
Uhlmann et al. BMCMedical ResearchMethodology          (2018) 18:128 
https://doi.org/10.1186/s12874-018-0574-y

TECHNICAL ADVANCE Open Access

Hypothesis testing in Bayesian network
meta-analysis
Lorenz Uhlmann* , Katrin Jensen and Meinhard Kieser

Abstract

Background: Network meta-analysis is an extension of the classical pairwise meta-analysis and allows to compare
multiple interventions based on both head-to-head comparisons within trials and indirect comparisons across trials.
Bayesian or frequentist models are applied to obtain effect estimates with credible or confidence intervals.
Furthermore, p-values or similar measures may be helpful for the comparison of the included arms but related
methods are not yet addressed in the literature. In this article, we discuss how hypothesis testing can be done in a
Bayesian network meta-analysis.

Methods: An index is presented and discussed in a Bayesian modeling framework. Simulation studies were
performed to evaluate the characteristics of this index. The approach is illustrated by a real data example.

Results: The simulation studies revealed that the type I error rate is controlled. The approach can be applied in a
superiority as well as in a non-inferiority setting.

Conclusions: Test decisions can be based on the proposed index. The index may be a valuable complement to the
commonly reported results of network meta-analyses. The method is easy to apply and of no (noticeable) additional
computational cost.
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Background
Network meta-analysis (NMA), as an extension of the
classical pairwise meta-analysis, is gaining acceptance and
popularity in medical research. The general idea is to
include all evidence at hand about a specific research
question in one single model. The classical pair-wise
meta-analysis is limited to two-arm comparisons of inter-
ventions that were directly compared in trials. An NMA
can include any number of treatments as well as inter-
ventions that have not been investigated head-to-head.
Several approaches (frequentist and Bayesian) were intro-
duced and extended during recent years. Thus, a frame-
work of modeling techniques is available to implement an
NMA in many different data situations. Efthimiou et al.
and Dias et al. give very useful overview of recent devel-
opments [1, 2]. Alongside the benefits those procedures
provide, many challenges arise when applying an NMA
model. First, all the issues that are already known from
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pair-wise meta-analysis, like heterogeneity, have to be
addressed. In addition, new items, like inconsistency
which denotes the problem of deviations between direct
and indirect estimates, have to be taken into consideration
(see, for example, Dias et al. [3]).
As a result of an NMA, point estimates with credible

intervals of pairwise effects between treatment arms are
obtained. In this article, we focus on the issue of testing
for superiority or noninferiority between treatment arms
in an NMA model. For Bayesian modelling, we present
and discuss an index υ that can be used for hypothesis
testing within the network. Similar ideas were presented
in the article by Rücker and Schwarzer [4] in a frequen-
tist framework. However, we focus on Bayesian modeling.
Furthermore, while we apply the index for a test proce-
dure, Rücker and Schwarzer use their approach to rank
treatment arms.

General modeling in NMA
The concept of NMA in a Bayesian framework was intro-
duced by Higgins and Whitehead [5]. Many extensions
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and discussions about the idea were published in recent
years. Introductions and overviews can be found in the lit-
erature [1, 2, 6, 7]. Here, we only present the basic idea of
the modeling procedure. For this, we assume throughout
this paper that the outcome is binary (e.g., success / no
success, or failure / no failure).
The following notation is used. N is the number of tri-

als, K the number of arms, pik the success (or failure)
probability, and Nik the sample size of arm k in study i.
In the setting of a binary outcome, we apply two differ-
ent approaches: Either by use of the binomial distributions
directly or by calculating the log odds ratios (OR) for each
trial which are pooled in the model afterwards. In the for-
mer case, we use the logit function as link function and
assume

yik ∼ Bin(Nik , pik),
logit(pik) = μi + dAik ,

(1)

which can be denoted as a fixed-effect model, where yik is
the number of events, μi is the baseline value (and is seen
as a nuisance parameter), dAik is the log OR between arm
k and arm Ai which is the baseline arm and has to be cho-
sen for each trial. All arms are compared to this baseline
treatment arm. These log ORs are of main interest in an
NMA and are typically assumed to be approximately nor-
mally distributed. In a random-effects model, the logits
are modeled as

logit(pik) = μi + δAik

δAik = N (dAik , τ
2).

When the logORs are used directly, the fixed-effect model
is defined as

ψiAik ∼ N (dAik , var(ψiAik)) (2)

and a random-effects model as

ψiAik ∼ N (δAik , var(ψiAik))

δAik = N (dAik , τ
2).

In this implementation, ψiAik is the log OR in trial i of
treatment arm k compared to the baseline treatment arm
Ai. The log OR together with its variance var(ψiAik) have
to be estimated using the data of study i. The estimation
of ψiAik can be problematic when the number of events
is rare (see [8–10], and the Cochrane Handbook, chapter
16.9.2 [11]). Thus, some care has to be taken when apply-
ing this approach. Further challenges and assumptions (as,
for instance, the consistency assumption) but also exten-
sions of these models are discussed and explained in the
literature. Albeit there are important issues, we do not
focus on them here.

Objective
In this paper, we want to introduce a simple method to
obtain an index υ that can be interpreted similarly to a fre-
quentist p-value for an effect estimate within a Bayesian
NMA. For this, we adapt an idea proposed by Kawasaki
and Miyaoka [12, 13] where the authors introduce a simi-
lar index but to compare only two groups with respect to
a binary outcome using Bayesian methods in a random-
ized trial. Our approach serves as a complement when
presenting the results of an NMA reporting the effect esti-
mates and the credible intervals. It can also be interpreted
as the probability of superiority or non-inferiority, respec-
tively. Furthermore, the index might be useful to define
boundaries when updating NMAs as proposed by Niko-
lakopoulou et al. [14] and may therefore be applied in
sequential NMAs. In our simulation study and real data
example, we discuss the characteristics of the proposed
approach.

Methods
In this section, we present the definition of the index υ and
how it can be used when comparing two treatment arms
within an NMAmodel.

Definition of index υ

To explain our approach, we assume that there are three
treatment arms compared (P: Placebo, S: standard treat-
ment, and E: experimental treatment). Assuming that an
event denotes a success, a log OR of dPE > 0 or dPS > 0
denotes a benefit of the experimental treatment or the
standard treatment over placebo, respectively. To assess
whether E is superior to S (by at least a certain (pre-
specified) relevant amount � ≥ 0), we can estimate the
probability

υ = P(dPE > dPS + �)

and base our decision on it. Under the consistency
assumption, this equals to the definition

υ = P(dES > �)

and therefore, this index υ can also be applied in any
Bayesian (pairwise or network) meta-analysis.
Of course, � can be chosen to be negative as well lead-

ing to a non-inferiority setting. Then, the probability of
a treatment of being not less effective by more than a
pre-specified amount compared to another treatment arm
is estimated. In the following, it will be shown how the
estimation of this probability can be realized.

Estimation of υ
The log ORs are estimated via Bayesian methods. We
assume that they are approximately normally distributed.
As prior distributions, one can use (flat) normal distribu-
tions, resulting in a normal distribution as posterior. Let
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us assume that the posterior mean values of dPS and dPE
are denoted by μPS,post and μPE,post, respectively. One can
then define a Z statistic as

Z = (dPE − dPS − �) − (μPE,post − μPS,post − �)

SE(dPE − dPS − �)
,

where

E(dPE − dPS − �) = μPE,post − μPS,post − �

and

SE(dPE − dPS − �) = SE(dPE − dPS)

=
√
Var(dPE − dPS)

is the standard error of the difference of the logORs. Thus,
Z is asymptotically normally distributed as well.
Let �(·) denote the cumulative distribution function

of the standard normal distribution. The probability of
interest can then be approximated as

P(dPE > dPS + �)

≈ 1 − �

(−(μPE,post − μPS,post − �)√
Var(dPE − dPS − �)

)
.

It has to be noted that this approach is based on the
approximation of the distribution of the log ORs by the
normal distribution and is, therefore, only an approxima-
tion of P(dPE > dPS + �).
An estimate of this probability is then

P̂(dPE > dPS + �)

= 1 − �

(
−(d̂PE − d̂PS − �)

√
V̂ar(dPE − dPS − �)

)

,

where d̂PE and d̂PS denote the estimates of themean values
of the posterior distribution of dPE and dPS, respectively.
The estimated posterior variance is denoted by V̂ar(dPE −
dPS − �) = V̂ar(dPE − dPS).
Estimation of this probability can be done within

the MCMC approach in two different ways. The first
approach is to estimate the (posterior) distributions of
dPS − dPE − � directly. From this, we can estimate d̂PS −
d̂PE − � as well as the variance V̂ar(dPE − dPS − �). How-
ever, there is an even more intuitive way. In an MCMC
estimation procedure, we store in every single iteration
whether the parameter dPE was larger than dPS + � or
not. After the MCMC estimation is finished, we evalu-
ate the relative frequency of runs where dPE > dPS + �

within the MCMC approach to estimate the probability
P̂(dPE > dPS +�). An advantage of this approach is that it
does not rely on the normal distribution and can therefore
be applied in any NMA setting.

Use of υ for Bayesian hypothesis testing
The index υ can be used to estimate the probability of
superiority or non-inferiority between treatment arms

with respect to the event probability. Therefore, it is a
useful complement to the common results obtained in a
NMA. Furthermore, this index can be used to make test
decisions. Let us, again, assume that there are three treat-
ment arms (P, S and E). Furthermore, we want to assess
the following test problem:

H0 : dPE ≤ dPS + � vs. H1 : dPE > dPS + �,

with � ∈ R. We can now use the index υ to perform
a Bayesian hypothesis test in an NMA. If the value of υ

exceeds a pre-specified value (for instance, 0.975, as an
equivalent to a frequentist p-value of 0.025 which is typ-
ically used in a one-sided test procedure) we reject the
null-hypothesis. Since the index υ is based on a Bayesian
approach, it is unclear whether the test decisions coin-
cide with the results of frequentist testing procedures. For
this, a “probability matching prior” (PMP) has to be found
as outlined, for example, in Datta and Sweeting [15]. We
assume that the log ORs are normally distributed. It can
be shown that in this case a uniform prior is a PMP [15].
In NMA, flat normal priors are commonly used which
are very close to uniform priors if they are chosen suffi-
ciently flat. However, since small deviations might still be
present either because of the (flat) prior distribution or the
approximation of the log OR via a normal distribution, we
applied simulation studies to evaluate the characteristics
of our approach.

Some technical issues
As already discussed in the “Background” section, there
are two ways to define an NMA model with a binary out-
come. Either using the number of observations and the
number of events per treatment arm assuming a bino-
mial distribution, or using the approximately normally
distributed log ORs.
In the next section, results from simulation studies

will be provided where both approaches are compared.
Therein, the method where the binomial distribution is
used, is called arm-based approach. The method where
ORs are modeled, is called contrast-based approach. The
same distinction is done, for example, in the manual of the
R package “netmeta” [16]. As a side note, the computa-
tion time of the contrast-based approach was substantially
lower (in some situations about 40 times lower). Thus,
from a computational point of view, this approach is much
more efficient. From a technical point of view, the main
difference between the arm-based and the contrast-based
approach is that an additional level in the hierarchy of
the Bayesian model is used. In the arm-based approach,
a binomial distribution is estimated on the lower level,
based on the number of successes (yik) and the number of
observations (Nik). On the upper level, the log ORs (dAik)
are estimated (model (1)). When using the trial-specific
log ORs, there is only one level (model (2)).
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Two different ways of estimating the probability
P(dPE > dPS + �) have been presented above (note that
this distinction is independent of the distinction between
the contrast-based and the arm-based approach). The
first option is to estimate the (posterior) distribution of
dPE − dPS − � and the second one is to estimate P(dPE >

dPS + �) directly during the MCMC procedure. In all
simulation studies, both approaches were used in parallel.
It became clear that the differences between the results
where negligibly small. Thus, only the results from the sec-
ond approach are presented, since it is the simplest way to
estimate the index υ.

Simulation study
Simulation studies were done to evaluate the testing
approach. The main aim was to examine whether the
approach maintains the type I error rate when used for
hypothesis testing. For this, we have to define a cut-off
value for a test decision. Analogously to a frequentist set-
ting with a type I error rate of 0.025, we reject the null
hypothesisH0: dPE ≤ dPS + � if υ̂ = P̂(dPE > dPS + �) ≥
0.975.
A further issue was to examine the power of the

approaches. Different settings regarding baseline risk, dPS,
dPE , and � were used.
Binary data based on the assumption that the null

hypothesis holds true were simulated and the rejection
rate was estimated to examine the actual type I error rate.
The boundary of the null hypothesis was considered, i.e.,
the data were simulated so that dPE = dPS + � holds true.
Three arms were compared (P: placebo; S: standard

treatment; E: experimental treatment) in 16 studies, where
four studies of each were simulated comparing P vs. S,
P vs. E, and S vs. E, respectively, and another four stud-
ies were simulated including all three treatment arms. In
each study, a sample size of 500 observations per treat-
ment arm was used. We assume that the main interest
was to compare the experimental treatment with the stan-
dard treatment. The success probabilities of the three
arms were varied to examine the characteristics of our
approach in different scenarios. The success probabili-
ties of the placebo and the standard treatment arm were
assumed to be equal which was done to simplify the
simulation procedure; different values were chosen to
evaluate different scenarios (piP = piS = 0.05, 0.1 or 0.2,
i = 1,. . .,16). The success probability of the experimen-
tal arm was calculated such that dPE = dPS + �

holds true. The values of � were chosen based on
the ORs between the treatment arms. Eleven differ-
ent ORs were used: log(1), log(1.05), log(1.1), log(1.2),
log(1.5), log(2) (superiority), and log(1.05−1), log(1.1−1),
log(1.2−1), log(1.5−1), log(2−1) (non-inferiority). The sig-
nificance level was set to 0.025.

For each simulation scenarios, 50,000 iterations were
used. Based on the results obtained in these scenarios,
some further interesting data situations were examined.
Firstly, a sample size of 1,000 observations per treatment
arm with a success rate of 0.2 was used leading to a
data situation where even approximate approaches should
perform sufficiently well. Secondly, the sample size was
lowered to 200 observations per treatment armwith a suc-
cess rate of 0.1. The values for � were varied between
log(0.9) and log(1.1) since the most often used values
should be within this range. In a last scenario, extreme val-
ues of � were examined combined with a sample size of
400 observations per treatment arm using a success rate
of 0.05.
We also evaluated our approach in situations where het-

erogeneity was present in the data. We used the same
simulation settings as above (16 studies, 500 observations
per arm).We did not vary� but set it to 0 thus considering
a superiority setting. We simulated heterogeneity using
the same values for τ 2 as in Friede et al. [17]: 0.01, 0.02,
0.05, 0.1, 0.2, 0.5, 1, and 2. We, again, used three differ-
ent baseline risk values: 0.05, 0.1, and 0.2. Random-effects
models were fitted and 10,000 iterations per scenario were
performed.
In a last step, we lowered the sample size per arm and

trial to 50 patients, used a baseline risk of 0.1, and applied
the same values for τ 2 as before. Again, with 10,000 repli-
cations per scenario, random-effects models were fitted
and evaluated.
Furthermore, the power of the testing approach was

evaluated. Again, the main interest was to analyze
the difference between the experimental and the stan-
dard treatment. The success rates in arm P and S
were set to 0.1, assuming that dSE = 1.15, and the
sample size was varied from 100 to 1,000 observa-
tions per treatment arm. Per scenario, 10,000 iterations
were used.
In all simulation scenarios, the consistency as well as

the similarity assumption was assumed to hold true. For
parameter estimation, MCMC techniques were used. Two
chains with a burn-in of 20,000 followed by 40,000 runs
with a thinning rate of 5 resulting in 8,000 samples per
chain were generated to estimate the posterior distri-
bution following Song et al. who used a similar setting
[18]. The software R [19] in combination with JAGS
(version 3.4.0 or higher, http://mcmc-jags.sourceforge.
net/) and the R-packages rjags [20], doSNOW [21],
foreach [22], coda [23], and iterators [24] were
used to conduct the simulations. Since the computations
were done on different systems and different work sta-
tions, different versions of the software packages were
used. In the evaluation step, the package xtable [25] was
used in addition.

http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/
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Illustrative example
To further illustrate the approach, we analyzed a real data
example that was already evaluated elsewhere [6, 26]. The
data are provided by the Smoking Cessation Guideline
Panel [27].
In the data set, 24 trials comparing four different treat-

ments about smoking cessation are included (A: “no
contact”, B: “self-help”, C: “individual counseling”, and D:
“group counseling”). The number of cessations and the
number of observations are presented in Table 1. In the
following, it is tested whether the treatment effects of arm
B, C, and D are different from that of treatment arm A
using a fixed-effect model. Here, the following three test
problems for superiority (i.e., � = 0) are assessed (no
adjustment for multiple testing is performed):

H0,1 : dCA ≤ dDA vs. H1,1 : dCA > dDA
H0,2 : dCA ≤ dBA vs. H1,2 : dCA > dBA
H0,3 : dDA ≤ dBA vs. H1,3 : dDA > dBA

It should be mentioned that these hypotheses were not
pre-specified but the example is just presented to show
the characteristics of our approach in a real data setting.
Compared to the original data, the number of events was
changed from 0 to 1 in two cases (study ID 9 and 20). This
was done due to two reasons: If there are zero events in
a treatment arm, an OR cannot be calculated. However,
the contrast-based approach is based on ORs between
treatment arms and thus the number of events had to
be adjusted. As already mentioned above, the problem of
rare events is common and discussed in the literature. In
practice, a better choice may be to change the number
of events from 0 to 0.5 and to add 0.5 to the number of
observations [11]. However, the arm-based approach is
based on a binomial distribution which is a discrete dis-
tribution. Thus, only integers can be used as numbers of
events. Since a comparison of both approaches should be
provided, the number of events was thus changed to 1.
An MCMC approach was implemented to estimate the

parameters with 500,000 iterations after a burn-in of
100,000 iterations.

Results
Simulation study
In the following, we will present the simulation results.
Due to convergence problems which resulted from zero
counts, the results are sometimes based on slightly less
than 50,000 or 10,000 runs, respectively. This is not
mentioned in every single results description to improve
readability.

Type I error rate: The main interest was whether the
approach maintains the type I error rate. In Fig. 1, the
results of the first part of the simulation studies are shown.

Table 1 Number of events and number of observations per trial
for the illustrative data example (yik and Nik , k = A, B, C,D,
respectively) [6, 26]

A B C D

ID yiA NiA yiB NiB yiC NiC yiD NiD

1 9 140 23 140 10 138

2 11 78 12 85 29 170

3 79 702 77 694

4 18 671 21 535

5 8 116 19 146

6 75 731 363 714

7 2 106 9 205

8 58 549 237 1561

9 1 33 9 48

10 3 100 31 98

11 1 31 26 95

12 6 39 17 77

13 95 1107 134 1031

14 15 187 35 504

15 78 584 73 675

16 69 1177 54 888

17 64 642 107 761

18 5 62 8 90

19 20 234 34

20 1 20 9 20

21 20 49 16 43

22 7 66 32 127

23 12 76 20 74

24 9 55 3 26

The number of observations per treatment arm was kept
fixed (at 500 per treatment arm) and the value of � was
varied, where three different success rates for treatment
arms P and S were assumed (0.05, 0.1 and 0.2). The type
I error rate using the contrast-based approach is close to
the nominal level if the success rates are 0.1 or 0.2 and� is
between log(1.2−1) and log(1.2) (Fig. 1). However, as soon
as � is changed to more extreme values, it is slightly lib-
eral in a non-inferiority setting (exp(�) < 1) and slightly
conservative in a superiority setting (exp(�) ≥ 1). This
characteristics is evenmore pronounced when the success
rate is set to 0.05. Furthermore, one can see that the type
I error rate tends to be higher the higher the success rate
is. In contrast, the actual level of the arm-based approach
is very close to the nominal one in most situations. Only if
� and the success rate are relatively large, the type I error
rates are slightly increased. If� is very small, the approach
is slightly conservative. It is interesting to see that the lines
in Fig. 1 cross. Thus, in some situations the arm-based and



Uhlmann et al. BMCMedical ResearchMethodology          (2018) 18:128 Page 6 of 11

Fig. 1 Simulated type I error rates. Simulated type I error rates for varying values of � (based on 50,000 runs). The sample size per treatment arm and
the success rate were kept fixed at Nik = 500 and pik = 0.05, 0.1, 0.2, respectively (i = 1, . . . , 16, k = P, S, E)

in some other situations the contrast-based approach is
more conservative or liberal, respectively.
In the setting with 1,000 observations per treatment

arm and study and values for � very close to 0, both

approaches lead to very similar results. Both nearly main-
tain the type I error rate. The situations with 200 obser-
vations per treatment arm and �-values varying between
log(0.9) and log(1.1) might be more interesting, since
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these values aremore common in practice. In all these sce-
narios, the arm-based approach seems to perform slightly
better than the contrast-based one, since it is less conser-
vative but still maintains the type I error rate. Sometimes,
the type I error rate was slightly above the nominal level.
However, this exceedance can be regarded as negligible.
In the last scenario, where extreme �-values were used,
one can see that the contrast-based approach inflates the
type I error rate in a non-inferiority setting while it is very
conservative in the superiority trials. In contrast, the arm-
based approach maintains the type I error rate in (even
extreme) non-inferiority scenarios but inflates the type
I error rate in a superiority setting. Table 2 summarizes
these results.
When introducing heterogeneity, we saw that the results

for the two approaches (arm-based and contrast-based)
were more different. The arm-based approach always
maintains the type I error rate but becomes very con-
servative in case of strong heterogeneity (see Fig. 2).
The contrast-based approach, however, leads to slightly
increased type I error rates for higher values of hetero-
geneity. Lowering the sample size to 50 patients per study
did not, in general, lead to inflated type I error rates
when the arm-based approach was used. Only in case of
strong heterogeneity the type I error was slightly inflated,
or the test behaved slightly too conservative in the situa-
tion of strong heterogeneity. In contrast, the effect-based
approach led to an increased type I error rate in case of
strong heterogeneity.

Power The investigations of the power showed that both
approaches have a very similar performance. The arm-
based approach resulted in slightly higher power com-
pared to the contrast-based one (see Fig. 3). The difference

Table 2 Simulated type I error rates of the testing approach in
specific scenarios

nik piP , piS � contrast-based arm-based

1000 0.2 log(0.9) 0.024 0.024

log(1) 0.024 0.024

log(1.1) 0.024 0.025

200 0.1 log(0.9) 0.023 0.025

log(0.95) 0.022 0.025

log(1) 0.022 0.026

log(1.05) 0.021 0.025

log(1.1) 0.023 0.026

400 0.05 log(0.5) 0.032 0.024

log(2) 0.017 0.028

nik denotes the number of treatment arms, piP and piS the success rates in arm P
and S, respectively, in trial i (i = 1, . . . , 16), and � is the non-inferiority or superiority
margin, respectively. We used 50,000 simulated data sets to estimate the type I error
rate. The nominal level of α was 0.025

decreased with increasing sample size. This was to be
expected since the type I error rates of the arm-based
approach were also slightly increased compared to the
contrast-based one. However, one has to keep inmind that
the arm-based method did not maintain the significance
level in some situations and thus has to be used with care.

Real data example
In Table 3, we provide the results for the data exam-
ple. The estimated values for υ resulting from the arm-
based and the contrast-based approach are presented for
each pair of hypotheses. We can see that the arm-based
approach always leads to a higher value of υ̂ than the
contrast-based approach. If the cut-off for a test deci-
sion of 0.975 is applied, the following test decisions result.
The first null hypothesis H0,1 cannot be rejected for both
approaches. This means that the group counseling and the
individual counseling are not significantly different. The
second null hypothesis (H0,2) can be rejected according to
both approaches thatmeans that the individual counseling
is significantly more effective than self-help. The third null
hypothesis (H0,3) can be rejected with the arm-based but
not when applying the contrast-based approach. Since we
could see from our simulation study that the arm-based
approach leads to type I error rates that are very close
to the nominal level, the arm-based should be a proper
choice. However, the safe (but maybe too conservative)
option would be to apply the contrast-based approach and
thus to maintain the null hypothesis in this case.

Discussion
In this article, a method for hypothesis testing in an
Bayesian NMA is presented. For this, an index was intro-
duced that describes the probability of superiority or
non-inferiority from a Bayesian perspective.We examined
whether this index can also be used to make test deci-
sions in a frequentistic sense. In a simulation study, two
different approaches were compared, an arm-based and
a contrast-based one. When there was no heterogeneity
present in the data and fixed-effects models were applied,
the observed type I error rates were very close to the nom-
inal significance level while the arm-based approach led
to slightly more favorable results in most situations. If the
sample size is sufficiently high, both approaches main-
tain the type I error rate. If an extreme non-inferiority
margin is used, only the arm-based approach led to valid
results. An extremely large margin for relevant superior-
ity, however, leads to an inflation of the type I error rate of
the arm-based approach, and the contrast-based approach
is then the better choice. However, in most situations in
practice the deviations from the nominal type I error rate
observed in our simulation studies are negligible. We also
investigated the situation where heterogeneity is present
in the data and saw that this can have a stronger impact
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Fig. 2 Simulated type I error rates (heterogeneity). Simulated type I error rates for varying values of τ 2 (based on 10,000 runs). The sample size per
treatment arm and the success rate were kept fixed at Nik = 500 and pik = 0.05, 0.1, 0.2, respectively (i = 1, . . . , 16, k = P, S, E), while � was set to 0

on the type I error rate. However, even when the sample
size was lowered to 50 patients per arm and trial, the type
I error was still very close to the nominal level and only
deviated slightly from it in case of strong heterogeneity. It

is worth mentioning that our concept is not identical to a
Bayesian posterior predictive p-value as described in Gel-
man et al. [28]. The index υ rather describes a Bayesian
probability for superiority or non-inferiority.
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Fig. 3 Power values. Power for the arm-based and contrast-based approach for a varying sample size Ni,k (based on 10,000 runs). The success rate
was kept fixed at pik = 0.1 while the number of observations was varied (i = 1, . . . , 16; k = P; S; E). An OR of 1.15 was used for power simulation
while � = 0 was used

There are some limitations of our simulation study. Of
course, there are by far more data situations as those
considered. However, we covered a range of common situ-
ations in medical research. There is also a lot of discussion
about inconsistency in NMAmodels in the literature (see,
for example, Dias et al. [29], or Krahn et al. [30]). In
our simulation scenarios, it was assumed that there is no
inconsistency present in the data which is a limitation of
our study. Consistency is an assumption typically made
in a standard NMA model but might be problematic in
practice. In recent publications, this issue was addressed
and solutions were proposed by applying more complex
models [31–35]. However, in this work we focused on the
standard NMAmodel. Note that when examining the type
I error rate, the null hypothesis is assumed to hold true.
Thus, the success rates in all treatment arms are exactly
the same by design (or the same plus a pre-defined �) and
therefore there is no inconsistency per definition.
A test decision can also be based on the 95% credi-

ble intervals around the point estimate of the log OR. If
� is not included, the null hypothesis can be rejected.
We compared this approach to the methods suggested in
this article. The type I error rate tended to be slightly

Table 3 Resulting values for υ̂ for the illustrative data example
using the contrast-based and the arm-based approach

Contrast-based Arm-based

H0,1 vs. H1,1: 0.685 0.759

H0,2 vs. H1,2: >0.999 >0.999

H0,3 vs. H1,3: 0.972 0.990

increased if the test decision was based on the credible
interval compared to the approach based on υ but overall
the results were very similar. Thus, it is not a considerable
improvement compared to a test decision based on the
credible intervals but rather a complement on the existing
methodology.

Conclusions
In conclusion, we proposed and discussed an index that
can be used to test for superiority or non-inferiority of a
treatment arm compared to another one within a Bayesian
NMA. The estimation is done during the NMA model
estimation and does not result in any (noticeable) addi-
tional computational cost. At the same time, the imple-
mentation is very easy. Obviously, this approach can also
be applied in a straightforward way in any other data sit-
uation than binary data, as continuous data or a survival
time, and is therefore a flexible tool.
However, as already mentioned, we did not cover all

possible scenarios in our simulation study and, there-
fore, the index has to be used and interpreted with care.
For example, as shown by Friede et al. [17] coverage of
the credibility intervals decreases (and the type I error
rate increases) substantially in case of rare diseases (low
number of events), small populations, and strong hetero-
geneity. We did not discuss these situations here but it
is clear that the same results for the index υ would have
been observed as well. This shows that it is easy to gen-
erate examples that lead to invalid results. The choice of
a proper prior distribution affects the results as well, as
also described by Friede et al. [17]. Therefore, an ade-
quate assessment of the data situation at hand has to be
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done before applying the approach discussed here or, in
general, any NMA approach. It is hardly possible to define
an approach that is valid and optimal for any situation in
practice and we emphasize the limitations of the approach
described in this paper.
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