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Abstract

Background: Mixed effects models have been widely applied in clinical trials that involve longitudinal repeated
measurements, which possibly contain missing outcome data. In meta-analysis of individual participant data (IPD)
based on these longitudinal studies, joint synthesis of the regression coefficient parameters can improve efficiency,
especially for explorations of effect modifiers that are useful to predict the response or lack of response to particular
treatments.

Methods: In this article, we provide a valid and efficient two-step method for IPD meta-analyses using the mixed
effects models that adequately addresses the between-studies heterogeneity using random effects models. The
two-step method overcomes the practical difficulties of computations and modellings of the heterogeneity in the
one-step method, and enables valid inference without loss of efficiency. We also show the two-step method can
effectively circumvent the modellings of the between-studies heterogeneity of the variance-covariance parameters
and provide valid and efficient estimators for the regression coefficient parameters, which are the primary objects
of interests in the longitudinal studies. In addition, these methods can be easily implemented using standard
statistical packages, and enable synthesis of IPD from different sources (e.g., from different platforms of clinical trial
data sharing systems).

Results: To assess the proposed method, we conducted simulation studies and also applied the method to an IPD
meta-analysis of clinical trials for new generation antidepressants. Through the numerical studies, the validity and
efficiency of the proposed method were demonstrated.

Conclusions: The two-step approach is an effective method for IPD meta-analyses of longitudinal clinical trials
using mixed effects models. It can also effectively circumvent the modellings of the between-studies heterogeneity
of the variance-covariance parameters, and enable efficient inferences for the regression coefficient parameters.
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Background
In clinical trials for drug developments, the outcome vari-
ables often involve longitudinal repeated measurements.
In these trials, the primary statistical analyses usually com-
pare the responses from experimental treatments with a
control treatment at the end of a follow-up period. How-
ever, during the follow-up period, dropouts or missing
data often arise, and may seriously influence the validity
and precision of the statistical inference. Conventionally,
simple imputation methods such as LOCF (last observa-
tion carried forward) had been adopted to handle these
problems, but these ad-hoc approaches have been known
to provide biased results and possibly produce erroneous
conclusions [1, 2]. Recently, regulatory guidelines con-
cerning missing data problems in clinical trials have been
issued [1, 3, 4], and these invalid practices are rapidly
substituted by more sophisticated methods. The mixed ef-
fects model [5, 6], especially known as the MMRM (mixed
effects model for repeated measures) [7], is one of these
methods and has been widely adopted for primary ana-
lyses of recent clinical trials in drug developments, which
allows for valid statistical inference based on the direct
likelihood approach under the missing at random (MAR)
assumptions [5, 6].
The mixed effects model are increasingly used in the

context of evidence synthesis as well. Recent advances of
clinical trials data sharing systems (e.g., ClinicalStudyDa-
taRequest.com, the YODA project) have enabled evidence
synthesis of large individual participant level datasets and
explorations of effect modifiers that are useful to predict
the response or lack of response to particular treatments,
because the powers of treatment-by-covariate interaction
tests increasingly gain using rich statistical information
from multiple clinical trials [8, 9]. However, there are add-
itional complexities in the individual participant data (IPD)
meta-analysis to synthesize longitudinal trial datasets based
on the mixed effects models, due to the longitudinal nature
of the datasets. The most important issue is about address-
ing correlations among different time points in the re-
peated measurements and the between-studies
heterogeneity. In the IPD meta-analyses of ordinary univar-
iate regression models such as analysis of covariance
(ANCOVA) models, the synthesizing analyses can be sim-
ply implemented by multivariate meta-analysis [10, 11],
but for the mixed effects models, the between-studies
heterogeneity should be adequately considered not only for
the fixed effects coefficients, but also for the
variance-covariance parameters, simultaneously. In
addition, to use the statistical information among multiple
trials maximally, we should consider the correlations
among the estimators of model parameters to gain effi-
ciency. In the IPD meta-analyses using mixed effects
models, Ishak et al. [12] considered to aggregate only sum-
marized data of each time point, but their methods do not

use the correlation information. Also, Jones et al. [13] pro-
posed to implement IPD meta-analyses of longitudinal data
using mixed effects models, but their methods only as-
sumed fixed effects models for the regression coefficient
parameters, and the heterogeneity among the studies was
not considered. In existing IPD meta-analyses, these prob-
lems have also not been addressed and fixed effects models
that assume no heterogeneity have been usually used.
In this article, we provide a valid and efficient method

for IPD meta-analyses using the mixed effects models
that adequately address the between-studies heterogen-
eity using random effects models. We especially show
the ordinary one-step methods have practical difficulties
on computations and modellings of the heterogeneity,
and we provide a two-step approach as an alternative ef-
fective procedure to overcome these problems. We will
show that the two-step method can effectively circum-
vent the modellings of the between-studies heterogeneity
of the variance-covariance parameters and provides valid
and efficient estimators for the regression coefficient pa-
rameters, which are the primary objects of interests. In
addition, these methods can be easily implemented using
standard statistical software, and have advantages to
synthesize IPD from different sources of clinical trial
datasets (e.g., from different platforms of clinical trial
data sharing systems). We also demonstrate the effect-
iveness of these methods via simulation studies and a
real data application to an IPD meta-analysis of clinical
trials for new generation antidepressants [14].

Methods
Mixed effects models for longitudinal data
We consider a meta-analysis of N longitudinal clinical
trials with ni individual participants within the ith trial
(i = 1,… , N). Let Yijt be continuous repeated measure-
ment outcome of tth time point of participant j in trial i,
(j = 1,… , ni; t = 1,… , T), possibly to be missing at some
points. Note that the time points planned to be mea-
sured the outcome variables are uncommon across the
N trials, we can formally regard these unmeasured time
point data as ‘missing’ without loss of generality.
At first, we discuss linear mixed effect models [5, 6]

for the analysis of individual trials separately,

Y ij ¼ X ijβi þ Zijbij þ εij ð1Þ

where Yij = (Yij1, … ,YijT)
T is a T-vector of repeated mea-

surements for participant j in trial i, Xij = (xij1, … , xijT)
T

is a T × p matrix of fixed effect explanatory covariates, βi
is a p-vector of fixed regression coefficients, Zij = (zij1,
… , zijT)

T is a T × q matrix of random-effect covariates of
participant j in trial i (usually a subset of Xij), and bij is a
q-vector of random effects, assumed to follow a multi-
variate normal distribution bij~MVN(0,Di), where Di is
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the q × q covariance matrix of the random effects distri-
bution. εij is a T-vector of random error, assumed to fol-
low a multivariate normal distribution εij~MVN(0, Σi),
where Σi is the T × T covariance matrix of the random
error distribution. The random effects bij and the error
εij are assumed to be independent, and thus the outcome
variables among different participants are also independ-
ent. Yij marginally follows MVN(Xijβi,Vij), where V ij

¼ ZijDZT
ij þ Σi . The model parameters can be estimated

by maximum likelihood (ML) or restricted maximum
likelihood (REML) methods [6]; we suppose to use the
REML estimator here owing to its theoretical property
[6, 15]. If missing outcome data are involved, these
likelihood-based inference methods provide valid statis-
tical inference results under MAR assumptions [5, 6],
and thus the linear mixed models have been widely
adopted in longitudinal data analyses. In addition, re-
cently, owing to the developments of regulatory guide-
lines concerning missing data treatments in clinical trials
[3, 4], the mixed effects models have been increasingly
popular. Especially, an alternative parameterized model
named as MMRM [7] has been adopted for primary ana-
lyses of many clinical trials, which directly models the
marginal distribution of Yij’s and parameterize the co-
variance matrix Vij not specifying D and Σi. The primary
objects of interests are usually the fixed effects parame-
ters, and we have rather little interests in the variance-
covariance parameters in these clinical trials [16, 17].
Thus, through the re-parameterization to the marginal
covariance matrix Vij, possible model misspecifications
concerning the random effects structures might be ef-
fectively circumvented in the statistical inference. The
procedures of statistical analyses and their theoretical
properties are identical between the two parameterized
models, so we conduct the following discussions using
the former model (1) in this article.

IPD meta-analyses based on the mixed effects models
Based on the mixed effects model (1), IPD meta-analysis
can be implemented in a straightforward manner. Jones
et al. [13] proposed a fixed effects model with an as-
sumption the regression coefficients βi’s are common
across the N trials using both of one-step and two-step
approaches. However, the between-studies heterogeneity
is an essential issue to be addressed in modern evidence
synthesis researches [9], so the random effects models
are preferred in general [9, 18]. While, there are several
crucial problems to be addressed in applying them to
the mixed effects models for IPD meta-analysis:
1. When we consider the heterogeneity across studies,

we should adequately address the heterogeneities for both
of the fixed effects and variance-covariance parameters in
the synthesizing analyses. A straightforward approach

would be to model these parameters as random effects,
the joint random effects model for bij and the components
of Vij. This strategy would also require complicated com-
putations that cannot be implemented in standard statis-
tical packages, and we should completely specify the
statistical model without any misspecifications in order to
assure the consistency of parameter estimation for fixed
effects. Besides, we have little interests in the heterogene-
ities of variance-covariance parameters, i.e., the compo-
nents of Vij in the longitudinal clinical trials [16, 17].
2. In most of meta-analyses of longitudinal trials, the

time-points to be planned to collect outcome measure-
ments are not common across studies. In the mixed ef-
fects model analyses, the time variables are often treated
as factor variables (especially for the MMRM analyses
[19]), and then all of the outcome variables at several
time points are possibly missing (unmeasured) in some
studies. In these cases, when we conduct a one-step ran-
dom meta-analysis using standard statistical packages
(e.g., PROC MIXED in SAS, lme4 [20] for R), the statis-
tical model can be partially not identifiable, i.e., we can-
not obtain the model estimates.
Given these problems, there are practical difficulties in

implementing ordinary one-step IPD meta-analyses. Note
that for the first problem, Jones et al. [13] proposed an-
other approach to modelling the variance-covariance pa-
rameters as different parameters across studies in their
fixed effects model framework, but these approaches are
not implementable using standard packages. In addition,
this problem has not been usually considered in many
existing IPD meta-analyses, possibly due to its practical
difficulties, and common variance-covariance structures
have usually been assumed. Besides, the second issue can
be resolved by making an original program that maximises
the (restricted) likelihood function that assumes different
regression functions across the studies (and possibly dif-
ferent random effects structures), but it requires usually
large efforts in making the complicated original programs
in case-by-case practices.

Two-step marginal multivariate random effects analyses
To circumvent the complicated modelling problems and
computational difficulties, we provide an alternative
two-step approach for IPD meta-analyses based on the
mixed effects models. Our proposition is to divide the
model parameters into two components, fixed effects pa-
rameters and variance-covariance parameters, and to con-
duct synthesis analyses after obtaining study-specific
aggregated statistics separately. Because we have little in-
terests in the random effects in these clinical trials and the
mixed effects models are typically designed to assess fixed
effects [16, 17], here we specifically focus on the synthesis
analyses for the fixed effects parameters. As noted later,
the same method can be adapted to the synthesis analyses
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of the variance-covariance parameters. The computations
are easily implementable, but we can show the resultant
inference is valid and efficient, and that its theoretical
properties do not depend on any heterogeneous structures
of within-studies variance-covariance parameters.

We describe the procedure as follows.

Step-1. Analyse the IPD from N longitudinal trials
separately, using the mixed effects models (1), and obtain
the REML estimates of the model parameters (β̂i;D̂i;Σ̂i),
i = 1, 2,… , N. In addition, obtain the variance-covariance

matrix estimates of β̂i, Ŝiðβ̂iÞ for i = 1, 2,… , N.
Step-2. Conduct synthesizing analyses for the
regression coefficient parameters ðβ̂i, Ŝiðβ̂iÞÞ that are
the primary objects of interests in these meta-analyses,
dropping statistical information about the within-

studies covariance parameters (D̂i;Σ̂i),

β̂i � MVN βi; Ŝi β̂i

� �� �
ð2Þ

βi � MVN μ;Ωð Þ
Inference concerning the model parameters (μ,Ω) can

be conducted using the log likelihood or the restricted
log likelihood functions [21, 22],

ℓ μ;Ωð Þ ¼ −
1
2

XN
i¼1

f log Ωþ Ŝi β̂i
� ���� ���

þ β̂i−μ
� �T

W i β̂i−μ
� �

þ p log2πg;

ℓRL μ;Ωð Þ ¼ ℓ μ;Ωð Þ− 1
2

log
XN
i¼1

W i

�����
�����þ

1
2
p log2π

where W i ¼ ðΩþ Ŝiðβ̂iÞÞ
−1
.

The computation of Step-1 is straightforwardly con-
ducted using standard packages for linear mixed models,
e.g., PROC MIXED in SAS, lme4 [20] for R. Also, Step-2
can be also simply implemented using existing packages
for multivariate meta-analyses, e.g., mvmeta for Stata
[23, 24] and R [25].
The resultant estimators of (μ,Ω) have the following

properties.

Remark A
There are no efficiency losses regardless of dropping the

within-studies variance-covariance information of (D̂i;Σ̂i

) in the multivariate meta-analysis models (2) for infer-

ences of (μ,Ω), i.e., the ML and REML estimators of
(μ,Ω) on the multivariate meta-analysis models (2) are
the most efficient estimators, and their efficiency bound

is equivalent to that of the one-step estimators for the
completely specified correct model.
This property is assured because the ML and REML

estimators of βi and (Di, Σi) are orthogonal [6] in the
sense of Cox and Reid [26], i.e., the non-diagonal sub-
matrices of the information matrix of mixed model (1)
are zero-matrices. Therefore, the statistical information

of (D̂i;Σ̂iÞ does not contribute to synthesizing βi’s when
we conduct one-step IPD meta-analyses under the com-
pletely specified correct model. Thus, fully efficient esti-
mator of (μ,Ω) can be obtained via the two-step method
above, even if the statistical information of (Di, Σi) are
dropped. This property is confirmed in the simulation
studies in Section 3.

Remark B
When the heterogeneity for the variance-covariance pa-
rameters of (Di, Σi) is modelled by a random effects
model G(D, Σ), we can obtain the consistent and fully ef-
ficient estimator of (μ,Ω) using the two-step method
under any distribution form of G(D, Σ).
Note this property is important that it assures the validity

and optimality of the two-step method without modelling
the random effects model G(D,Σ) explicitly, even if there
exists substantial heterogeneity for the variance-covariance
parameters. This property is assured because the ML and
REML estimators of βi and (Di,Σi) are orthogonal as the
same arguments with Remark A. Besides, if we adopt the
one-step approach, we should completely specify the joint
random effects distributions of βi and (Di,Σi) correctly to
assure the consistency. These parametric assumptions are
also not substantial objects of interests in the evaluations of
treatment effects. Through the two-step approach, we can
effectively circumvent the unnecessary additional compli-
cated assumptions as well as the computational efforts in
practices.
In addition, in IPD meta-analyses of longitudinal clin-

ical trials, the time-points of outcome measurements are
possibly uncommon across studies. As mentioned re-
garding the second issue in the previous section, when
the time variables are often treated as factor variables
(e.g., for the typical MMRM analyses [19]), the one-step
approach has practical and computational difficulties.

Remark C
For synthesis of longitudinal clinical trials in which
time-points of outcome measurements are possibly un-
common, we can apply the two-step approach formally
via dropping the corresponding time-points variables in
Step-1. Then, in Step-2, the corresponding components

of β̂i should be treated as missing outcomes variables.
The missing problems are common not only in

two-step IPD meta-analysis, but in various multivariate
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meta-analysis, and have been extensively discussed in
previous papers [21, 22]. Accordingly, in many software
packages for multivariate meta-analysis [23–25], the
standard modules can treat these partially missing out-
comes adequately. Usually, these packages conduct avail-
able data analyses based on direct likelihood methods
[23, 24].
In addition, in some cases, we can obtain the IPD for

multiple clinical trials from different platforms of clinical
trial databases. Recently, the clinical trial data sharing has
been increasingly advanced [27, 28], and researchers can
access the IPD of clinical trials for scientific research pur-
poses, e.g., via ClinicalStudyDataRequest.com. However, in
many platforms, the users cannot download the datasets
and can only analyse on the remote accesses on the plat-
form, in which case the IPD can only be analysed separ-
ately. In such cases, the one-step IPD meta-analyses
cannot be conducted, but the two-step approaches can
still be applied as valid and efficient procedure. In analys-
ing longitudinal trial datasets, the two-step marginal syn-
thesis method would be an effective strategy for
evaluating treatment effects and interactions of the candi-
dates of effect modifiers.

Results
Simulation studies
We conducted simulation studies to evaluate the validity
and efficiency of the proposed method under practical
IPD meta-analysis scenarios. In this context, validity cor-
responds to the accuracy of point estimation, standard
error (SE) evaluation, and the coverage rate of the confi-
dence interval (CI). In addition, the efficiency corre-
sponds to the precision of estimation and the power of
statistical test.

Simulation 1
First, we conducted simulations to evaluate the efficiency
of two-step marginal multivariate meta-analysis approach.
In particular, we would evaluate the equivalence of the
two-step marginal method and the fully efficient one-step
IPD meta-analysis. Simulation data were generated as
three time-points longitudinal data, following the mixed
effects model involving two-way interactions,

Y ijt ¼ bij þ βi1 þ βi2treatij þ βi3time2;ij
þ βi4time3;ij þ βi5zij þ βi6treatij � time2;ij
þ βi7treatij � time3;ij þ βi8time2;ij � zij
þ βi9time3;ij � zij þ βi10treatij � zij þ εijt ð3Þ

where bij is a random intercept for the jth participant of
ith trial following N(0,4.52) and εijt is the random error for
the tth visit of jth participant of ith trial following
N(0,3.22), treatij is a binary variable indicating treatment
group. time2, ijt and time3, ijt are dummy variables

indicating time-points of 2nd and 3rd visits, respectively
(reference is the 1st visit). The parameter settings were
mimicked to the Furukawa et al. [14]‘s example in Section
4. zij is a covariate variable that is a candidate to be an ef-
fect modifier, which is a measurement that is associated
with response or lack of response to a particular therapy.
The two-way interaction terms represent the potential
usefulness of zij as an effect modifier. Following the mixed
effects model (3), we generated N longitudinal clinical trial
datasets, for N = 5, 10, 15, and 20. In addition, the number
of participants of each trial was generated from a discrete
uniform distribution on [50, 500].
In these first simulation studies, the primary purpose

is to assess the validity and efficiency of the two-step ap-
proach provided in Section 2. Also, we would evaluate
the equivalence of the two-step marginal method and
the fully efficient one-step IPD meta-analysis. At first, to
circumvent the discussions to be complicated, we as-
sumed there was no heterogeneity for βi and (Di, Σi)
among the N trials, which is a special case of the fixed
effects models considered by Jones et al. [13]. In other
words, all βi (i = 1,… , N) are equal to the grand mean μ.
The parameter settings of μ were also mimicked to the
Furukawa et al. [14], μ1 = − 0.04, μ2 = − 0.14, μ3 = 1.56,
μ4 = 0.83, μ5 = − 0.46, μ6 = 0.57, μ7 = 0.14, μ8 = 0.15, μ9
= 0.05, μ10 = − 0.06. Under these settings, we conducted
10,000 simulations, and we analyzed the simulated data-
sets using the one-step method by the correctly specified
mixed effects model and the two-step multivariate
meta-analysis approach in Section 2.
The results are presented in Table 1. We presented em-

pirical means and SE of the regression coefficient esti-

mates, means of the SE estimates (cSE), empirical coverage
rates of the 95% CIs, and empirical powers for the tests of
individual regression coefficients. The contexts of the re-
sults are too rich, so we present the ones for selected coef-
ficients, μ2, μ4, μ5, μ7, μ9, μ10. The results for the
remaining parameters were similar. These results consist-
ently showed that the fully efficient one-step approach
was equivalent to the marginal two-step approach under
all of the scenarios. Both the mean and SE of 10,000 esti-
mates were mostly the same, and the SE estimate could
accurately estimate the actual SE of the estimates. In
addition, coverage rates of 95% CIs were accurate and the
power of the two approaches were equivalent. As a whole,
the two-step approach was shown to provide accurate re-
sults without loss of efficiency, regardless of dropping the
variance-covariance information. The efficiency was also
retained for the interaction tests.

Simulation 2
Second, we conducted other simulations to evaluate the
validity of the two-step random effects multivariate
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meta-analysis approaches under substantial heterogen-
eity of βi as well as (Di, Σi), among N longitudinal trials.
We considered the mixed effects models (3) for individ-
ual trials, and additionally considered heterogeneity of βi
and (Di, Σi). We considered a compound symmetry
structure for Ω, which assumes a common variance

among all of the components of βi, βik~N(μk, τ
2), k = 1,

… , 10, where τ2 = 0.10, 0.20. We assumed no correla-
tions among βiks, and also assumed heterogeneity among
the random effects distributions of bij~N(0, ζ

2), where ζ
is generated from a continuous uniform distribution on
[2.5, 9.0]. We considered two settings: (a) outcome

Table 1 Results for the simulation 1: fully efficient one-step approach and the two-step marginal multivariate meta-analysis
approach were compared

N = 5 N = 10 N = 15 N = 20

One-step Two-step One-step Two-step One-step Two-step One-step Two-step

μ2 = 0.14

Mean 0.135 0.135 0.146 0.146 0.135 0.136 0.130 0.130

SE 0.866 0.867 0.612 0.613 0.495 0.496 0.434 0.435

bSE 0.867 0.866 0.608 0.606 0.495 0.494 0.428 0.427

Coverage Rate 0.949 0.950 0.948 0.947 0.949 0.947 0.950 0.948

Power 0.052 0.053 0.056 0.058 0.058 0.059 0.071 0.070

μ4 = 0.83

Mean 0.827 0.826 0.836 0.836 0.828 0.829 0.825 0.824

SE 0.415 0.416 0.287 0.287 0.236 0.236 0.206 0.205

bSE 0.410 0.410 0.287 0.287 0.234 0.234 0.202 0.202

Coverage Rate 0.950 0.950 0.951 0.951 0.948 0.947 0.939 0.941

Power 0.533 0.533 0.825 0.825 0.936 0.937 0.978 0.978

μ5 = −0.46

Mean −0.461 −0.461 −0.460 −0.460 −0.460 −0.460 −0.461 −0.461

SE 0.032 0.032 0.023 0.023 0.018 0.018 0.016 0.016

bSE 0.032 0.032 0.022 0.022 0.018 0.018 0.016 0.016

Coverage Rate 0.949 0.948 0.949 0.947 0.953 0.955 0.951 0.949

Power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

μ7 = 0.14

Mean 0.139 0.139 0.141 0.141 0.143 0.143 0.144 0.144

SE 0.178 0.178 0.122 0.122 0.100 0.100 0.088 0.088

bSE 0.176 0.176 0.123 0.123 0.100 0.100 0.087 0.087

Coverage Rate 0.948 0.947 0.949 0.949 0.949 0.949 0.940 0.942

Power 0.127 0.128 0.211 0.215 0.295 0.297 0.382 0.381

μ9 = 0.05

Mean 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050

SE 0.020 0.020 0.014 0.014 0.011 0.011 0.010 0.010

bSE 0.020 0.020 0.014 0.014 0.011 0.011 0.010 0.010

Coverage Rate 0.947 0.947 0.951 0.951 0.949 0.952 0.941 0.940

Power 0.734 0.735 0.947 0.947 0.995 0.995 0.999 0.999

μ10 = −0.06

Mean −0.060 −0.060 −0.060 −0.060 −0.060 −0.060 −0.059 −0.059

SE 0.042 0.042 0.030 0.030 0.024 0.024 0.021 0.021

bSE 0.042 0.042 0.029 0.029 0.024 0.024 0.021 0.021

Coverage Rate 0.949 0.949 0.948 0.947 0.949 0.950 0.946 0.945

Power 0.301 0.302 0.540 0.543 0.700 0.701 0.811 0.811
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variables are measured on all three time-points, and (b)
outcome variables are measured on two time-points for
40% of trials and on three time-points for the remaining
60% trials.
Under these conditions, the two-step approach can be

easily implemented using standard statistical packages.
Again, note that the two-step method does not require
modelling of the heterogeneity structures of (Di,Σi), and
the validity and efficiency of the inference are assured
under any heterogeneous structures of (Di,Σi). Besides, to
implement valid inference using one-step approach, we
should adopt the correct statistical model involving the ran-
dom effects distributions for both of βi and (Di,Σi). One
ad-hoc approach uses a Bayesian hierarchical modelling in-
volving random effects models, but it requires complicated
computations using special software (e.g., OpenBUGS [29]).
The simulation results are presented in Tables 2 and 3,

which correspond to the settings (a) and (b) respectively.
We conducted 10,000 simulations and provided the
same outputs as Table 1. We considered 6 scenarios, set-
ting N = 5, 10, or 15 and τ2 = 0.10 or 0.20. The results
also showed unbiasedness of the two-step estimates
under all of the scenarios. In addition, the validities of
SE estimation and CIs (inversely, the sizes of the corre-
sponding statistical tests) could be confirmed. Again,
note that we only took parametric assumptions for the
random effects distribution of βi and no restrictive as-
sumptions concerning the heterogeneity of (Di, Σi). The
validity of the two-step method was demonstrated under
the flexible and weak assumptions. The efficiency is not
compared with those of the one-step methods here, but
the equivalence is theoretically assured (Remark B).

Applications to IPD meta-analysis for new generation
antidepressants
To illustrate our method, we analyzed the dataset from an
IPD meta-analysis for new generation antidepressants by
Furukawa et al. [14] The authors conducted IPD
meta-analysis from four placebo-controlled, double-blinded
randomized clinical trials (1482 participants) for patients
undergoing acute phase treatment for major depression.
The outcome variable was the change score on the 17-item
Hamilton Rating Scale for Depression (HRSD) or the
Montgomery-Asberg Depression Rating Scale (MADRS).
In their analyses, the latter was converted into the former
using the conversion algorithm based on the item response
theory [30]. In particular, the authors investigated whether
the baseline depression severity modifies the efficacy of the
antidepressants using IPD meta-analysis. The outcome
measurements were repeatedly measured at several
time-points in the four trials, but the time-points at which
the outcome variables were planned to be measured were
not common across the four trials.

We considered the following mixed effects model on
1st, 2nd, 4th and 6th weeks involving two-way inter-
action terms based on the model (1),

Y ijt ¼ bij þ βi1 þ βi2treatij þ βi3week1;ij þ βi4week2;ij
þ βi5week4;ij þ βi6zij þ βi7treatij � week1;ij
þ βi8treatij � week2;ij þ βi9treatij � week4;ij
þ βi10week1;ij � zij þ βi11week2;ij � zij
þ βi12week4;ij � zij þ βi13treatij � zij þ εijt

where week1, ij, week2, ij and week4, ij are dummy vari-
ables for the time points (reference: 6th week). We first
attempted a one-step random effects meta-analysis that
modelled all of the regression coefficients as random ef-
fects among the 4 trials, but the REML estimate was not
computable using standard statistical packages. There
might also be between-studies heterogeneity for the
variance-covariance parameters, which was not modelled
in this analysis. Thus, we provided the results of a one-
step fixed effects meta-analysis only consider correla-
tions of repeated measured outcomes among different
time points within individual participants. The REML
estimates, 95% CI, and P-values are presented in Table 4.
Next, we conducted IPD meta-analyses using the

two-step approach based on the REML estimates of the
fixed effects coefficients of the 4 trials. In the multivariate
random effects meta-analysis models, we considered sev-
eral assumptions for between-studies variance-covariance
structures Ω, and the fitting of the candidate models was
evaluated using the Bayesian information criterion (BIC)
[31]. The best fitting model was the compound symmetry
model (BIC = 125.73), whereas for the fixed effects model,
BIC = 316.89.
In Table 3, we also provided the results of two-step

multivariate meta-analysis of the fixed effects model and
the random effects model using the compound symmetry
model. In the random effects model, the between-studies
SD estimate was 0.047 and the between-studies correl-
ation coefficient was 0.064. The results for the fixed effects
model analyses using one-step and two-step approaches
were consistent, which was expected as described in Re-
mark A. However, note that even if there was
between-studies heterogeneity for the variance-covariance
parameters, the two-step approach provides valid infer-
ence results. Besides, comparing the fixed and random ef-
fects two-step analyses, the coefficient estimates were
somewhat different. In addition, the SE estimates of the
fixed effects coefficients were larger for the random effects
model, indicating that uncertainty might be larger when
using this model. Considering the simulation results, even
when there is substantial heterogeneity in βis, the
two-step random effects approach provides valid inference
results. The interaction tests of βi13 were not significant by
significance level of 5% for any of the three models,
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consistent with the original analyses of Furukawa et al.
[14], but these tests should be the most powerful under
the assumption that the statistical models were correct.

Discussion
IPD meta-analysis is becoming increasingly popular in re-
cent medical studies, especially as an effective approach for

exploring effect modifiers for precision medicine [8]. Given
recent trends in clinical trial data sharing [27, 28], the prac-
tical values of these methodologies are bound to increase in
future studies. The efficiencies of the one-step and two-step
approaches have also been discussed for IPD meta-analyses
based on the conventional ANCOVA, logistic and Cox re-
gression models [32]. Besides, as noted above, IPD

Table 2 Results for the simulation 2(a): outcome variables were measured on all three time-points

N = 5 N = 10 N = 15

τ2 = 0.10 τ2 = 0.20 τ2 = 0.10 τ2 = 0.20 τ2 = 0.10 τ2 = 0.20

μ2 = 0.14

Mean 0.141 0.144 0.141 0.144 0.145 0.143

SE 0.694 0.709 0.694 0.709 0.564 0.565

bSE 0.680 0.692 0.680 0.692 0.553 0.562

Coverage Rate 0.946 0.947 0.946 0.947 0.947 0.950

Power 0.061 0.057 0.061 0.057 0.059 0.057

μ4 = 0.83

Mean 0.828 0.831 0.828 0.831 0.832 0.833

SE 0.306 0.323 0.306 0.323 0.252 0.268

bSE 0.307 0.325 0.307 0.325 0.251 0.265

Coverage Rate 0.951 0.950 0.951 0.950 0.948 0.947

Power 0.773 0.725 0.773 0.725 0.912 0.877

μ5 = −0.46

Mean −0.459 −0.458 −0.459 −0.458 −0.461 −0.460

SE 0.104 0.143 0.104 0.143 0.084 0.117

bSE 0.103 0.143 0.103 0.143 0.084 0.117

Coverage Rate 0.944 0.947 0.944 0.947 0.949 0.949

Power 0.992 0.890 0.992 0.890 1.000 0.976

μ7 = 0.14

Mean 0.142 0.141 0.142 0.141 0.138 0.140

SE 0.163 0.193 0.163 0.193 0.134 0.157

bSE 0.163 0.192 0.163 0.192 0.133 0.157

Coverage Rate 0.947 0.948 0.947 0.948 0.947 0.951

Power 0.140 0.115 0.140 0.115 0.181 0.146

μ9 = 0.05

Mean 0.051 0.050 0.051 0.050 0.048 0.050

SE 0.101 0.140 0.101 0.140 0.082 0.116

bSE 0.100 0.141 0.100 0.141 0.082 0.116

Coverage Rate 0.944 0.945 0.944 0.945 0.947 0.947

Power 0.091 0.071 0.091 0.071 0.091 0.076

μ10 = −0.06

Mean −0.061 −0.058 −0.061 − 0.058 − 0.060 −0.061

SE 0.106 0.145 0.106 0.145 0.087 0.119

bSE 0.105 0.145 0.105 0.145 0.086 0.119

Coverage Rate 0.945 0.944 0.945 0.944 0.945 0.947

Power 0.096 0.074 0.096 0.074 0.110 0.084
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meta-analyses using the mixed effects models involve more
complicated problems, which should address the hetero-
geneity of variance-covariance structures of random effects
distributions. In this paper, we presented a flexible two-step
method that can effectively circumvent these difficulties,
and demonstrated its validity and efficiency.

In the simulation studies, the coverage rates of 95%
CIs for the random effects model retained nearly at the
nominal level, but previous studies showed that SE are
possibly underestimated under small N settings in ran-
dom effects meta-analyses, and the standard CIs can
have serious undercoverage properties [33–36]. In the

Table 3 Results for the simulation 2(b): outcome variables were measured on two time-points for 40% trials and on three time-
points for 60% trials

N = 5 N = 10 N = 15

τ2 = 0.10 τ2 = 0.20 τ2 = 0.10 τ2 = 0.20 τ2 = 0.10 τ2 = 0.20

μ2 = 0.14

Mean 0.140 0.142 0.144 0.136 0.136 0.139

SE 1.026 1.026 0.693 0.702 0.483 0.559

bSE 0.989 1.004 0.681 0.690 0.475 0.561

Coverage Rate 0.947 0.950 0.948 0.946 0.948 0.953

Power 0.057 0.052 0.058 0.058 0.061 0.053

μ4 = 0.83

Mean 0.825 0.822 0.823 0.828 0.873 0.836

SE 0.546 0.584 0.377 0.404 0.283 0.329

bSE 0.537 0.574 0.376 0.402 0.257 0.328

Coverage Rate 0.948 0.950 0.950 0.947 0.907 0.947

Power 0.347 0.316 0.591 0.548 0.892 0.717

μ5 = −0.46

Mean −0.459 −0.459 −0.460 −0.459 −0.460 −0.461

SE 0.147 0.204 0.103 0.143 0.073 0.118

bSE 0.143 0.200 0.102 0.143 0.073 0.117

Coverage Rate 0.931 0.932 0.944 0.944 0.944 0.945

Power 0.874 0.625 0.994 0.890 1.000 0.974

μ7 = 0.14

Mean 0.145 0.145 0.136 0.135 0.138 0.141

SE 0.295 0.359 0.207 0.245 0.147 0.202

bSE 0.291 0.346 0.206 0.245 0.145 0.201

Coverage Rate 0.943 0.936 0.947 0.950 0.946 0.949

Power 0.088 0.083 0.105 0.082 0.167 0.110

μ9 = 0.05

Mean 0.051 0.052 0.051 0.055 0.049 0.050

SE 0.185 0.263 0.133 0.184 0.093 0.151

bSE 0.178 0.252 0.128 0.181 0.091 0.149

Coverage Rate 0.925 0.927 0.935 0.940 0.941 0.943

Power 0.086 0.080 0.084 0.070 0.089 0.070

μ10 = −0.06

Mean −0.062 − 0.063 − 0.060 − 0.060 − 0.060 − 0.059

SE 0.150 0.205 0.106 0.146 0.075 0.118

bSE 0.147 0.203 0.105 0.145 0.074 0.118

Coverage Rate 0.934 0.937 0.942 0.943 0.947 0.948

Power 0.084 0.074 0.096 0.079 0.130 0.083
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simulation studies, the proper coverage properties are
possibly caused by the adoption of a compound sym-
metry structure for the heterogeneity covariance matrix
Ω. In multivariate meta-analyses, when the heterogen-
eity variances are assumed to be common across differ-
ent outcomes (this assumption is often adopted in
network meta-analysis [37, 38]), the statistical informa-
tion across the different outcomes can be shared for the
common parameter estimation, so the accuracy is gener-
ally gained. When we adopted different variance as-
sumptions for Ω, the CIs had undercoverage property
under small N setting (data not shown). Note that sev-
eral improved methods for addressing the undercoverage
property have been developed, e.g., the Kenward-Roger
method [39] and the Bartlett-type corrections [40].
In this paper, we discussed the linear mixed effects

models for continuous Gaussian outcome variables, but
the two-step approach can be similarly adapted to the
generalized linear mixed effects models for non-
Gaussian outcome variables [41] and the frailty models
for survival outcome variables [42]. For these outcome
variables, it should be noted that there are possibly cor-
relations between the estimators of fixed effects coeffi-
cients and variance-covariance parameters. Thus, the
two-step analyses may cause losses of efficiency on the
inferences. However, the two-step approach does not re-
quire parametric assumptions for heterogeneities for the
within-studies variance-covariance parameters, and val-
idity of the inference is generally assured. In addition,
this method can be easily implemented using standard
statistical packages. Therefore, the two-step marginal ap-
proach would also be an effective solution for these set-
tings. Further research is warranted to evaluate the
expansion of the two-step model to these settings.

Conclusions
The two-step approach is an effective method for synthesiz-
ing the regression coefficient parameters efficiently for IPD
meta-analyses of longitudinal clinical trials. Using this
method, modelling of heterogeneities of the within-studies
variance-covariance parameters can be effectively circum-
vented without additional parametric assumptions, which
are not of primary interests in the analyses of these clinical
trials [16, 17, 19]. If we adopt the one-step approach to
modelling the heterogeneity, complicated modelling is re-
quired and the validity is possibly violated if the adopted
model is misspecified. Based on the relaxed assumptions of
the two-step approach, we can implement efficient infer-
ences for the treatment effects and interactions. In addition,
the two-step approach has advantages for implementations
because it can be easily performed using standard statistical
packages [23–25]. It can also be effectively applied to IPD
meta-analyses using clinical trials data sharing systems in
which individual trials can only be analyzed separately.
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