismatches in the life
table, an interesting perspective would be to use latent
class approach to correct background mortality, which
would allow a better description of the epidemiological
profiles and their impact on expected mortality.

Conclusion
In absence of life table stratified by a specific variable
and when no external information exists and/or is avail-
able to construct life table stratified by this additional
variable, the proposed model is a good approach to cor-
rect reliably inaccurate background mortality by introdu-
cing multiplicative parameters that depend on age and
on an additional variable through breakpoints.
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