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Abstract

Background: Dropout isa common problem in longitudinal clinical trials and cohort studies, and is of particular
concern when dropout occurs for reasons that may be related to the outcome of interest. This paper reviews
common parametric models to account for dropout and introduces a Bayesian semi-parametric varying coefficient
model for exponential family longitudinal data with non-ignorable dropout.

Methods: To demonstrate these methods, we present results from a simulation study and estimate the impact of
drug use on longitudinal CD4* T cell count and viral load suppression in the Women’s Interagency HIV Study.
Sensitivity analyses are performed to consider the impact of model assumptions on inference. We compare results
between our semi-parametric method and parametric models to account for dropout, including the conditional
linear model and a parametric frailty model. We also compare results to analyses that fail to account for dropout.

Results: In simulation studies, we show that semi-parametric methods reduce bias and mean squared error when
parametric model assumptions are violated. In analyses of the Women's Interagency HIV Study data, we find important
differences in estimates of changes in CD4™ T cell count over time in untreated subjects that report drug use
between different models used to account for dropout. We find steeper declines over time using our semi-parametric
model, which makes fewer assumptions, compared to parametric models. Failing to account for dropout or to meet
parametric assumptions of models to account for dropout could lead to underestimation of the impact of hard drug
use on CD4T cell count decline in untreated subjects. In analyses of subjects that initiated highly active anti-retroviral
treatment, we find that the estimated probability of viral load suppression is lower in models that account for dropout.

Conclusions: Non-ignorable dropout is an important consideration when analyzing data from longitudinal clinical
trials and cohort studies. While methods that account for non-ignorable dropout must make some unavoidable
assumptions that cannot be verified from the observed data, many methods make additional parametric
assumptions. If these assumptions are not met, inferences can be biased, making more flexible methods with minimal
assumptions important.
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Background

Dropout is a common problem in longitudinal clinical tri-
als and cohort studies, and is of particular concern when
dropout occurs for reasons that may be related to the
outcome of interest. For example, HIV studies are often
longitudinal in nature, and it is well documented that
many subjects have missing observations due to death or
disease progression, leading to concerns of non-ignorable
dropout [1]. Dropout is not ignorable when missingness
depends on the values of the unobserved outcomes, even
after conditioning on the available data [2]. In this sce-
nario, standard longitudinal data analyses can produce
biased results.

This work was motivated by the challenges associated
with comparing laboratory markers of HIV disease pro-
gression and treatment response between drug users and
other subjects in the Women’s Interagency HIV Study
(WIHS). Illicit and recreational drug use has been hypoth-
esized to accelerate HIV disease progression by directly
enhancing virus replication and by impairing immune
responses. While laboratory in vitro and animal stud-
ies suggest that drug and alcohol use impairs immune
function and increases HIV replication, results from epi-
demiological studies have been mixed[3]. These conflict-
ing results may be in part linked to differential dropout
between drug users and other subjects. Similar dropout
related challenges have been identified in quality of life
data from clinical trials of cancer therapies [4], anti-
depressant clinical trials,[5] and studies of smoking cessa-
tion programs [6], among others. Considering the poten-
tial impact of non-ignorable dropout on the results of
statistical analyses is particularly important in this con-
text.

While all methods that account for non-ignorable
dropout rely on unavoidable assumptions that cannot be
verified from the observed data [7], many methods make
additional parametric assumptions about the distribution
of dropout times or the functional form of the relationship
between regression coefficients and dropout time. This
paper reviews common parametric methods to account
for non-ignorable dropout and introduces a Bayesian
semi-parametric varying coefficient generalized linear
mixed model to more flexibly accommodate dropout.
This method extends existing frequentist natural cubic B-
spline varying coefficient methods to account for dropout
in longitudinal studies with a Gaussian outcome[3, 8]
to other non-normal outcomes in the exponential fam-
ily. Fitting the model in a Bayesian framework allows the
number and location of spline knots to be jointly mod-
eled with other model parameters, removing dependence
on the choice of knots and more accurately characteriz-
ing model uncertainty. We illustrate how inference dif-
fers between parametric and semi-parametric models to
account for dropout in the analysis of longitudinal changes
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in CD4" T cell count and viral load suppression in the
WIHS.

Background on the WIHS
The WIHS is an ongoing prospective study of the natu-
ral and treated histories of HIV infection in women, with
behavioral data and specimens collected at semiannual
visits by multiple sites since 1994 [9]. In contrast to male
populations, HIV and AIDS are more prevalent among
women of color exposed through heterosexual partners
or intravenous drug use [10, 11]. Two common measures
of disease progression measured in the WIHS are CD4*
T cell count, a measure of immunologic health, and viral
load, a measure of the concentration of HIV-1 RNA in the
blood. For HIV™ subjects that have initiated highly active
antiretroviral therapy (HAART), the primary measure of
treatment effectiveness is suppression of viral load (HIV-1
RNA below detection limits). The goal of our analyses is to
understand the impact of drug use on disease progression
and treatment response. In untreated subjects, we com-
pare longitudinal changes in CD4" T cell count and viral
load suppression between subjects that report hard drug
use and other subjects in the WIHS, as there is evidence
to suggest that hard drug use in particular can dampen
immune response and increase virus replication. Rates of
treatment initiation among hard drug users are lower or
treatment occurs later for a variety of reasons, including
provider perceptions that they are unable to keep appoint-
ments, are not ready for treatment, have unstable living
situations, are unable to fill prescriptions or have limited
ability to adhere to treatment. In addition, non-physician
providers, are more likely to care for illicit drug users
and to resist prescribing HAART [12]. Thus, the num-
ber of hard drug users initiating treatment is limited. In
addition, any recreational drug use may potentially reduce
compliance to HAART regimens. Therefore, for treated
subjects in the WIHS, we compare longitudinal viral load
suppression between recreational drug users and others.
In our initial investigation into the data, we found sev-
eral causes for concern. We noted that a large proportion
of subjects dropped out of the study early, with half of
untreated subjects lost by 2.4 years (median of 4 observa-
tions, Fig. 1a) and a quarter of treated subjects lost by 5
years (median of 19 observations, Fig. 1b) after treatemtn
initiation. In addition, drug users tended to drop out of the
study earlier than other subjects and were more likely to
die within 1 year of their last study observation (Table 2).
Due to the prevalence and differential distribution of
dropout, missing data could have a large impact on the
results of our analysis. Untreated subjects that dropped
out of the study had lower mean CD4™ at their last visit
compared to subjects that remained on study (Fig. 2a),
and treated subjects that dropped out of the study early
were less likely to have suppressed viral load (Fig. 2b). This
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suggests that subjects that dropped out may have done so
due to more rapidly deteriorating health, raising concerns
of non-ignorable dropout.

Methods

Background on methods to account for missing data
Dropout is not ignorable and data are missing not at
random when missingness depends on the values of the
unobserved outcomes, even after conditioning on the
available data [2]. Selection, frailty and mixture models are
likelihood based approaches that can account for data

that are missing not at random. While there are sev-
eral methods to account for non-ignorable dropout in
longitudinal studies with a Gaussian response, methods
for non-normal data are less developed [13]. The liter-
ature is particularly sparse for addressing non-ignorable
dropout in GLMMs in semi-parametric or Bayesian
frameworks.

Selection models

Selection models factor the joint distribution of the out-
comes, y, which include both observed and missing val-
ues, and missing data indicators, r, as f(y|x)f(r|y,x).
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Frequentist parametric selection models for Gaussian
outcomes have been proposed by several authors [14—
16], and parametric selection models for binary out-
comes have been proposed by Ibrahim et al.[17] and
Wu and Wu [18]. Identification of parameters in selec-
tion models can be challenging and relies on dis-
tributional assumptions for the outcome and a para-
metric relationship for how potentially missing out-
come data are related to the probability of missingness.
In addition, selection models typically require special-
ized numerical routines for maximizing the likelihood,
which can limit practical utility for broad ranges of
problems [6].

Fraily models

Frailty models, also called shared parameter models, fac-
tor the joint distribution of the outcome and missing
data indicators as [ f(y|x, n)f (r|x, n)dF (n|x), where n are
the shared parameters or frailties that induce dependence
between the outcomes and missing data indicators. Para-
metric frailty models have been proposed for both Gaus-
sian and non-normal outcomes [19-23]. Identification of
parameters in frailty models is driven by the paramet-
ric frailty distribution. This choice is often arbitrary, and
may influence the validity of results [6]. Another key
assumption of frailty models is that the repeated
measures are independent of drop-out times conditional
on the frailties.

For example, Schluchter proposed a two stage frailty
model, which we will consider in our simulation study
and application. The first stage assumes that each sub-
ject’s responses follow a linear regression with random
intercept b;y and slope b;1, which can be written y; =
Xb;+e;, where e; is a vector of independent, normally dis-
tributed error terms for subject i. In the second stage, the
subject-specific random coefficients and the natural log
of dropout time, u;, are modeled with a joint multivariate
normal distribution:

b\ () 5 _ (%o
(log(ui)) N<u_(ﬂu),z—(% 0%4))

where p;, is the mean of the random coefficients, u, is
the mean of the natural log of dropout time, ¥, is the
covariance matrix of the random coefficients, o, is a row
vector containing the covariances of # and each random
coefficient, and o7 is the variance of the natural log of
the dropout times. This model allows the underlying slope
and intercept to be associated with dropout time, via the
covariance parameters oy,. If these covariances are zero,
then the random coefficients and dropout time are inde-
pendent and dropout is assumed to be non-informative. In
addition to assuming a log-normal distribution of dropout
times, the model assumes that there is a linear relationship
between the log of dropout time and the dropout time spe-
cific intercepts and slopes, since the random coefficients
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are related to dropout time through the covariance param-
eters. Violations of these assumptions can lead to biased
estimates and inaccurate inference.

Mixture models

Mixture models factor the joint distribution of the
outcome and missing data indicators as f(y|r,x)f (r|x)
[19, 24-28]. Pattern mixture models [29] are a popular
method to account for non-ignorable missingness when
missingness can be categorized into distinct patterns.
After classifying data according to missing data patterns,
models can be fit to the outcome data within each pat-
tern. Kaciroti et al. have described Bayesian pattern mix-
ture models for binary and count data,[30-32] however,
these methods may not be feasible for large numbers
of dropout patterns or continuous dropout times. For
example, in the WIHS, follow-up visits were intended to
occur every 6 months, but the exact timing of visits varies
greatly between subjects, so that observation times are not
aligned and dropout may occur at any continuous point
in time.

Varying coefficient models (VCM) are another mixture
model approach that more easily accommodate continu-
ous dropout times. VCMs adjust for dropout by allowing
regression coefficients to depend on dropout time. For
example, for a Gaussian distributed outcome, the response
vector for subject i is modeled using a linear mixed model,
with regression coefficients that depend on dropout time,
such that y; = X;B(u;) + Z;a; + e;, where fB(u;) are the
dropout varying regression coefficients, X; is the design
matrix for the fixed effects, Z; is the design matrix asso-
ciated with the random effects, «;, and e; is a vector of
normally distributed error terms. If the regression coef-
ficients are constant with respect to dropout time, the
model reduces to a standard generalized linear mixed
model (GLMM). Assuming regression coefficients are lin-
ear (or low-order polynomial) functions of dropout time
results in Wu and Bailey’s conditional linear model (CLM)
[25]. However, if the regression coefficients are not lin-
early related to dropout time (or the polynomial func-
tion is mis-specified) estimates can be biased [8, 33]. For
Gaussian outcomes, semi-parametric varying coefficient
models that only require that regression coefficients are
smooth, continuous functions of dropout time have been
proposed, making them more robust [8, 33]. In a Bayesian
framework, methods for binary outcomes have utilized
marginalized transition models for population level rather
than subject-specific inference.

Bayesian varying coefficient models for non-ignorable
dropout

We introduce a Bayesian natural cubic B-spline vary-
ing coefficient GLMM (BNSV) that can account for
dropout in longitudinal studies with exponential family

Page 5 of 14

outcomes, while avoiding assumptions about the distri-
bution of dropout times or the functional form of the
relationship between regression coefficients and dropout
time, common in parametric frailty and mixture models.
This method extends existing frequentist natural cubic B-
spline varying coefficient methods to account for dropout
in longitudinal studies with a Gaussian outcome[3, 8] to
other non-normal outcomes in the exponential family.
Similar models have been proposed for Gaussian out-
comes using penalized splines [34].

Fitting the semi-parametric varying coefficient model
in a Bayesian framework has several advantages. The
number and location of spline knots control the smooth-
ness, shape, and flexibility of the spline over the range
of dropout times; however, fitting in a frequentist frame-
work, it is unclear how to choose these parameters
[35-39]. We utilize a reversible jump Markov chain
Monte Carlo (RIMCMC) approach that jointly models the
number and location of knots for the spline and does not
require the choice of a single set of spline knots to make
statistical inference. In addition, there is no need to spec-
ify a parametric distribution for the dropout times or to
use an extra bootstrap simulation to estimate standard
errors, as is required in the frequentist, semi-parametric
approach.

VCM for longitudinal exponential family outcomes
Lety = (y1...y,,) be the set of outcomes observed
on m subjects with #n; observations each at times £ =
(t1...ty) . Letu = (u1...u,) be the set of m observed
dropout times. First we describe the conditional model for
y|u, which allows the change in the outcome over time
to depend on dropout time and results in dropout time
specific estimates.

For exponential family outcomes, the observation spe-
cific conditional VCM is:

S Gijlui, o, ni) = exp [{ying — b}/ o) c(ij, d)
wij = E(yiing) = b’ (nyj)
g(wip) = nij = Po + 1wty + CyiBc + Zijo; (1)
where g() is the link function, n; is the linear predic-

tor, Zj; is the design matrix associated with the random
effects, o;, and ¢ is a scale parameter. For a model

with a random intercept and slope, let o; = [ZOi]
Li
0 002 001 : . )
N ) 5 | |- Bo is the intercept, and B;(u;) is
0 001 07

the dropout-varying slope. C;; is the design matrix associ-
ated with the covariate effects, B¢, which do not depend
on dropout time.

Natural cubic b-splines
The slope, B1(u;), in Eq. 1 is assumed to be a smooth
function of dropout time and is modeled using natural
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cubic B-splines [40]. The ith subject’s dropout-time spe-
cific slope is B1(u;) = Zfill 0xB(u, D, 1) [ik]- Here D is
the number of degrees of freedom for the dropout-varying
component of the slope and B(u, D, I) is the matrix of nat-
ural cubic B-spline basis functions evaluated at u with
D + 1 knots (including 2 boundary knots) at locations
I = {l,...Ip+1}, for D > 1. For D = 0, there is no
dropout-varying effect and B(u, D,1)[;1; = 1 for all sub-
jects. 0 = (01 ...0py1) are the coefficients associated with
the basis functions.

Dropout time model and Bayesian bootstrapping

While inference conditional on # can be made without
assumptions about the distribution of #, it is often of inter-
est to summarize the results with a marginal or “dropout
adjusted” estimate of the outcome that does not depend
on dropout time, which requires integrating over the dis-
tribution of dropout times. We utilize Rubin’s Bayesian
bootstrap method [41] to flexibly model the distribution
of dropout times, to estimate the proportion of subjects
dropping out at each observed dropout time, and to cal-
culate marginal estimates in a straightforward manner
[34].

The Bayesian bootstrap repeatedly samples the propor-
tion of subjects dropping out at each of the observed
dropout times, rather than re-sampling the observed
dropout times themselves, as would be done in a frequen-
tist bootstrap. Define u® = (u(l), s u%) as the R unique
ordered observed dropout times. Let 7 = (my,...,7R)
be the vector of probabilities of dropping out at each
observed dropout time and N = (Nj,...,Ng) be the
number of subjects observed dropping out at each uniq}t[le
dropout time. The likelihood is proportional to ]_[fz1 .
If we assume the prior distribution of x is proportional to
]_[f=1 7,71, the posterior distribution of 7 is proportional
to ]_[If=1 nfv ’_1, which is the kernel of a Dirichlet distribu-
tion. The posterior distribution of & is then Dirichlet with
concentration parameters (N, . .., Ng).

Calculation of marginal effects

Working on the linear predictor scale, it is possible to
calculate a marginal slope, averaged over both the distri-
bution of dropout times and random effects. Note that the
calculation of the marginal slope depends on the assump-
tion that subjects continue on the same trajectory after
their dropout. The expected value of the linear predictor
at time t is:

Eylt, €) = f / {Bo + Brw)t + CB¢ + Za} dF () dF (u|C)
= f {Bo + Br(w)t + CBc} dF (u|C)

=po+ CBc+ t/ B1)dF (u]C)
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E(nlt,C) is also a linear function of time with slope
B; = E[ B1(w)|C]. If we assume the distribution of dropout
times does not depend on the covariates (F(u|C) =
F(uw)), then B{ = E[B1(»)], and the marginal slope can
be estimated at each iteration of the RJMCMC algo-
rithm in a straightforward manner. At iteration s, ,3;(3) =
)T By ().

If the assumption that the distribution of dropout times
does not depend on the covariates is inappropriate, it may
not always be possible to easily estimate marginal slopes,
particularly in more complex cases where the distribution
of dropout times may depend on continuous covariates or
several different covariates. However in simple cases, for
example comparing the change in the outcome over time
between treatment or drug use groups, marginal effects
can be easily calculated, even if the distribution of dropout
times depends on group. Here, the Bayesian bootstrap can
be performed separately for each group and group spe-
cific marginal slopes can be calculated, as shown in our
application to the WIHS.

Prior distributions

D is assumed to have a Poisson(A) prior distribution [35].
For knot locations, we assume a discrete set of M can-
didates, such as the order statistics of the observed drop
out times. For a given D, all sets of knots are assumed to

have the same prior probability, so that p(/;...[p+1|D) =
( M )—1 _ (D+D)(M—D-1)!
D+1) T M .

The fixed effect coefficients for the natural B spline

basis functions are assumed to have a multivariate nor-
mal prior with mean zero, and independent covariance
structure, such that 6 ~ MVNp41(0,Ry), where Ry =
U§]D+1 xD+1- Ip+1)x(p+1) is a (D + 1) x(D + 1) identity
matrix. In practice, ag is chosen to be large enough to be
“non-informative” We similarly assume (B, Bc)’ have a
multivariate normal prior, MVN (O, oé]). In addition, we
assume an inverse Wishart prior for the covariance of the
random effects, and for a normally distributed outcome,
an inverse gamma prior for the variance of the residual
error.

Estimation and implememtation

A RIMCMC algorithm [42] is used to fit the BNSV
model and has been implememted in the Informa-
tiveDropout R package available at https://github.com/
kreidles/informativeDropout. Full details of the sampler
and a discussion of implementation issues can be found in
Section 1 of the supplementary material.

Simulation study

Methods compared and data simulation

We assess the performance of the BNSV, CLM,[25] and
Schluchter’s parametric frailty model[21] in estimation of
the marginal slope (expected change in the outcome over
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time) as well as dropout time specific slopes. We chose
to compare to the CLM and parametric frailty models as
these are popular methods that are straight-forward to
implement.

Simulated data were generated under four different sce-
narios, including two normally distributed outcomes and
two binary outcomes. In these four scenarios the slopes
were related to dropout time by two different dropout
mechanisms: (i) a continuous and smooth function meet-
ing assumptions of the BNSV and (ii) a discontinuous
step function. In addition, simulations for linear dropout-
varying slopes and no dropout effect are presented in
Section 2 of the supplementary material (available online)
and illustrate that the BNSV can also fit CLMs and
GLMMs.

More specifically, the following form for the data was
assumed: nij = Bo + Br1(u)ty + aoi + oty i = l.m,j =
1...n; for m subjects with »; observations for the ith sub-
ject, where (ag;,@1;) ~ N(0,%,). For the Gaussian
simulations, y;i|n; ~ N(mj,af), and By = 0. Dropout
times were u = U/15 €[ 0, 1], resulting in 16 time points
spaced equally from O to 1. Uniform dropout was cre-
ated from a beta-binomial where p ~ Beta(1.5,1.5) and
U ~ Bin(15,p). The within-subject variance, 03, was
set at 0.067. The elements of X, were as follows: 002 =
0.4, 012 = 0.01 and 091 = —0.01. These simulation
settings were developed in other papers that tested meth-
ods for analyzing non-ignorable dropout in a frequen-
tist setting. [8, 33] For the binary simulations, y;|n; ~
Bernoulli(logit_l(mj)), Bo = —3, and for stability, dropout
began at the third observation. The elements of X, were

as follows: 002 = 04, 012 = 0.1 and 091 = -0.01.
The forms of the dropout-varying slope were: Normal (i):
P1(u) = —3exp(—4u), Normal (ii): f1(u) = I>2/3),

Binary (i): 81 (u) = 10{1—2 exp(—4u)}, Binary (ii): 1 (&) =
4+4-61(,>2/3) (Fig. 3). The magnitude of the dropout effects
in these scenarios were similar to those seen in the WIHS
and other typical HIV cohort studies. For each simula-
tion scenario, 1000 datasets with 400 subjects each were
created.

Methods of evaluation

The BNSV and Bayesian versions of the CLM and frailty
models were fit to each dataset, as well as a naive GLMM
that did not account for dropout. The performance of the
methods was evaluated graphically and in terms of bias,
variance, and mean square error for the marginal slope,
estimated by the posterior mean. All analyses were imple-
mented in R using custom MCMC algorithms utilizing the
splines, MASS, mvtnorm, MCMCpack, and gtools pack-
ages. An R package to implement BNSV models is avail-
able at https://github.com/kreidles/informativeDropout.

Page 7 of 14

Implementation

For the BNSV, a maximum of 10 degrees of freedom
were considered for the dropout-varying component of
the slope, for a maximum of 11 total degrees of freedom
for the slope. The prior mean for the number of degrees of
freedom for the dropout-varying component of the slope
was set to 5, and the prior variance for the coefficients was
set to 25 for the normal simulations, and 100 for the binary
simulations. The prior for X, was IW(3,1) and the prior
for ﬁ was /G(0.001,0.001). The probability of propos-

inga birth/dimension increase was 0.2. The MCMC chain
was initiated with five equally spaced knots (including
the 2 boundary knots) and coefficients set to their least
squares or WLS estimates. Random effects were started at
0. Chains were run for 40,000 iterations with a burn in of
10,000 without thinning.

Results

Model performance was quantified in terms of bias, vari-
ance, and mean squared error (MSE) for the marginal
slope (Table 1). The GLMM had the lowest variance,
likely because the method makes unmet assumptions that
simplify the model and also has the fewest parameters.
The BNSV method had the lowest bias and MSE for the
marginal slope in all scenarios. Graphs of the predicted
BNSYV, frailty model, and CLM slopes at each dropout
time are presented in Fig. 3. The BNSV method was
able to more accurately describe the relationship between
dropout time and the slope compared to both the frailty
model and the CLM, which always fits a linear relation-
ship. While in some cases the CLM had low bias or MSE
for the marginal slope, it had poor model fit and did
not perform well in the estimation of dropout time spe-
cific slopes. For example, in the Binary (ii) simulation, the
CLM under-estimates slopes at early dropout times and
over-estimates slopes at later dropout times (Fig. 3), such
that these errors are averaged out in the marginal slope
calculation, despite the poor model fit.

Analysis of the WIHS data

We applied the BNSV method to investigate the impact
of drug use on longitudinal HIV outcomes in the WIHS.
For untreated subjects, we hypothesized that hard drug
users would have steeper declines in CD4" T cell count
compared to other untreated subjects in the cohort. For
HIV+ subjects that have initiated highly active antiretro-
viral therapy (HAART), the primary measure of treat-
ment effectiveness is suppression of viral load (HIV-1
RNA below detection limits). We hypothesized that recre-
ational drug users would have slower increases in the odds
of viral load suppression compared to other subjects in the
cohort.
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Table 1 Simulation Study Comparing BNSV, CLM, Frailty and GLMM Models: Posterior Mean Marginal Slope Estimates, Bias (Relative
Bias), Variance and Mean Squared Error (MSE)

Normal (i) Normal (ii)
Method Slope Bias Var. MSE Slope Bias Var. MSE
BNSV -0.64 0.06(9%) 0.01 0.02 0.35 -0.002 (-1%) 0.01 0.01
CLM -045 0.25 (36%) 0.003 0.06 0.30 -0.05 (-14%) 0.03 0.03
Frailty -0.52 0.19 (27%) 0.004 0.04 0.16 -0.19 (-54%) 0.01 0.04
GLMM -0.21 0.49 (70%) 0.001 0.24 0.65 0.31(89%) 0.002 0.10
Binary (i) Binary (ii)
Method Slope Bias Var. MSE Slope Bias Var. MSE
BNSV 749 0.13 (2%) 0.19 0.20 6.67 -0.05 (-1%) 0.17 0.18
CLM 8.02 0.66 (9%) 0.11 0.54 6.47 -0.24 (-4%) 0.14 0.20
Frailty 8.14 0.78 (11%) 0.14 0.75 6.04 -0.96 (-14%) 0.18 1.11
GLMM 9.09 1.74 (24%) 0.09 311 8.56 1.85 (28%) 0.14 3.55
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Methods

We utilized the BNSV method to compare longitudinal
changes in CD4" count between consistent hard drug
users and other untreated subjects and to compare viral
load suppression between consistent recreational drug
users and other treated subjects in the WIHS while
accounting for dropout. Subjects were classified as con-
sistent hard drug users if they reported injection or non-
injection use of cocaine, opiate or amphetamine use at
50% or more of visits combined with use within the last
year before dropout. Subjects were classified as consistent
recreational drug users if they reported marijuana, or use
of cocaine, opiate, amphetamine, or other drugs at 50%
or more of visits combined with use within the last year
before dropout. Dropout time was calculated as the day
of the last visit + 1. Descriptive statistics are presented in
Table 2.

Ln(CD4") was modeled for untreated subjects from the
initial WIHS cohort (first recruitment period) for the first
5 years of the study, beyond which many of the subjects
had missing data. If a subject remained on study for longer
than 5 years a dropout time of 5 years +1 day (1826
days) was assigned. In addition to hard drug use, baseline
In(CD47") and its interaction with time were included as
covariates in the model. Viral load suppression was mod-
eled for subjects that initiated treatment between 1995
and 2000 for all visits up to 11 years after initial treatment
initiation, when many subjects no longer had available
data. Again, if a subject remained on study for longer than
11 years a dropout time of 11 years +1 day was assigned.
Since detection limits of viral load assays changed over
time, viral loads under 400 copies/mL were considered
“undetectable”. Baseline In(CD4") and logjo(viral load)
(measurements preceeding treatment initiation) and their
interactions with time were included as covariates in the
model.

Different dropout-varying slopes and dropout time
distributions were allowed for drug users and other
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subjects. The RJMCMC chains were run for 200,000
iterations, with a burn in of 50,000 iterations. A Pois-
son prior with a mean of 5 was used for the number
of knots in the model. Spline coefficients and covariates
were updated in separate blocks. Normal distributions
with mean 0 and variance of 100 were used as priors
for the coefficients to be “non-informative” Slopes on
the linear predictor scale, averaged over dropout time,
were calculated using the Bayesian bootstrap method.
For comparison, CLMs and Schluchter’s frailty models,
as well as GLMMs that did not account for dropout,
were fit to the data using a similar MCMC estimation
algorithm.

Results

Longitudinal cD4* count

Consistent hard drug users tended to dropout of the
study earlier and were more likely to dropout due to
death (Table 2). Analyses accounting for dropout with the
BNSV show that overall, hard drug users had more rapid
declines in CD4™" count than those who did not use hard
drugs (Fig. 4a). Assuming a baseline CD4" count of 478.5
(median), hard drug users CD4* counts declined by 33.5%
per year (95% CI: 25.0-41.2) compared to 17.8% (95% CI:
14.9-20.7) for others in the WIHS (Table 3). Comparing
these results to a linear mixed-effects model, declines in
CD47" were steeper and the magnitude of the difference
between hard drug users and non-users was larger in the
BNSV model (Fig. 4a). Using a linear mixed model, hard
drug users were found to have 22.4% declines in CD4*
count per year (95% CI: 17.8-26.8) compared to 14.6%
(95% CI: 12.1-17.0) in others. For subjects that did not
report hard drug use, the changes in CD4" count per year
estimated using the CLM and frailty models were similar
to the BNSV; however for subjects that did report hard
drug use, the BNSV estimated larger declines in CD4*
count than the CLM or frailty model. For the CLM, this
difference can be explained by the larger declines pre-

Table 2 Demographic Characteristics of Untreated Subjects with HIV Disease in the WIHS by Drug Use Group. Median (Interquartile

Range) or Percent (N)

Untreated HAART

Other Drug User Other Drug User

(N=566) (N=248) (N=785) (N=230)
Age (years) 35.1 (30.2-40.4) 37.8(33.0-42.5) 38.7 (33.7-43.6) 40.5(34.9-45.7)
Baseline CD4* 499 (320-688) 417 (272-594) 271 (150-424) 256 (126-423)
Baseline logso(Viral Load) 4.0 (3.1-4.7) 43(3.8-49) 4.1 (3.3-49) 43(34-50)
Dropout Time (days) 7135 404.5 4015.0 3485.0

(394.2-1818.0) (208.8-882.5) (2136.0-4015.0) (1112.0-4015.0)
Minority 84.1%(476) 81.0% (201) 84.3% (662) 76.1% (175)
Died within 1 year of dropout 4.2% (24) 1.3% (28) 24.2% (150) 34.8% (80)
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Table 3 Estimated Changes in In(CD4™) and In(Odds of Viral Load Suppression) per Year for Untreated Subjects in the WIHS Using the
BNSV and GLMM Methods. Changes in In(CD4™) assume a baseline CD4T of 478.5. Changes in In(odds) assume baseline CD4T of 267
and baseline logg(viral load)=4.2. PM=posterior mean, Cl=credible interval, PP=posterior probability of a difference < 0, indicating
steeper declines in CD4™ and less rapid increases in odds of viral load suppression among drug users

Others Drug users Difference

PM 95% ClI PM 95% ClI PM 95% ClI PP
A) Untreated: A In(CD4*)
BNSV -0.20 (-0.23,-0.16) -0.41 (-0.53,-0.29) -0.21 (-0.34,-0.09) 0.9996
Frailty Model -0.19 (-0.22,-0.15) -0.27 (-0.33,-0.22) -0.08 (-0.15,-0.02) 0.99
[@nY} -0.20 (-0.22,-0.17) -0.27 (-0.32,-0.22) -0.07 (-0.13,-0.02) 0.99
GLMM -0.16 (-0.18,-0.13) -0.24 (-0.29,-0.18) -0.08 (-0.14,-0.02) 0.99
B) HAART:
A In(Odds of Suppression)
BNSV 0.11 (0.005,0.17) 0.09 (-0.06, 0.25) -0.02 (-0.18,0.15) 0.61
Frailty Model 0.18 (0.14,0.23) 0.15 (0.05,0.25) -0.03 (-0.14,0.07) 0.74
[@nY} 012 (0.06,0.17) 0.08 (-0.04,0.19) -0.04 (-0.16,0.09) 0.73
GLMM 0.26 (0.22,0.29) 0.21 (0.14,0.28) -0.05 (-0.13,0.03) 0.90
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dicted by the BNSV for recreational drug users with early
dropout times (Fig. 5a). For the frailty model, this is likely
due to the lack of fit of the lognormal distribution for
dropout times.

Longitudinal viral load suppression

Consistent recreational drug users also tended to dropout
of the study earlier and were more likely to dropout
due to death than other subjects that initiated HAART
(Table 2). The average change in the log odds of viral
load suppression per year assuming a median baseline
CD47" count of 267 and logjg(viral load) of 4.2 are pre-
sented in Table 3. The probability of suppression for a
subject with the average slope, baseline CD4" count of
267 and log(viral load) of 4.2 are shown in Fig. 4b. For both
recreational drug users and other subjects that initiated
HAART, the estimated probability of viral load suppres-
sion as well as the change in the odds of suppression over
time were reduced using the BNSV method to account for
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dropout compared to a standard GLMM; however, esti-
mated differences in the change in odds of suppression
over time between drug users and others are similar for
the two models. For a recreational drug user with base-
line CD4" count of 267, log(viral load) of 4.2, and random
effects of 0, the odds of viral load suppression increased
by 1.07 times per year (95% CI: 0.93 to 1.21), compared
to 1.12 times per year (95% CI: 1.06 to 1.19) for a sub-
ject with the same covariates that did not use recreational
drugs. Using a standard GLMM that did not account for
dropout, these estimates were 1.23 (95% CI: 1.15 to 1.32)
and 1.29 (95% CI: 1.24 to 1.34) respectively. While recre-
ational drug users had smaller increases in the odds of
suppression per year, this difference was not statistically
significant (Table 3). The CLM showed similar results to
the BNSV, likely because a linear relationship between
dropout time and changes in the log(odds of suppression)
fit the data well for both drug uers and others (Fig. 5b).
The frailty model showed increases in the odds of

A)
Drug Use Other
I
q>_)‘ - ]
>-0.21 - P
g - __ -;f —_—=_—
Py R - —
+ s — - -
S — == /
Q-04{ = v 0 .
< /7 /
= 4 4
[0
S /77 /
©-0.6 LA 4 4
5 /
g |,/
& /
E-081 4
(%]
w
0 1 2 3 0 1 2 3
Dropout Time (years)
Method == BNSV == CLM = = Frailty
B) Drug Use Other
IS .
g -
9] L~
£ 0 031 . -~
gE‘ — —_—-" - -~ -
c .2 - - . -~
2 § = - -~ /
O 5 0.0 - = 7
s -z ~
= 3 - -
[+ X)) -
g% - /
29 03 ”
w3 4
g <
- 4
-0.6
0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5
Dropout Time (years)
Method == BNSV == CLM = = Frailty
Fig. 5 a) BNSV, CLM and Frailty Model Posterior Mean Estimated Changes in CD4™ Count per Year by Dropout Time for Untreated Subjects in the
WIHS, Assuming a Baseline CD4™ Count of 478.5 b) BNSV, CLM and Frailty Model Posterior Mean Estiamted Changes in In(Odds of Suppression) per
Year for Subjects that Initiated HAART in the WIHS, Assuming a Baseline CD4™ count of 267, Baseline logyo(viral load)=4.2, and Random Effects = 0
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suppression intermediate between the GLMM and BNSV.
Again, this is likely due to lack of fit of the lognormal dis-
tribution for dropout times, which in turn influences the
estimated dropout time-specific slopes via to covariance
parameter, oy,,.

Sensitivity analysis

The results of these analyses rely on the assumption that
subjects continue on the same linear trajectory after their
dropout. We test the sensitivity of our results to this
assumption by considering a proportional attenuation of
the slope after a subject’s drop out, such that after drop-
ping out, a subject’s slope becomes 881 (4;) (Section 3 of
the supplementary material). For CD4" declines, while
the estimates of the differences between drug users and
others are reduced assuming, § = 0.25,0.5,0.75, hard
drug users still have significantly lower CD4" counts
at years 1 to 4 than other untreated subjects. For viral
load suppression, the odds of suppression remain lower
for consistent recreational drug users compared to other
subjects that initiated HAART for § = 0,0.25,0.5,0.75,
however, as in the primary analysis, differences between
drug users and others were not statistically significant.

Discussion
Potentially non-ignorable dropout is an important con-
sideration when analyzing data from longitudinal clinical
trials and cohort studies. While methods that account
for non-ignorable dropout must make some unavoidable
assumptions that cannot be verified from the observed
data [7], many methods make additional parametric
assumptions about the distribution of dropout times or
the functional form of the relationship between regression
coefficients and dropout time. If these assumptions are
not met, inferences can be biased, making flexible meth-
ods with minimal assumptions important. In our simu-
lation studies, we showed that the BNSV method, which
non-parametrically models this distribution of dropout
times with a Bayesian bootstrap and flexibly models the
relationship between regression coefficients and dropout
time with natural cubic B-splines, has reduced bias and
mean squared error for the marginal slope and more accu-
rately captures the dropout time varying slope than other
methods, such as the CLM and parametric frailty models,
which make additional parametric assumptions. These
improvements are important since dropout time distribu-
tions and relationships between dropout time and changes
in outcomes may not always follow simple parametric
distributions or polynomial forms in real world analyses.
In our application to the WIHS, we find important dif-
ferences in estimates of changes in CD4T T cell count
over time in untreated subjects that report hard drug use
between different models used to account for dropout. We
find steeper declines over time using the BNSV model,
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which makes fewer assumptions, compared to the CLM
and frailty models. Failing to account for dropout or to
meet parametric assumptions of models to account for
dropout could lead to underestimation of the impact of
hard drug use on CD4™ T cell count decline in untreated
subjects. In our analyses of viral load suppression in
subjects that intiated treatment, accounting for dropout
using the BNSV showed smaller increases in viral load
suppression over time compared to the frailty model and
GLMM that did not account for dropout. The relation-
ship between dropout time and the change in log(odds
of suppression) was approximately linear, so that the
CLM produced similar results to the BNSV. While we
did not find significant differences in the odds of sup-
pression between drug users and others in any of our
analyses, the probability of suppression was lower when
accounting for dropout using the BNSV or CLM. Fail-
ing to appropriately account for dropout could lead to
over-estimation of the probability of viral load suppres-
sion. These low levels of suppression are concerning
and require further investigation into methods to help
subjects with treatment compiance and affordability of
medications.

One drawback of the BNSV method is that the RJM-
CMC algorithm is computationally intensive; however, we
did not find that computaitional times were prohibative
in either our simulation study or the WIHS data analysis.
For the Normal (i) and Binary (i) simulations (400 sub-
jects, 3000-4000 observations), the BNSV took 8.8 and
19.1 minutes, respectively, to complete 40,000 iterations
using a MacBook Pro with 3.5 GHz Intel Core i7 processor
and 16 GB of RAM. For the WIHS analyses, the analysis of
CD4* T cell count (814 subjects, 3,196 observations) took
1.2 hours to complete 200,000 iterations; the analysis of
viral load suppression took 6.2 hours to complete 200,000
iterations, due to the larger sample size (1,015 subjects
/ 15,909 observations) and because Metropolis Hastings
steps must be used to estimate the random effects in mod-
els with a binary outcome. For comparison, the CLM took
41 minutes and 4.6 hours, and the frailty model took to
22 minutes and 3.3 hours to run the same number of
iterations for the CD4" T cell and viral load analyses
respectively (Supplementary Materials, Table 5).

Conclusions

We propose a flexible, semi-parametric natural cubic B-
spline varying coefficient method to account for dropout
in a Bayesian framework. The BNSV extends existing fre-
quentist natural cubic B-spline varying coefficient meth-
ods to account for dropout in longitudinal studies with
a Gaussian outcome[3, 8] to other non-normal outcomes
in the exponential family, while also allowing the number
and location of spline knots to be jointly modeled with
other model parameters, removing dependence on the
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choice of spline knots and more accurately characterizing
model uncertainty. The BNSV allows for dropout occur-
ring at any continuous point in time and avoids making
parametric assumptions about the distribution of dropout
times or the functional form of dropout-varying slope.
Results of our simulation studies show that the BNSV
reduces bias and mean squared error for the marginal
slope compared to parametric frailty models, CLMs
and standard GLMMs when non-ignorable dropout is
present. The BNSV can also accurately fit models with
a linear dropout-varying effect or no dropout-varying
effect.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512874-020-01135-3.

Additional file 1: Supplementary Material.
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