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Abstract

Background: Intraclass correlation coefficients (ICC) are recommended for the assessment of the reliability of
measurement scales. However, the ICC is subject to a variety of statistical assumptions such as normality and stable
variance, which are rarely considered in health applications.

Methods: A Bayesian approach using hierarchical regression and variance-function modeling is proposed to
estimate the ICC with emphasis on accounting for heterogeneous variances across a measurement scale. As an
application, we review the implementation of using an ICC to evaluate the reliability of Observer OPTION®, an
instrument which used trained raters to evaluate the level of Shared Decision Making between clinicians and patients.
The study used two raters to evaluate recordings of 311 clinical encounters across three studies to evaluate the
impact of using a Personal Decision Aid over usual care. We particularly focus on deriving an estimate for the ICC
when multiple studies are being considered as part of the data.

Results: The results demonstrate that ICC varies substantially across studies and patient-physician encounters within
studies. Using the new framework we developed, the study-specific ICCs were estimated to be 0.821, 0.295, and 0.644.
If the within- and between-encounter variances were assumed to be the same across studies, the estimated
within-study ICC was 0.609. If heteroscedasticity is not properly adjusted for, the within-study ICC estimate was
inflated to be as high as 0.640. Finally, if the data were pooled across studies without accounting for the variability
between studies then ICC estimates were further inflated by approximately 0.02 while formerly allowing for between
study variation in the ICC inflated its estimated value by approximately 0.066 to 0.072 depending on the model.

Conclusion: We demonstrated that misuse of the ICC statistics under common assumption violations leads to
misleading and likely inflated estimates of interrater reliability. A statistical analysis that overcomes these violations by
expanding the standard statistical model to account for them leads to estimates that are a better reflection of a
measurement scale’s reliability while maintaining ease of interpretation. Bayesian methods are particularly well suited
to estimating the expanded statistical model.
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Background

R. A. Fisher first introduced the concept of an intraclass
correlation coefficient (ICC) in his 1921 paper examin-
ing the familial resemblance between siblings [1]. Since
then, it has become an important measurement used
in the fields of psychology, genetic linkage, heritability,
sensitivity analysis, study design, DNA micro array anal-
ysis, and health measurement scales [2—11]. The ICC is
a measure of reliability, specifically the reliability of two
different raters to measure subjects similarly [12, 13].
Inter-rater reliability is important as it demonstrates that
a scale is robust to changes in raters. Hence, scales
with high inter-rater reliability are less prone to mea-
surement error such as caused by variation in human
judgement [13].

In the area of health measurement scales, the ICC has
been integrated into the Consensus-based Standards for
the selection of the health status measurement instru-
ments (COSMIN) check list. This checklist was devel-
oped to assess the methodological quality of studies based
on measurement attributes. One of the major boxes on
the COSMIN check list is reliability, where it is rec-
ommended that the ICC be used as a measurement of
inter-rater reliability [9, 10]. One of the driving factors of
the uptake of the ICC in many fields is its ease of inter-
pretation [9, 10]. The ICC is a value between 0 and 1,
where values below 0.5 indicate poor reliability, between
0.5 and 0.75 moderate reliability, between 0.75 and 0.9
good reliability, and any value above 0.9 indicates excellent
reliability [14].

However, it has been established that the ICC is sub-
ject to a variety of methodological issues [1, 15-22].
These include a sensitivity to assumptions regarding
normality and homogeneous variance, as well as hav-
ing a negatively biased maximum likelihood estimator
and least squares estimator [1, 18, 20-22]. A variety
of methods have been proposed to address these con-
cerns. Various variance-stabilizing transformations have
been proposed [1, 19], as well as bias-corrected esti-
mators [22, 23]. There are few factors which limit the
uptake of such methods. First, guidance of how to prop-
erly implement the ICC is not communicated clearly,
particularly to non-statisticians. Secondly, ease of inter-
pretation is of utmost importance with the ICC measure,
and while transformations either pre-analysis or internal
to a model can correct for heterogeneity in the vari-
ance of the measurement across its true value or across
other variables, they do so at the cost of interpretability.
This has led to problematic misuses of ICCs in a vari-
ety of disciplines, including the evaluation of health
measurement scales. Herein we formulate solutions
to these problems using the evaluation of an instru-
ment for measuring shared decision making (SDM) for
illustration.
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Case study background: health measurement scales and
observer OPTION®

Employing shared decision making between clinicians and
patients has been linked to improvements in patient satis-
faction, reduced decisional regret, and emerging evidence
of improved treatment engagement [24]. Shared decision
making (SDM) can be defined as a process by which
patients and clinicians make decisions together, account-
ing for patient preferences and values in light of the best
available evidence for treatment options [25].

Measuring the quality of shared decision making imple-
mentations in clinical settings is a challenging task [26].
Patient reported measures are common, but vary in length
and quality of psychometric properties. They may also be
prone to biases, such as “halo” effects leading to ceiling
effects in measurement [27]. Observer measures, where
trained raters evaluate shared decision making may be
more accurate [28].

The Observer OPTION® tool is a proposed improve-
ment of the Observer OPTION'? tool [29, 30]. The
Observer OPTION!? tool has been well-established for
measuring shared decision making practices but has had
mixed inter-rater reliability. It has been criticized for not
placing enough emphasis on the patient’s role in the SDM
process [29, 30]. The Observer OPTION® instrument
aims to ameliorate these shortcomings.

The Observer OPTION?® tool is tightly focused on the
idea of a collaborative deliberation model [29-31]. It’s a
five item tool which produces a score between 0 and 20,
which can be rescaled to 0 and 100 for interpretability. The
patients rate the clinicians interactions in each of the five
areas, giving a score between 0 and 4, where 0 is no effort
and 4 is exemplary effort [29, 30]. The five items are as
follows:

1 The clinician indicates to the patient that there are
treatment options,

2 The clinician aids in the informing and deliberating
process for the patient,

3 The clinician explores the pros and cons of the
treatment options with the patient,

4 The clinician attempts to ascertain the patient’s
preferences in response to potential treatments
discussed,

5 The clinician attempts to integrate the patient’s
preferences in finalizing the treatment plan.

For a measure of an instrument’s reliability to have
meaning, there ought to be a standard population against
which to assess the accuracy or consistency of the rater
scores across encounters. However, in the case of health
measurement scales, data is often pooled from multiple
studies leading to a “wild west” with no standard pop-
ulation. Indeed, in the SDM application, encounters can
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occur across various institutions and in a variety of set-
tings. We argue that the traditional calculation of the ICC,
which relies on the assumption that the variance between
encounters is reasonably homogeneous, is too inflexible
[1, 15-22]. As well, the common implementation of a
bounded scale, or a scale bounded from below, in health
measurement scales often leads to heteroscedasticity. We
present a measure of ICC and method for estimating it
that generalizes the incumbent approach to account for
both heterogeneous data and heteroscedastic variances.

To allow an ICC that caters to multiple contexts to be
estimated using a general strategy, we develop a Bayesian
model and computational procedure. A desirable feature
of Bayesian computations is that they avoid the reliance
on analytic approximations when computing estimates.
This is particularly pertinent in models that include vari-
ance functions or other terms that introduce parame-
ters in nonlinear forms, place constraints on parameters,
or estimate nonlinear functions of parameters such as
ICCs. It is known that Bayesian estimates can be more
precise than their frequentist counterparts, especially
when prior information is informative [32]. By illustrat-
ing our approach on an evaluation of the increasingly
popular Observer OPTION® tool, we hope to catalyze
the adoption of more meaningful and informative com-
putations of ICC across all health measurement scale
applications.

While we use OPTION® as a running example, the pro-
posed methodology applies to any data collected on a
bounded response scale for which the agreement between
raters is sought.

The remainder of this paper is organized as follows. We
provide a brief background regarding the classical form of
the ICC and illustrate how it can be over-estimated when
between study variability is large in the “Methods” section.
In the “Case study design” section we give an overview
of the study conducted to assess the Observer OPTION®
tool and reveal the areas of statistical misuse that com-
promise the measures of ICC that have been previously
reported. In the “Bayesian framework” section we propose
the Bayesian model that estimates an ICC which incor-
porates data from heterogeneous populations and allows
the variance of the measurements to be heteroscedastic.
The “Evaluation of Bayesian Estimation” section details
our process for computing our estimates, as well as three
different scenarios we used to compare the estimates of
our ICC. Our results from the original study, as well as our
three scenarios are presented in the “Results” section. A
brief discussion of these results and their impact on future
research in health measurement scales is included in the
“Discussion” section.

Methods
The ICC is mathematically defined as:
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inter-rater reliability with k raters is denoted as:
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Notice that (1) and (2) increase as th, the variance
between encounters, increases. This can be a potential
flaw in the calculation of the ICC, as the measure is artifi-
cially inflated when the variance between different patient
encounters is larger than will occur in the intended appli-
cation of the instrument. For example, by pooling data
from diverse study subjects, a measure will accurately
discriminate between a greater proportion of subjects,
inflating the ICC or reliability.

Bayesian framework

Leth =1,.,.M,i = 1,..,Ny,andj = 1,...,R be our
indices for the study, the patient-physician encounter, and
the rater. In the OPTION® analysis the number of stud-
ies is M = 3, the number of encounters within the three
studies are (N7 = 201,N; = 72,N3 = 38), and the
number of raters is R = 2 although the methodology
applies to all values of these. Let Y denote the OPTION®
score divided by 100 (for ease of interpretation), 6 the true
amount of shared decision making, and X indicate the use
of a PDA. Although the effect of X is of interest to this
field, our objective is to adjust for it’s effect so as to ensure
that the evaluations of ICC are meaningful. Our statistical
model is

Y |Oni» X ~ Normal (pp,vi;) 10, 1) (3)
where
Hywj € (0,1)} (4)

restricts the probability distribution of the measured
amount of SDM to the interval 0 to 1, and

Ihij = Opi + BL( — 1.5) + B2 (Xp — X) (5)
Vi = 070 (1 — Op) ©)

with X denoting the sample mean value of X. The depen-
dence of V%i on 0y; implies that the ICC depends on the
true amount of SDM in the encounter; its mathematical
expression is referred to as a variance function.

We view the encounters as a random sample from a
large population of possible encounters about which we
wish to make inferences. The sampling of the encoun-
ters and the sampling variability in them is represented
mathematically as
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Op;|study ~ Normal (yh, t,f) 1(0,1) (7)

where I, defined in (4), restricts the possible amount of
SDM to be a proportion (0 to 1). The specification for
0y; depends on parameters which are indexed by 4, giving
each study its own mean and variance. We set our prior
distributions as follows:

yr ~ Normal (,30, a)z)
Bx ~ Normal (bol(k = 0),B%),

0}72 ~ Gamma(vy, v1)

k=0,1,2

rh_2 ~ Gamma(vy, 12)

0w~ Gamma(vs, v3)

The choice of normal and gamma distributions for the
regression (mean or location) and the variance (scale)
parameters is common in practice as the conditional pos-
terior distributions of each parameter conditional on the
remaining parameters and the data are also normal and
gamma distributions. This simplifies model estimation
and computation.

The desire for the prior distribution to impart virtually
no information onto the analysis is accomplished by speci-
fying distributions with very large variances for the model
parameters. As a consequence, the data are solely respon-
sible for estimating the model. In this application we set
by = 04, B> = 10, and v; = 1073 for / = 1,2, 3. Note
that parameters such as 6; that have restricted ranges
may be assigned prior distributions with almost no mass
within the allowable range if the density is not truncated.
If the allowed range is a region over which the unrestricted
distribution is essentially flat, then the truncated distribu-
tion will be close to uniform - essentially assuming that
all allowable values of the parameter are equally likely. As
well, parameters may have values such that the mean of
the unrestricted distribution is outside the allowed range,
and the truncated distribution will still be well-defined.
Although the inverse-Gamma prior distributions assumed
here for the variance parameters have been shown to yield
undesirable results in some applications [33], we found
that they were well suited to our case study in the sense
that the results were quite robust to the prior distribution
parameters. For example, the results with v; = 1072 for
[ = 1,2, 3 were numerically almost identical to those with
v; = 1073 for [ = 1,2,3. We attribute this result to the
fact that in our case study the scale of the data has a finite
range, which prevents the tails of a prior distribution from
having a substantial impact on the posterior.

Under the above model, the ICC for an encounter in
study /# with SDM of 6* is given by

2
T
ICCL(6%) = h 8

w®) 2 + 026%(1 — 6%) ®
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Two salient features are evident in Eq. (8). Firstly, the
within (o2) and between (t2) encounter variance and scale
parameters depend on the index for study. Therefore, the
ICCis study specific. Secondly, the within-encounter scale
parameter is multiplied by 6*(1 — 6*), which crucially
allows for the ability of raters to agree, or rate consistently,
to depend on the actual amount of SDM. Because it is eas-
ier to distinguish cases against a baseline level of a trait
close to 0% or 100% than cases in which the trait is about
50% present (this is seen from the fact that the variability
of a restricted scale is greatest around its middle point),
the involvement of the binomial variance form 0*(1 — 0*)
makes intuitive sense.

In practice, one may choose a value of 6* that has par-
ticular meaning or relevance to the application at which
to compute the ICC. If multiple values of 6* are impor-
tant (e.g., the baseline levels for various population strata)
a separate ICC can be reported for each of them. Alter-
natively, or additionally, one may also choose to average
over a population of values of 6*. For example, if we expect
the population of patient-physician encounters on which
the instrument will be applied to be described by the
probability distribution,

0* ~ 7(6*) = Normal (y;, 17) 1(0, 1),

it follows that the population average ICC, given by
1
ICC, = r,f/ (t2 +020* (1 —6%)) "' 7(6*) do*, (9)
0

should be computed. The evaluation of multiple mea-
sures of ICC yields a much more informative profile of
an instrument’s performance than the presently used sin-
gle number summary derived under overly restrictive
assumptions. This function is designed in such a way that
the user directly specifies a distribution for 6* to maintain
flexibility in the calculation of the ICC. This distribution
can be specified with known parameters to avoid integra-
tion over the hyper parameters y;, and t;, for simplicity.
Alternatively, the user could assume a hierarchical prior
where integration over these parameters would also be
necessary.

The ICC can also be defined for a scenario where
encounters are pooled across studies. Assuming an equal
probability of selecting an encounter from each study, the
marginal variance across these encounters is w? + 72 +
20*(1 — 6*) (a more general expression may be sub-
stituted if the study selection probabilities are unequal).
Hence, the corresponding measure of ICC is given by

w? + 72
ICC, 0%) = 10
mare () = o F o2 (1 o) (10)
Typically, one would see
ICCriarg(6%) = ICC(6%) (11
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Although the pooled or marginal ICC is well-defined
under a specified model for sampling encounters from the
individual studies, if the intended use of the instrument
is to compare encounters across a homogeneous popula-
tion of subjects (e.g., the reference population for a single
study) then ICCy1,,4(6*) makes the instrument look better
in a meaningless way as it overstates the heterogene-
ity between the subjects compared to the heterogeneity
between the individuals in the population that the instru-
ment will be used to compare or discriminate between in
actual practice.

Summarizing the above, the three forms of ICC are seen
to be components of a two-dimensional family of mea-
sures of ICC defined under the full statistical model we
developed to account for the intricacies of the data. The
dimensions are: 1) whether or not the ICC is specific to a
particular level of the quantity being studied versus aver-
aging over a distribution of values of that quantity; 2)
whether or not variability between studies is included in
the between encounter variance (which corresponds to
whether or not it is desired for the instrument to dis-
criminate between encounters from different studies in
practice). Combining these two dimensions, there are four
general types of ICC that are available under the general
approach we have proposed.

Evaluation of Bayesian Estimation

All analyses of the Observer OPTION® data were con-
ducted in R [34]. Markov Chain Monte-Carlo (MCMC)
simulation for Bayesian estimation was implemented
using Just Another Gibbs Sampler (JAGS) and integrated
with pre- and post-processing using the R package ‘rjags’
[35, 36]. Three Bayesian models for three separate ICC
scenarios are compared. The first is the full model, which
separately calculates the posterior variance and ICC for
each study. The second restricts the variances to be
homogeneous across the three studies. The third ignores
the issue of within-study heteroscedasticity in the vari-
ability of raters’ assessments of the amount of SDM.
Posterior distributions are summarized by their median
and 95% symmetric credible interval (2.5th and 97.5th
percentiles).

Case study design

Our main study of interest can be found in [30]. Data
was collected from two previous studies, the Chest Pain
Choice trial (Study 1) and the Osteroporosis Choice Ran-
domized trial (Studies 2 and 3) [37, 38]. Both trials
randomly assigned patients to either receive an interven-
tion of use of a Personal Decision Aid (PDA), or receive
usual care [37, 38]. The Osteoporosis Choice Random-
ized trial contains a subgroup of participants who used
the World Health Organization’s Fracture Risk Assess-
ment Tool (FRAX") [38]. For the purposes of our analysis,
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we consider patients who used FRAX" as a separate study
group (Study 3). The Chest Pain Choice trial recruited
participants from St. Mary’s Hospital Mayo Clinic in
Rochester, MN while the Osteoporosis Choice Random-
ized trial recruited from 10 general care and primary care
practices in the Rochester, MN area [37, 38].

Audio-visual recordings of the patient-clinician encoun-
ters took place and two-raters independently assessed
the recording of each patient-physician encounter across
these three clinical studies of decision-aids using the
Observer OPTION® SDM tool. A total of 311 clinical
encounters were included in the study Table 1 summa-
rizes these encounters across the three studies of interest.
The overall Observer OPTION?® score was calculated for
each encounter and rater [30]. The goal of the following
analysis is to determine the concordance of the two raters
despite the heterogeneity of the study groups and inherent
heteroscedasticity.

In this particular case, the recorded encounters from all
three studies were re-rated by the same two raters. Hence,
we assume that the differences across the studies are due
to the differences in populations and imposed interven-
tions across each study. In many cases, there would also
be heterogeneity across raters of studies, leading to even
greater between-study heterogeneity than is observed in
this case.

Results

The results from the rater’s independent assessment of
SDM using Observer OPTION® are shown in Fig. 1. In
general, Rater 1 consistently scored encounters higher
than Rater 2.

Figure 2 shows the actual difference of Observer
OPTION® scores as a function of the mean Observer
OPTION® score for each encounter. The mean differ-
ence across the encounters is approximately 10 points,
although over the range of 30-60 the sample differ-
ences were consistently on the order of 12 to 16 and as
high as 19.

Figure 3 shows the empirical variance functions. The
observed variance connected with a smoothing spline
with 10 degrees-of-freedom is shown in the solid line,
while the mean and binomial variance functions are
shown in dashed lines. It is clearly demonstrated that the

Table 1 Encounters from the three randomized studies which
compared the impact of PDAs to standard care

Study PDA (n) Usual care (n) Total
1 101 100 201
2 37 35 72
3 13 25 38
Total 151 160 31
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Fig. 1 Comparison of Observer OPTION® scores between raters. The
individual rater score is shown on the y-axis and the mean OPTION®
score is shown on the x-axis

variance is heteroscedastic and the sample mean variance
across the encounters would yield a poor representation
of the data. The binomial variance function performs bet-
ter, suggesting that (6) may be an adequate model for the
dependence of the variability of the raters’ scores on the
amount of SDM in the encounter.

A virtue of the Bayesian approach is that it avoids analyt-
ical approximations, even in complicated situations. The
ICC is an example of a nonlinear function of parameters
whose exact estimate and other inferences require vari-
able transformation and high dimension integration to
obtain the marginal posterior of the ICC. This happens
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Fig. 2 Actual difference of Observer OPTION® between raters over the

mean OPTION® score. While the average difference is slightly less

than 10, this difference varies greatly across the mean score,
demonstrating non-constant variance
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Fig. 3 Empirical variance of scores Compares the mean variance,
binomial variance, and the observed variance (using a smoothing
spline with 10 degrees of freedom) of Observer OPTION® score.
Highlights the heteroscedasticity of the variance as a function of the
mean

automatically when Monte Carlo averages are evaluated
over draws of parameters from the joint posterior dis-
tribution without requiring complicated mathematics to
make accurate approximations. Hence, the joint posterior
is used implicitly by the user.

To further illustrate the utility of our approach, we
have produced plots of the posterior distribution of the
key parameters underlying the ICC, the within-encounter
variance and the between-encounter (within study) vari-
ance, for each study in Fig. 4. We also have made plots
of the ICCs for each study and the difference in the ICC
for each pair of studies in Fig. 5. In addition, we have also
summarized the differences in the ICC between studies
in terms of the posterior mean, posterior median, the 2.5
and 97.5 quantiles, and the posterior probability that the
difference exceeds 0 in Table 2. Together, these figures
and summary statistics provide a detailed description of
the heterogeneity in the reliability of the measurement
properties for each study and the statistical significance
of differences between them. Such inferences are exact
(to the numerical precision of the number of iterations
we ran the MCMC procedure) and are trivial to obtain
using Bayesian computation whereas more laborious and
specialized calculations would be needed with frequentist
calculation.

The hyperparameters for completing the specification
of the Bayesian model are set to the values given above
Eq. (8). Results from a full model, which takes the het-
erogeneity of the different studies into account are shown
in Table 3. Summary ICC estimates for Study 1, 2, and
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3 were computed for a hypothetical new patient from
the population of patients represented in each study (this
corresponds to the population average ICC computed
in Eq. 9). Note that the variance estimates are scaled
to represent the rescaling of the OPTION® score from
(0,100) to (0, 1). The resulting posterior means of the ICC
were 0.821, 0.295, and 0.644 respectively. The estimate
for Study 2 is particularly low in comparison to Study 1
(the posterior probability that study 1 has a higher ICC
than study 2 = 0.995) and Study 3 (the posterior proba-
bility that study 3 has a higher ICC than study 2 = 0.944),
demonstrating the extent of the heterogeneity between
each study and how the ICC appraises very different
impressions of the performance of Observer OPTION®
across the studies due to differences in the variability
of SDM in the encounters it is trying to discriminate
between. The credible intervals associated with the ICC
estimates are quite wide due to the relative small sam-
ple sizes in two of the studies and the fact that there are
only three studies to inform the between-study variance
component, w.

The above results are further emphasized when we com-
pare them to the results for the model with pooled study
estimates and homogeneous variances using the same
Bernoulli variance function for all three studies in Table 4.
The pooled ICC estimate is 0.609, a notable reduction for
Study 1 and severely inflated compared to the separate
estimate for Study 2. An interesting observation is that
the estimate of the between study variance, o, is substan-
tially less when study-specific estimates of the within- and
between-encounter variances are not permitted (com-
pare Table 4 to Table 3), illustrating how variation can
be erroneously partitioned between levels of a model if
there is substantial heterogeneity between the studies. We
also tested a scenario for a pooled ICC estimate without
accounting for the dependence of the within-encounter
variance, hence assuming a constance variance across
studies, on the true level of SDM in the encounter. We
clearly see evidence of an inflated ICC with the estimated
ICC of 0.640 (Table 5) substantially exceeding the pooled
ICC estimate. If the study effects were ignored altogether
(i.e., complete pooling of the data) then ICC estimates
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Fig. 5 Posterior distributions of the ICCs for each study, and the difference in the ICC for each pair of studies

were further inflated by approximately 0.02 (model not
presented) while incorporating between study variation in
the ICC via Eq. (10) yields estimates 0.072 or 0.066 greater
depending on whether heteroscedasticity was accounted
(Table 3) or ignored (Table 4).

Figure 6 illustrates the dependence of the ICC on the
true amount of SDM in an encounter and the study in
which the encountered occurred. The ICC trajectory lines
for each study were constructed by evaluating the pos-
terior mean of the ICC defined in (8) at 101 values of
SDM (6*) evenly spaced from 0 to 1. Due to the concave
shape of the variance function, encounters are easier to
discriminate when the mean is closer to 0 or 100 than to
50 with the difference quite substantial. The contrasting

Table 2 The differences in the ICC between studies in terms of
the posterior mean, median, the 2.5 and 97.5 quantiles, and the
posterior probability that the difference exceeds 0

Paired difference  2.50% Median Mean 9750%  p-value
Study 1 - Study 2 0.166 0472 0473 0.764 0.995
Study 1 - Study 3 -0.155 0.170 0.171 0.508 0.835
Study 2 - Study 3 -0.659 -0.306 -0.302 0.078 0.056

Table 3 Full model results from Bayesian Framework*

Term Posterior summary

Median 2.5% 97.5%
BI0] 0.145 -0.087 0490
BlRater] -0.061 0073 -0.051
BDecision-aid] 0.239 0214 0.270
(o/100)2[Study 1] 0054 0.044 0.070
(0/100)?[Study 2] 0.117 0.084 0.168
(0/100)?[Study 3] 0.056 0.037 0.090
72[Study 1] 0.043 0.024 0.097
7?[Study 2] 0.011 0.004 0.034
t2[Study 3] 0.023 0.009 0.078
o 0.029 0.003 0.717
ICCIStudy 11 0.821 0.655 0.985
ICCStudy 2] 0.295 0.119 0628
ICC[Study 3] 0.644 0359 0919

"Here, the ICC for each study refers to the conventional within-study ICC (see Eq. 8)

averaged over a population of encounters (Eq. 9)
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Table 4 Results for homogeneous variance using a Bernoulli
variance function to capture heteroscedastic variance

Term Posterior summary

Median 2.5% 97.5%
Bl0] 0317 0.203 0449
BlRater] -0.088 -0.102 -0.074
BlDecision-aid] 0.250 0.217 0.281
(07/100)? 0.041 0.035 0.048
T 0.015 0011 0.019
[3) 0.004 0.001 0.092
ICC 0.609 0.520 0.745
ICCb* 0.681 0.568 0.935

“ICCb denotes the ICC for the case when encounters are pooled across studies (see
Eq. 10) whereas ICC is the conventional within-study ICC (see 8). In both cases the
ICCis averaged over a population of encounters, as in 9

level of ICC across the three studies further emphasizes
their heterogeneity.

Discussion

According to the COSMIN checKlists, assessing the inter-
rater reliability of instruments is essential when proposing
novel health measurement scales [9, 10]. These guidelines
recommend assessing the ICC to examine the reliability of
proposed measures, but only briefly allude to the limita-
tions of broadly applying ICC (or reliability) estimates. As
a result, the mass use of the ICC in the field of health mea-
surement has lead to a variety of studies which may have
miss-stated the reliability of new instruments from ignor-
ing heteroscedasticity. For instance, Scholl et al review a
collection of instruments with restricted scales that cal-
culate ICC or inter-rater reliability many of whom do not
account for the dependence of the variability of measure-
ments on the value of the quantity being measured [28].

Table 5 Results for homogeneous variance using a constant
variance function

Term Posterior summary

Median 2.5% 97.5%
Blal 0319 0.206 0451
BlRater] -0.097 -0.111 -0.083
B[Decision-aid] 0.278 0.248 0.309
(o/1 00)? 0.008 0.007 0.009
T 0.014 0.011 0.017
w 0.004 0.001 0.091
ICC 0.640 0.568 0.702
ICCb* 0.706 0.614 0.930

"ICCb denotes the ICC for the case when encounters are pooled across studies (see
Eq. 10) whereas ICC is the conventional within-study ICC (see 8). In both cases the
ICCis averaged over a population of encounters, as in 9
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ICC by true amount of SDM by Study
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Fig. 6 Direct analysis of ICC as a function of level of agreement
Relationship of ICC to the true amount of shared decision making
(SDM) in an encounter and heterogeneity of reliability of
measurements across studies. The ICC is higher at the ends of the
scale than at the center where the variability under the binomial
variance function of rater scores on the same encounter is greatest
and the difference in the reliability of measurements across the
studies is substantial

As well, there are many other studies of instruments
with restricted scales which have given no indication that
the assumption of homogenous variance has been met
[39-41]. All of these studies are candidates for having
miss-stated the ICC, and would benefit from implement-
ing the framework proposed here. Furthermore, ICC
estimates often have great implications in experimental
design considerations, particularly in terms of properly
powering studies. Hence, it is extremely important to have
estimates that account for heteroscedasticity and apply
to the context in which the instrument is planned to be
used [22].

In a published guideline for selecting and reporting ICC
measures, Koo and Li discuss 10 different forms of ICCs
based on the model, type of measurement whether it
be the mean of k-raters or a single-raters measurement,
and whether or not absolute agreement or consistency is
desired [14]. The measurement we've proposed here is
an inter-rater, inter-case discriminatory ICC and hence
applies for forms of the ICC considering multiple raters
and emphasizing consistency of measurements.

We demonstrated that the ICC is inflated under a
homoscedastic variance assumption and that multiple
studies should not be pooled in order to calculate an
overall ICC for an instrument when there is substantial
heterogeneity between studies. We've proposed a frame-
work which is robust to heteroscedastic variance while
maintaining ease of interpretation for use by clinicians
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and other non-statisticians. As well, the implementation
of a Bayesian framework negates the issue of a biased
estimate for the ICC, as Bayesian estimates do not rely
on closed-form approximations and normal distribution
asymptotic theory [32, 42].

Because a wide variety of appraisals of Observer
OPTIONP are possible using these data, it is possible that
overly optimistic assessments could have been published
and erroneously influenced research using Observer
OPTION® to measure SDM (e.g., studies may be under-
powered) if assumptions were not clearly described. We
hope that the methodology outlined in this paper will be
adopted widely and lead to correctly calibrated estimates
and descriptions of ICC and, therefore, more informa-
tive profiles of instrument quality being used in important
applications.

It should be noted, that while this approach will work
for any case in which the measurement is bounded, it
may be overkill when examining data from a single study
where the outcome is tightly distributed around the mid-
dle of the scale. In that particular situation, conventional
approaches for calculating the ICC should be satisfactory.
In the absence of these conditions, the approach we are
proposing here should be utilized.

An advantage of the framework developed in this
paper is that it applies to any number of studies, raters,
and encounters within studies. However, as the ICC is
often calculated by non-statisticians, a potential limita-
tion of this framework is the perceived learning curve
in applying a Bayesian approach for estimation. Frequen-
tist approaches dominate the medical literature, although
it has been argued that clinicians naturally use Bayesian
thinking in their everyday decision making [43]. To aid in
the easy implementation of our framework, we deposited
the R code used to generate our estimates in GitHub (see
Availability of data and materials) along with the code we
used to simulate data from the model described here to
avoid potential patient data confidentiality issues.

While this paper mostly focused on the context of calcu-
lating an ICC in terms of developing measurement scales
for health practitioners, this framework naturally extends
into many other fields. Future work will include extending
the approach to other fields of study.

Conclusion

Despite its wide-spread use as an important measure of
inter-rater reliability, there are a variety of established
methodological issues that need to be considered in spec-
ifying and estimating an ICC [1, 15-22]. As it is a metric
which is frequently applied by non-statisticians, there is
concern that these issues are not properly being accounted
for and, as a result, inflated ICC estimates are being pub-
lished in the literature across a variety of fields. In this
work, we propose a Bayesian framework for estimating
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the ICC that accounts for heteroscedastic variances and
avoids relying on an estimator’s normality for inferences
to be correct. A particular strength of this approach is
that it yields estimates which are robust to many com-
mon errors in ICC calculation while maintaining straight-
forward interpretation for researches across many fields
of interest. Widespread adoption of this model-based ICC
definition and allied estimation procedure would ulti-
mately lead to more flexible and accurate representation
of inter-rater reliability.
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