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Abstract

Background: Joint modelling of longitudinal and time-to-event outcomes has received considerable attention over
recent years. Commensurate with this has been a rise in statistical software options for fitting these models. However,
these tools have generally been limited to a single longitudinal outcome. Here, we describe the classical joint model
to the case ofmultiple longitudinal outcomes, propose a practical algorithm for fitting the models, and demonstrate
how to fit the models using a new package for the statistical software platform R, joineRML.

Results: A multivariate linear mixed sub-model is specified for the longitudinal outcomes, and a Cox proportional
hazards regression model with time-varying covariates is specified for the event time sub-model. The association
between models is captured through a zero-mean multivariate latent Gaussian process. The models are fitted using a
Monte Carlo Expectation-Maximisation algorithm, and inferences are based on approximate standard errors from the
empirical profile information matrix, which are contrasted to an alternative bootstrap estimation approach. We
illustrate the model and software on a real data example for patients with primary biliary cirrhosis with three
repeatedly measured biomarkers.

Conclusions: An open-source software package capable of fitting multivariate joint models is available. The
underlying algorithm and source code makes use of several methods to increase computational speed.

Keywords: Joint modelling, Longitudinal data, Multivariate data, Time-to-event data, Software

Background
In many clinical studies, subjects are followed-up repeat-
edly and response data collected. For example, routine
blood tests might be performed at each follow-up clinic
appointment for patients enrolled in a randomized drug
trial, and biomarker measurements recorded. An event
time is also usually of interest, for example time of death
or study drop-out. It has been repeatedly shown else-
where that if the longitudinal and event-time outcomes
are correlated, then modelling the two outcome processes
separately, for example using linear mixed models and
Cox regression models, can lead to biased effect size esti-
mates [1]. The same criticism has also been levelled at the
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application of so-called two-stage models [2]. Themotiva-
tion for using joint models can be broadly separated into
interest in drawing inference about (1) the time-to-event
process whilst adjusting for the intermittently measured
(and potentially error-prone) longitudinal outcomes, and
(2) the longitudinal data process whilst adjusting for a
potentially informative drop-out mechanism [3]. The lit-
erature on joint modelling is extensive, with excellent
reviews given by Tsiatis and Davidian [4], Gould et al. [5],
and the book by Rizopoulos [6].
Joint modelling has until recently been predominated

by modelling a single longitudinal outcome together with
a solitary event time outcome; herein referred to as
univariate joint modelling. Commensurate with method-
ological research has been an increase in wide-ranging
clinical applications (e.g. [7]). Recent innovations in the
field of joint models have included the incorporation of
multivariate longitudinal data [8], competing risks data
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[9, 10], recurrent events data [11], multivariate time-to-
event data [12, 13], non-continuous repeated measure-
ments (e.g. count, binary, ordinal, and censored data)
[14], non-normally and non-parametrically distributed
random effects [15], alternative estimation methodolo-
gies (e.g. Bayesian fitting and conditional estimating
equations) [16, 17], and different association structures
[18]. In this article, we specifically focus on the first inno-
vation: multivariate longitudinal data. In this situation, we
assume that multiple longitudinal outcomes are measured
on each subject, which can be unbalanced and measured
at different times for each subject.
Despite the inherently obvious benefits of harnessing

all data in a single model or the published research
on the topic of joint models for multivariate longitu-
dinal data, a recent literature review by Hickey et al.
[19] identified that publicly available software for fitting
such models was lacking, which has translated into lim-
ited uptake by biomedical researchers. In this article we
present the classical joint model described by Henderson
et al. [3] extended to the case of multiple longitudi-
nal outcomes. An algorithm proposed by Lin et al. [20]
is used to fit the model, augmented by techniques to
reduce the computational fitting time, including a quasi-
Newton update approach, variance reduction method,
and dynamic Monte Carlo updates. This algorithm is
encoded into a R sofware package–joineRML. A sim-
ulation analysis and real-world data example are used
to demonstrate the accuracy of the algorithm and the
software, respectively.

Implementation
As a prelude to the introduction and demonstration of
the newly introduced software package, in the following
section we describe the underlyingmodel formulation and
model fitting methodology.

Model
For each subject i = 1, . . . , n, yi = (

y�
i1, . . . , y�

iK
)
is

the K-variate continuous outcome vector, where each
yik denotes an (nik × 1)-vector of observed longitudi-
nal measurements for the k-th outcome type: yik =
(yi1k , . . . , yinikk)

�. Each outcome is measured at observed
(possibly pre-specified) times tijk for j = 1, . . . , nik , which
can differ between subjects and outcomes. Additionally,
for each subject there is an event time T∗

i , which is
subject to right censoring. Therefore, we observe Ti =
min(T∗

i ,Ci), where Ci corresponds to a potential censor-
ing time, and the failure indicator δi, which is equal to 1
if the failure is observed (T∗

i ≤ Ci) and 0 otherwise. We
assume that both censoring and measurement times are
non-informative.
The model we describe is the natural extension of the

model proposed by Henderson et al. [3] to the case

of multivariate longitudinal data. The model posits an
unobserved or latent zero-mean (K + 1)-variate Gaus-
sian process that is realised independently for each sub-
ject, Wi(t) =

{
W (1)

1i (t), . . . ,W (K)
1i (t),W2i(t)

}
. This latent

process subsequently links the separate sub-models via
association parameters.
The k-th longitudinal data sub-model is given by

yik(t) = μik(t) + W (k)
1i (t) + εik(t), (1)

where μik(t) is the mean response, and εik(t) is the model
error term, which we assume to be independent and iden-
tically distributed normal with mean 0 and variance σ 2

k .
The mean response is specified as a linear model

μik(t) = x�
ik(t)βk , (2)

where xik(t) is a pk-vector of (possibly) time-varying
covariates with corresponding fixed effect terms βk .
W (k)

1i (t) is specified as

W (k)
1i (t) = z�

ik(t)bik , (3)

where zik(t) is an rk-vector of (possibly) time-varying
covariates with corresponding subject-and-outcome
random effect terms bik , which follow a zero-mean
multivariate normal distribution with (rk × rk)-variance-
covariance matrix Dkk . To account for dependence
between the different longitudinal outcome outcomes, we
let cov(bik , bil) = Dkl for k �= l. Furthermore, we assume
εik(t) and bik are uncorrelated, and that the censoring
times are independent of the random effects. These
distributional assumptions together with the model given
by (1)–(3) are equivalent to the multivariate extension
of the Laird and Ware [21] linear mixed effects model.
More flexible specifications of W (k)

1i (t) can be used [3],
including for example, stationary Gaussian processes.
However, we do not consider these cases here owing to
the increased computational burden it carries, even for
the univariate case.
The sub-model for the time-to-event outcome is given

by the hazard model

λi(t) = λ0(t) exp
{
v�
i (t)γ v + W2i(t)

}
,

where λ0(·) is an unspecified baseline hazard, and vi(t) is
a q-vector of (possibly) time-varying covariates with cor-
responding fixed effect terms γ v. Conditional on Wi(t)
and the observed covariate data, the longitudinal and
time-to-event data generating processes are conditionally
independent. To establish a latent association, we specify
W2i(t) as a linear combination of

{
W (1)

1i (t), . . . ,W (K)
1i (t)

}
:

W2i(t) =
K∑

k=1
γykW (k)

1i (t),
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where γ y = (γy1, . . . , γyK ) are the corresponding associa-
tion parameters. To emphasise the dependence of W2i(t)
on the random effects, we explicitly write it as W2i(t, bi)
from here onwards. As per W (k)

1i (t), W2i(t, bi) can also be
flexibly extended, for example to include subject-specific
frailty effects [3].

Estimation
Likelihood
For each subject i, let X i = ⊕K

k=1 X ik and Zi = ⊕K
k=1 Zik

be block-diagonal matrices, where X ik =
(
x�
i1k , . . . , x

�
inikk

)

is an (nik × pk)-design matrix, with the j-th row corre-
sponding to the pk-vector of covariates measured at time
tijk , and

⊕
denotes the direct matrix sum. The notation

similarly follows for the random effects design matrices,
Zik . We denote the error terms by a diagonal matrix �i =⊕K

k=1 σ 2
k Inik and write the overall variance-covariance

matrix for the random effects as

D =
⎛

⎜
⎝

D11 · · · D1K
...

. . .
...

D�
1K · · · DKK

⎞

⎟
⎠ ,

where In denotes an n × n identity matrix. We further
define β = (

β�
1 , . . . ,β�

K
)� and bi =

(
b�
i1, . . . , b�

iK

)�
.

Hence, we can then rewrite the longitudinal outcome
sub-model as

yi | bi,β ,�i ∼ N(X iβ + Zibi,�i),
with bi |D ∼ N(0,D).

For the estimation, we will assume that the covariates
in the time-to-event sub-model are time-independent and
known at baseline, i.e. vi ≡ vi(0). Extensions of the esti-
mation procedure for time-varying covariates are outlined
elsewhere [6, p. 115]. The observed data likelihood for the
joint outcome is given by

n∏

i=1

(∫ ∞

−∞
f (yi | bi, θ)f (Ti, δi | bi, θ)f (bi | θ)dbi

)
, (4)

where θ =
(
β�, vech(D), σ 2

1 , . . . , σ
2
K , λ0(t), γ

�
v , γ �

y

)
is the

collection of unknown parameters that we want to esti-
mate, with vech(D) denoting the half-vectorisation opera-
tor that returns the vector of lower-triangular elements of
matrix D.
As noted by Henderson et al. [3], the observed data

likelihood can be calculated by rewriting it as
n∏

i=1
f (yi | θ)

(∫ ∞

−∞
f (Ti, δi | bi, θ)f (bi | yi, θ)dbi

)
,

where the marginal distribution f (yi | θ) is a multivariate
normal density with mean X iβ and variance-covariance
matrix �i + ZiDZ�

i , and f (bi | yi, θ) is given by (6).

MCEMalgorithm
We determine maximum likelihood estimates of the
parameters θ using theMonte Carlo ExpectationMaximi-
sation (MCEM) algorithm [22], by treating the random
effects bi as missing data. This is effectively the same as
the conventional Expectation-Maximisation (EM) algo-
rithm, as used by Wulfsohn and Tsiatis [23] and Ratcliffe
et al. [24] in the context of fitting univariate data joint
models, except the E-step exploits a Monte Carlo (MC)
integration routine as opposed to Gaussian quadrature
methods, which we expect to be beneficial when the
dimension of random effects becomes large.
Starting from an initial estimate of the parameters, θ̂

(0)
,

the procedure involves iterating between the following
two steps until convergence is achieved.

1. E-step. At the (m + 1)-th iteration, we compute the
expected log-likelihood of the complete data
conditional on the observed data and the current
estimate of the parameters,

Q(θ | θ̂ (m)
) =

n∑

i=1
E

{
log f (yi,Ti, δi, bi | θ)

}

=
n∑

i=1

∫ ∞

−∞

{
log f (yi,Ti, δi, bi | θ)

}
f (bi|Ti, δi, yi; θ̂

(m)
)dbi.

Here, the complete-data likelihood contribution for
subject i is given by the integrand of (4).

2. M-step. We maximise Q(θ | θ̂ (m)
) with respect to θ .

Namely, we set

θ̂
(m+1) = argmax

θ

Q
(
θ | θ̂ (m)

)
.

The M-step estimators naturally follow from Wulfsohn
and Tsiatis [23] and Lin et al. [20]. Maximizers for all
parameters except γ v and γ y are available in closed-form;
algebraic details are presented in Additional file 1. The
parameters γ = (γv�, γ �

y )� are jointly updated using a
one-step Newton-Raphson algorithm as

γ̂
(m+1) = γ̂

(m) + I
(
γ̂

(m)
)−1

S
(
γ̂

(m)
)
,

where γ̂
(m) denotes the value of γ at the current itera-

tion, S
(
γ̂

(m)
)
is the corresponding score, and I

(
γ̂

(m)
)
is

the observed information matrix, which is equal to the
derivative of the negative score. Further details of this
update are given in Additional file 1. The M-step for γ

is computationally expensive to evaluate. Therefore, we
also propose a quasi-Newton one-step update by approx-
imating I

(
γ̂

(m)
)
by an empirical information matrix for

γ , which can be considered an analogue of the Gauss-
Newton method [25, p. 8]. To further compensate for
this approximation, we also use a nominal step-size of
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0.5 rather than 1, which is used when using the Newton-
Raphson update.
The M-step involves terms of the form E

[
h(bi) |Ti,

δi, yi; θ̂
]
, for known functions h(·). The conditional expecta-

tion of a function of the random effects can be written as

E

[
h(bi) |Ti, δi, yi; θ̂

]
=
∫∞
−∞ h(bi)f (bi | yi; θ̂)f (Ti, δi | bi; θ̂)dbi
∫∞
−∞ f (bi | yi; θ̂)f (Ti, δi | bi; θ̂)dbi

,

(5)

where f (Ti, δi | bi; θ̂) is given by

f (Ti, δi | bi; θ) =
[
λ0(Ti) exp

{
v�
i γ v + W2i(Ti, bi)

}]δi

× exp
{

−
∫ Ti

0
λ0(u) exp

{
v�
i γ v + W2i(u, bi)

}
du
}

and f (bi | yi; θ̂) is calculated from multivariate normal
distribution theory as

bi | yi, θ ∼ N
(
Ai
{
Z�
i �−1

i (yi − X iβ)
}
,Ai
)
, (6)

with Ai =
(
Z�
i �−1

i Zi + D−1
)−1

. As this becomes com-
putationally expensive using Gaussian quadrature com-
mensurate with increasing dimension of bi, we estimate
the integrals by MC sampling such that the expectation
is approximated by the ratio of the sample means for
h(bi)f (Ti, δi | bi; θ̂) and f (Ti, δi | bi; θ̂) evaluated at each
MC draw. Furthermore, we use antithetic simulation for
variance reduction in the MC integration. Instead of
directly sampling from (6), we sample � ∼ N(0, Ir) and
obtain the pairs

Ai
{
Z�
i �−1

i (yi − X iβ)
}

± Ci�,

where Ci is the Cholesky decomposition of Ai such that
CiC�

i = Ai. Therefore we only need to draw N/2 samples
using this approach, and by virtue of the negative correla-
tion between the pairs, it leads to a smaller variance in the
sample means taken in the approximation than would be
obtained from N independent simulations. The choice of
N is described below.

Initial values
The EM algorithm requires that initial parameters are
specified, namely θ̂

(0)
. By choosing values close to the

maximizer, the number of iterations required to reach
convergence should be reduced.
For the time-to-event sub-model, a quasi-two-stage

model is fitted when the measurement times are balanced,
i.e. when tijk = tij ∀k. That is, we fit separate LMMs for
each longitudinal outcome as per (1), ignoring the cor-
relation between different outcomes. This is straightfor-
ward to implement using standard software, in particular

using lme() and coxph() from the R packages nlme
[26] and survival [27], respectively. From the fitted
models, the best linear unbiased predictions (BLUPs) of
the separate model random effects are used to estimate
each W (k)

1i (t) function. These estimates are then included
as time-varying covariates in a Cox regression model,
alongside any other fixed effect covariates, which can be
straightforwardly fitted using standard software. In the
situation that the data are not balanced, i.e. when tijk �= tij
∀k, then we fit a standard Cox proportional hazards
regression model to estimate γ v and set γyk = 0 ∀k.
For the longitudinal data sub-model, when K > 1

we first find the maximum likelihood estimate of{
β , vech(D), σ 2

1 , . . . , σ
2
K
}
by running a separate EM algo-

rithm for the multivariate linear mixed model. Both the
E- and M-step updates are available in closed form, and
the initial parameters for this EM algorithm are available
from the separate LMM fits, with D initialized as block-
diagonal. As these are estimated using an EM rather than
MCEM algorithm, we can specify a stricter convergence
criterion on the estimates.

Convergence and stopping rules
Two standard stopping rules for the deterministic EM
algorithm used to declare convergence are the relative and
absolute differences, defined as

�
(m+1)
rel = max

⎧
⎪⎨

⎪⎩

∣
∣
∣θ̂

(m+1) − θ̂
(m)
∣
∣
∣

∣
∣
∣θ̂

(m)
∣
∣
∣+ ε1

⎫
⎪⎬

⎪⎭
< ε0, and (7)

�
(m+1)
abs = max

{∣∣
∣θ̂

(m+1) − θ̂
(m)
∣
∣
∣
}

< ε2 (8)

respectively, for some appropriate choice of ε0, ε1, and
ε2, where the maximum is taken over the components
of θ . For reference, the R package JM [28] implements
(7) (in combination with another rule based on relative
change in the likelihood), whereas the R package joineR
[29] implements (8). The relative difference might be
unstable about parameters near zero that are subject to
MC error. Therefore, the convergence criterion for each
parameter might be chosen separately at each EM itera-
tion based on whether the absolute magnitude is below
or above some threshold. A similar approach is adopted
in the EM algorithms employed by the software package
SAS [30, p. 330].
The choice of N and the monitoring of convergence

are conflated when applying a MCEM algorithm, and a
dynamic approach is required. As noted by [22], it is com-
putationally inefficient to use a large N in the early phase
of the algorithm when the parameter estimates are likely
to be far from the maximizer. On the flip side, as the
parameter estimates approach the maximizer, the stop-
ping rules will fail as the changes in parameter estimates
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will be swamped by MC error. Therefore, it has been rec-
ommended that one increase N as the estimate moves
towards the maximizer. Although this might be done sub-
jectively [31] or by pre-specified rules [32], an automated
approach is preferable and necessary for a software imple-
mentation. Booth and Hobert [33] proposed an update
rule based on a confidence ellipsoid for the maximizer at
the (m + 1)-th iteration, calculated using an approximate
sandwich estimator for the maximizer, which accounts for
the MC error at each iteration. This approach requires
additional variance estimation at each iteration, therefore
we opt for a simpler approach described by Ripatti et al.
[34]. Namely, we calculate a coefficient of variation at the
(m + 1)-th iteration as

cv
(
�

(m+1)
rel

)
=

sd
(
�

(m−1)
rel ,�(m)

rel ,�
(m+1)
rel

)

mean
(
�

(m−1)
rel ,�(m)

rel ,�
(m+1)
rel

) ,

where�
(m+1)
rel is given by (7), and sd(·) andmean(·) are the

sample standard deviation and mean functions, respec-
tively. If cv

(
�

(m+1)
rel

)
> cv

(
�

(m)
rel

)
, thenN := N +
N/δ�,

for some small positive integer δ. Typically, we run the
MCEM algorithm with a small N (for a fixed number
of iterations—a burn-in) before implementing this update
rule in order to get into the approximately correct param-
eter region. Appropriate values for other parameters will
be application specific, however we have found δ = 3,
N = 100K (for 100K burn-in iterations), ε1 = 0.001, and
ε0 = ε2 = 0.005 delivers reasonably accurate estimates in
many cases, where K was earlier defined as the number of
longitudinal outcomes.
As the EM monotonicity property is lost due to the

MC integrations in the MCEM algorithm, convergence
might be prematurely declared due to stochasticity if the
ε-values are too large. To reduce the chance of this occur-
ring, we require that the stopping rule is satisfied for
3 consecutive iterations [33, 34]. However, in any case,
trace plots should be inspected to confirm convergence is
appropriate.

Standard error estimation
Standard error (SE) estimation is usually based on invert-
ing the observed information matrix. When the baseline
hazard is unspecified, as is the case here, this presents
several challenges. First, λ̂0(t) will generally be a high-
dimensional vector, which might lead to numerical diffi-
culties in the inversion of the observed informationmatrix
[6]. Second, the profile likelihood estimates based on the
usual observed information matrix approach are known
to be underestimated [35]. The reason for this is that the
profile estimates are implicit, since the posterior expec-
tations, given by (5), depend on the parameters being
estimated, including λ0(t) [6, p. 67].

To overcome these challenges, Hsieh et al. [35] rec-
ommended to use bootstrap methods to calculate the
SEs. However, this approach is computationally expensive.
Moreover, despite the purported theoretical advantages,
we also note that recently it has been suggested that boot-
strap estimators might actually overestimate the SEs; e.g.
[36, p. 740] and [35, p. 1041]. At the model develop-
ment stage, it is often of interest to gauge the strength
of association of model covariates, which is not feasi-
ble with repeated bootstrap implementations. Hence, an
approximate SE estimator is desirable. In either case, the
theoretical properties will be contaminated by the addi-
tion of MC error from the MCEM algorithm, and it is
not yet fully understood what the ramifications of this are.
Hence, any standard errors must be interpreted with a
degree of caution. We consider two estimators below.
1. Bootstrap method. These are estimated by sam-

pling n subjects with replacement and re-labelling the
subjects with indices i′ = 1, . . . , n. We then re-fit the
model to the bootstrap-sampled dataset. It is important
to note that we re-sample subjects, not individual data
points. This is repeated B-times, for a sufficiently large
integer B. Since we already have the MLEs from the fitted
model, we can use these as initial values for each boot-
strap model fit, thus reducing initial computational over-
heads in calculating approximate initial parameters. For
each iteration, we extract the model parameter estimates
for

(
β�, vech(D), σ 2

1 , . . . , σ
2
K , γ

�
v , γ �

y

)
. Note that we do

not estimate SEs for λ0(t) using this approach. However,
they are generally not of inferential interest. When B is
sufficiently large, the SEs can be estimated from the esti-
mated coefficients of the bootstrap samples. Alternatively,
100(1 − α)%-confidence intervals can be estimated from
the the 100α/2-th and 100(1 − α/2)-th percentiles.
2. Empirical information matrix method. Using the

Breslow estimator for
∫ t
0 λ0(u)du, the profile score vector

for θ−λ = (β�, vech(D), σ 2
1 , . . . , σ 2

K , γ
�) is calculated (see

Additional file 1). We approximate the profile informa-
tion for θ−λ by I−1/2

e (θ̂−λ0), where Ie(θ−λ0) is the observed
empirical information [25] given by

Ie(θ−λ) =
n∑

i=1
si(θ−λ)

⊗2 − 1
n
S(θ−λ)

⊗2, (9)

si(θ−λ) is the conditional expectation of the complete-
data profile score for subject i, S(θ−λ) is the score defined
by S(θ−λ) = ∑n

i=1 si(θ−λ), and a⊗2 = aa� is outer prod-
uct for a vector a. At the maximizer, S(θ̂) = 0, meaning
that the right hand-side of (9) is zero. Due to theMC error
in the MCEM algorithm, this will not be exactly zero, and
therefore we include it in the calculations. As per the boot-
strap approach, SEs for the baseline hazard are again not
calculated. We note that this SE estimator will be subject
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to the exact same theoretical limitation of underestima-
tion described by Hsieh et al. [35], since the profiling
was implicit; that is, because the posterior expectations
involve the parameters θ .

Software
The model described here is implemented in the R
package joineRML, which is available on the The Com-
prehensive R Archive Network (CRAN) (https://CRAN.
R-project.org/package=joineRML). The principal func-
tion in joineRML is mjoint(). The primary arguments
for implementing mjoint() are summarised in Table 1.
To achieve computationally efficiency, parts of theMCEM
algorithm in joineRML are coded in C++ using the
Armadillo linear algebra library and integrated using the
R package RcppArmadillo [37].
A model fitted using the mjoint() function returns

an object of class mjoint. By default, approximate SE
estimates are calculated using the empirical information
matrix. If one wishes to use bootstrap standard error esti-
mates, then the user can pass the model object to the
bootSE() function. Several generic functions (or rather,
S3 methods) can also be applied to mjoint objects, as
described in Table 2. These generic functions include
common methods, for example coef(), which extracts
the model coefficients; ranef(), which extracts the
BLUPs (and optional standard errors); and resid(),
which extracts the residuals from the linear mixed sub-
model. The intention of these functions is to have a
common syntax with standard R packages for linearmixed

models [26] and survival analysis [27]. Additionally, plot-
ting capabilities are included in joineRML. These include
trace plots for assessment of convergence of the MCEM
algorithm, and caterpillar plots for subject-specific ran-
dom effects (Table 2).
The package also provides several datasets, and a func-

tion simData() that allows for simulation of data
from joint models with multiple longitudinal outcomes.
joineRML can also fit univariate joint models, however
in this case we would currently recommend that the R
packages joineR [29], JM [28], or frailtypack [38]
are used, which are optimized for the univariate case and
exploits Gaussian quadrature. In addition, these packages
allow for extensions to more complex cases; for example,
competing risks [28, 29] and recurrent events [38].

Results
Simulation analysis
A simulation study was conducted assuming two longitu-
dinal outcomes and n = 200 subjects. Longitudinal data
were simulated according to a follow-up schedule of 6
time points (at times 0, 1, . . . , 5), with each model includ-
ing subject-and-outcome-specific random-intercepts and
random-slopes: bi = (b0i1, b1i1, b0i2, b1i2)�, Correlation
was induced between the 2 outcomes by assuming cor-
relation of − 0.5 between the random intercepts for each
outcome. Event times were simulated from a Gompertz
distribution with shape θ1 = −3.5 and scale exp(θ0) =
exp(0.25) ≈ 1.28, following the methodology described
by Austin [39]. Independent censoring times were drawn

Table 1 The primary argumentsa with descriptions for the mjoint() function in the R package joineRML

Argument Description

formLongFixed a list of formulae for the fixed effects component of each longitudinal outcome. The left hand-hand side defines the
response, and the right-hand side specifies the fixed effect terms.

formLongRandom a list of one-sided formulae specifying the model for the random effects effects of each longitudinal outcome.

formSurv a formula specifying the proportional hazards regression model (not including the latent association structure).

data a list of data.frame objects for each longitudinal outcome in which to interpret the variables named in the
formLongFixed and formLongRandom. The list structure enables one to include multiple longitudinal outcomes with
differentmeasurement protocols. If themultiple longitudinal outcomes aremeasured at the same time points for each patient
(i.e. tijk = tij∀k), then a single data.frame object can be given instead of a list. It is assumed that each data frame is in
long format.

survData (optional) a data.frame in which to interpret the variables named in the formSurv. If survData is not given, then
mjoint() looks for the time-to-event data in data.

timeVar a character string indicating the time variable in the linear mixed effects model.

inits (optional) a list of initial values for some or all of the parameters estimated in the model.

control (optional) a list of control parameters. These allow for the control of ε0, ε1, and ε2 in (7) and (8); the choice of N, δ, and
convergence criteria; the maximum number of MCEM iterations, and the minimum number of MCEM iterations during burn-
in. Additionally, the control argument gammaOpt can be used to specify whether a one-step Newton-Raphson (="NR") or
Gauss-Newton-like (="GN") update should be used for the M-step update of γ .

amjoint() also takes the optional additional arguments verbose, which if TRUE allows for monitoring updates at each MCEM algorithm iteration, and pfs, which if
FALSE can force the function not to calculate post-fit statistics such as the BLUPs and associated standard errors of the random effects and approximate standard errors of
the model parameters. In general, these arguments are not required

https://CRAN.R-project.org/package=joineRML
https://CRAN.R-project.org/package=joineRML
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Table 2 Additional functions with descriptions that can be applied to objects of class mjointa

Function(s) Returns

logLik, AIC, BIC the log-likelihood, Akaike information criterion and Bayesian information criterion statistics, respectively

coef, fixef the fixed effects parameter estimates

ranef the BLUPs (and optional standard errors)

printa, summaryc short and long model summary outputs, respectively

fitted, resid the fitted values and raw residuals from the multivariate LMM sub-model, respectively

plotb the MCEM algorithm convergence trace plots

sigma the residual standard errors from the LMM sub-model

vcov the variance-covariance matrix of the main parameters of the fitted model (except the baseline hazard)

getVarCov the random effects variance-covariance matrix

confint the confidence intervals based on asymptotic normality

update specific parts of a fitted model can be updated, e.g. by adding or removing terms from a sub-model, and then re-fitted

sampleData sample data (with or without replacement) from a joint model

aprint() also applies to objects of class summary.mjoint and bootSE inheriting from the summary() and bootSE() functions, respectively
bplot() also accepts objects of class ranef.mjoint inheriting from the ranef() function, which displays a caterpillar plot (with 95% prediction intervals) for each
random effect
csummary() can also take the optional argument of an object of class bootSE inheriting from the function bootSE(), which overrides the approximate SEs and CIs with
those from a bootstrap estimation routine

from an exponential distribution with rate 0.05. Any sub-
ject where the event and censoring time exceeded 5 was
administratively censored at the truncation time C = 5.1.
For all sub-models, we included a pair of covariates X i =
(xi1, xi2)�, where xi1 is a continuous covariate indepen-
dently drawn from N(0, 1) and xi2 is a binary covariate
independently drawn from Bin(1, 0.5). The sub-models
are given as

yijk = (β0,k + bi0k) + (β1,k + bi1k)tj
+ β2,kxi1 + β3,kxi2 + εijk , for k = 1, 2;

λi(t) = exp {(θ0 + θ1t) + γv1xi1 + γv2xi2
+ γy1(bi01 + bi11t) + γy2(bi02 + bi12t)

}
;

bi ∼ N4(0,D);
εijk ∼ N(0, σ 2

k ),

where D is specified unstructured (4 × 4)-covariance
matrix with 10 unique parameters. Simulating datasets is
straightforward using the joineRML package by means
of the simData() function. The true parameter values
and results from 500 simulations are shown in Table 3.
In particular, we display the mean estimate, the bias,
the empirical SE (= the standard deviation of the the
parameter estimates); the mean SE (= the mean SE
of each parameter calculated for each fitted model);
the mean square error (MSE), and the coverage. The
results confirm that the model fitting algorithm generally
performs well.
A second simulation analysis was conducted using the

parameters above (with n = 100 subjects per dataset).

However, in this case we used a heavier-tailed distribu-
tion for the random effects: a multivariate t5 distribu-
tion [40]. The bias for the fixed effect coefficients was
comparable to the multivariate normal random effects
simulation study (above). The empirical standard error
was consistently smaller than the mean standard error,
resulting in coverage between 95% and 99% for the coef-
ficient parameters. Rizopoulos et al. [41] noted that the
misspecification of the random effects distributions was
minimised as the number of longitudinal measurements
per subject increased, but that the standard errors are gen-
erally affected. These findings are broadly in agreement
with the simulation study conducted here, and other stud-
ies [42, 43]. Choi et al. [44] provide a review of existing
research on the misspecification of random effects in joint
modelling.

Example
We consider the primary biliary cirrhosis (PBC) data col-
lected at the Mayo Clinic between 1974 to 1984 [45]. This
dataset has been widely analyzed using joint modelling
methods [18, 46, 47]. PBC is a long-term liver disease in
which the bile ducts in the liver become damaged. Pro-
gressively, this leads to a build-up of bile in the liver,
which can damage it and eventually lead to cirrhosis. If
PBC is not treated or reaches an advanced stage, it can
lead to several major complications, including mortality.
In this study, 312 patients were randomised to receive
D-penicillamine (n = 158) or placebo (n = 154). In this
example we analyse the subset of patients randomized to
placebo.
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Table 3 Results of simulation study

Parameter True value Mean estimated value Empirical SE Mean SE Bias MSE Coverage

D11 0.2500 0.2411 0.0435 — −0.0089 0.0020 —

D21 0.0000 0.0010 0.0136 — 0.0010 0.0002 —

D31 −0.1250 −0.1212 0.0295 — 0.0038 0.0009 —

D41 0.0000 −0.0006 0.0127 — −0.0006 0.0002 —

D22 0.0400 0.0396 0.0072 — −0.0004 0.0001 —

D32 0.0000 −0.0002 0.0138 — −0.0002 0.0002 —

D42 0.0000 −0.0001 0.0055 — −0.0001 0.0000 —

D33 0.2500 0.2420 0.0400 — −0.0080 0.0017 —

D43 0.0000 0.0007 0.0134 — 0.0007 0.0002 —

D44 0.0400 0.0399 0.0075 — −0.0001 0.0001 —

β0,1 0.0000 0.0028 0.0612 0.0660 0.0028 0.0038 0.9660

β1,1 1.0000 1.0012 0.0218 0.0229 0.0012 0.0005 0.9500

β2,1 1.0000 1.0010 0.0449 0.0470 0.0010 0.0020 0.9540

β3,1 1.0000 0.9932 0.0897 0.0925 −0.0068 0.0081 0.9440

σ 2
1 0.2500 0.2506 0.0165 0.0171 0.0006 0.0003 0.9560

β0,2 0.0000 −0.0026 0.0637 0.0655 −0.0026 0.0041 0.9660

β1,2 −1.0000 −1.0011 0.0229 0.0223 −0.0011 0.0005 0.9480

β2,2 0.0000 0.0008 0.0399 0.0472 0.0008 0.0016 0.9700

β3,2 0.5000 0.5061 0.0894 0.0923 0.0061 0.0080 0.9540

σ 2
2 0.2500 0.2501 0.0162 0.0171 0.0001 0.0003 0.9540

γv1 0.0000 0.0011 0.1243 0.1392 0.0011 0.0155 0.9720

γv2 1.0000 1.0487 0.2837 0.2750 0.0487 0.0829 0.9340

γy1 −0.5000 −0.5121 0.1936 0.2084 −0.0121 0.0376 0.9560

γy2 1.0000 1.0311 0.2220 0.2145 0.0311 0.0502 0.9400

Patients with PBC typically have abnormalities in sev-
eral blood tests; hence, during follow-up several biomark-
ers associated with liver function were serially recorded
for these patients. We consider three biomarkers: serum
bilirunbin (denoted serBilir in the model and data;
measured in units of mg/dl), serum albumin (albumin;
mg/dl), and prothrombin time (prothrombin; seconds).
Patients had a mean 6.3 (SD = 3.7) visits (including
baseline). The data can be accessed from the joineRML
package via the command data(pbc2). Profile plots
for each biomarker are shown in Fig. 1, indicating
distinct differences in trajectories between the those
who died during follow-up and those who did not
(right-censored cases). A Kaplan-Meier curve for over-
all survival is shown in Fig. 2. There were a total
of 69 (44.8%) deaths during follow-up in the placebo
subset.
We fit a relatively simple joint model for the purposes of

demonstration, which encompasses the following trivari-
ate longitudinal data sub-model:

log(serBilir)=(β0,1+b0i,1)+(β1,1+b1i,1)year+εij1,
albumin=(β0,2+b0i,2)+(β1,2+b1i,2)year+εij2,

(0.1 × prothrombin)−4=(β0,3+b0i,3)+(β1,3+b1i,3)year+εij3,

bi∼N6(0,D), and εijk ∼N(0, σ 2
k ) for k=1,2,3;

and a time-to-event sub-model for the study endpoint of
death:

λi(t) = λ0(t) exp {γvagei + W2i(t)} ,
W2i(t) = γbil(b0i,1 + b1i,1t) + γalb(b0i,2 + b1i,2t)

+ γpro(b0i,3 + b1i,3t).

The log transformation of bilirubin is standard, and
confirmed reasonable based on inspection of Q-Q plots
for residuals from a separate fitted linear mixed model
fitted using the lme() function from the R package
nlme. Albumin did not require transformation. Residuals
were grossly non-normal for prothrombin time using both
untransformed and log-transformed outcomes. There-
fore, a Box-Cox transformation was applied, which sug-
gested an inverse-quartic transform might be suitable,
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Fig. 1 Longitudinal trajectory plots. The black lines show individual subject trajectories, and the coloured lines show smoothed (LOESS) curves
stratified by whether the patient experienced the endpoint (blue) or not (red)

which was confirmed by inspection of a Q-Q plot.
The pairwise correlations for baseline measurements
between the three transformed markers were 0.19 (pro-
thrombin time vs. albumin), − 0.30 (bilirubin vs. pro-
thrombin time and albumin). The model is fit using
the joineRML R package (version 0.2.0) using the
following code.

Fig. 2 Kaplan-Meier curve for overall survival. A pointwise 95% band is
shown (dashed lines). In total, 69 patients (of 154) died during
follow-up

# Get data

data(pbc2)

placebo <- subset(pbc2, drug == "placebo")

# Fit model

fit.pbc <- mjoint(

formLongFixed = list(

"bil" = log(serBilir) ~ year,

"alb" = albumin ~ year,

"pro" = (0.1 * prothrombin)^-4 ~ year),

formLongRandom = list(

"bil" = ~ year | id,

"alb" = ~ year | id,

"pro" = ~ year | id),

formSurv = Surv(years, status2) ~ age,

data = placebo,

timeVar = "year",

control = list(tol0 = 0.001, burnin = 400)

)

Here, we have specified a more stringent tolerance value
for ε0 than the default setting in mjoint(). Additionally,
the burn-in phase was increased to 400 iterations after
inspection of convergence trace plots. The model fits in
3.1 min on a MacBook Air 1.6GHz Intel Core i5 with 8GB
or RAM running R version 3.3.0, having completed 423
MCEM iterations (not including the EM algorithm itera-
tions performed for determining the initial values of the
separate multivariate linear mixed sub-model) with a final
MC size ofM = 3528. The fitted model results are shown
in Table 4.
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The fitted model indicated that an increase in the
subject-specific random deviation from the population
trajectory of serum bilirubin was significantly associated
with increased hazard of death. A significant association
was also detected for subject-specific decreases in albu-
min from the population mean trajectory. However,
prothrombin time was not significantly associated with
hazard of death, although its direction is clinically con-
sistent with PBC disease. Albert and Shih [46] analysed
the first 4-years follow-up from this dataset with the
same 3 biomarkers and a discrete event time distribution
using a regression calibration model. Their results were
broadly consistent, although the effect of prothrombin
time on the event time sub-model was strongly
significant.
We also fitted 3 univariate joint models to each of the

biomarkers and the event time sub-model using the R
package joineR (version 1.2.0) owing to its optimiza-
tion for suchmodels. The LMMparameter estimates were
similar, although the absolute magnitude of the slopes
was smaller for the separate univariate models. Since 3
separate models were fitted, 3 estimates of γv were esti-
mated, with the average comparable to the multivariate
model estimate. Themultivariate model estimates of γ y =
(γbil, γalb, γpro)� were substantially attenuated relative
to the separate model estimates, although the directions
remained consistent. It is also interesting to note that
γpro was statistically significant in the univariate model.
However, the univariate models are not accounting for
the correlation between different outcomes, whereas the
multivariate joint model does.
The model was refitted with the one-step Newton-

Raphson update for γ replaced by a Gauss-Newton-like
update in a time of 2.2 minutes for 419 MCEM iterations
with a final MC size of M = 6272. This is easily achieved
by running the following code.

fit.pbc.gn<-update(fit.pbc,gammaOpt = "GN")

In addition, we bootstrapped this model with B = 100
samples to estimate SEs and contrast them with the
approximate estimates based on the inverse empirical pro-
file information matrix. In practice, one should choose
B > 100, particularly if using bootstrap percentile confi-
dence intervals; however, we used a small value to reduce
the computational burden on this process. In a similar
spirit, we relaxed the convergence criteria and reduced the
number of burn-in iterations. This is easily implemented
by running the following code, taking 1.8 h to fit.

fit.pbc.gn.boot <- bootSE(fit.pbc.gn, nboot

= 100, control = list(

tol0 = 0.005, tol2 = 0.01, convCrit =

"sas",

burnin = 300, mcmaxIter = 350))

It was observed that the choice of gradient matrix in the
γ -update led to virtually indistinguishable parameter esti-
mates, although we note the same random seed was used
in both cases. The bootstrap estimated SEs were broadly
consistent with the approximate SEs, with no consistent
pattern in underestimation observed.

Discussion
Multivariate joint models introduce three types of corre-
lations: (1) within-subject serial correlation for repeated
measures; (2) between longitudinal outcomes correla-
tion; and (3) correlation between the multivariate LMM
and time-to-event sub-models. It is important to account
for all of these types of correlations; however, some
authors have reported collapsing their multivariate data
to permit univariate joint models to be fitted. For
example, Battes et al. [7] used an ad hoc approach
of either summing or multiplying the three repeated
continuous measures (standardized according to clini-
cal upper reference limits of the biomarker assays), and
then applying standard univariate joint models. Wang
et al. [48] fitted separate univariate joint models to
each longitudinal outcome in turn. Neither approach
takes complete advantage of the correlation between the
multiple longitudinal measures and the time-to-event
outcome.
Here, we described a new R package joineRML that

can fit the models described in this paper. This was
demonstrated on a real-world dataset. Although in the fit-
ted model we assumed linear trajectories for the biomark-
ers, splines could be straightforwardly employed, as have
been used in other multivariate joint model applications
[15], albeit at the cost of additional computational time.
Despite a growing availability of software for univariate
joint models, Hickey et al. [19] noted that there were
very few options for fitting joint models involving multi-
variate longitudinal data. To the best of our knowledge,
options are limited to the R packages JMbayes [49],
rstanarm [50], and the Stata package stjm [47]. More-
over, none of these incorporates an unspecified baseline
hazard. The first two packages use Markov chain Monte
Carlo (MCMC) methods to fit the joint models. Bayesian
models are potentially very useful for fitting joint mod-
els, and in particular for dynamic prediction; however,
MCMC is also computationally demanding, especially in
the case of multivariate models. Several other publications
have made BUGS code available for use with WinBUGS
and OpenBUGS (e.g. [51]), but these are not easily modi-
fiable and post-fit computations are cumbersome.
joineRML is a new software package developed to

fill a void in the joint modelling field, but is still in
its infancy relative to highly developed univariate joint
model packages such as the R package JM [28] and Stata
package stjm [47]. Future developments of joineRML
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intend to cover several deficiencies. First, joineRML
currently only permits an association structure of the
form W2i(t) = ∑K

k=1 γykW (k)
1i (t). As has been demon-

strated by others, the association might take different
forms, including random-slopes and cumulative effects
or some combination of multiple structures, and these
may also be different for separate longitudinal outcomes
[18]. Moreover, it is conceivable that separate longitu-
dinal outcomes may interact in the hazard sub-model.
Second, the use of MC integration provides a scalable
solution to the issue of increasing dimensionality in the
random effects. However, for simpler cases, e.g. bivari-
ate models with random-intercepts and random-slopes
(total of 4 random effects), Gaussian quadrature might
be computationally superior; this trade-off requires fur-
ther investigation. Third, joineRML can currently only
model a single event time. However, there is a grow-
ing interest in competing risks [9] and recurrent events
data [11], which if incorporated into joineRML, would
provide a flexible all-round multivariate joint modelling
platform. Competing risks [28, 29] and recurrent events
[38] have been incorporated into joint modelling R pack-
ages already, but are limited to the case of a solitary
longitudinal outcome. Of note, the PBC trial dataset anal-
ysed in this study includes times to the competing risk
of liver transplantation. Fourth, with ever-increasing vol-
umes of data collected during routine clinical visits, the
need for software to fit joint models with very many lon-
gitudinal outcomes is foreseeable [52]. This would likely
require the use of approximate methods for the numerical
integration or data reduction methods. Fifth, additional
residual diagnostics are necessary for assessing possible
violations of model assumptions. The joineRML package
has a resid() function for extracting the longitudinal
sub-model residuals; however, these are complex for diag-
nostic purposes due to the informative dropout, hence the
development of multiple-imputation based residuals [53].

Conclusions
In this paper we have presented an extension of the clas-
sical joint model proposed by Henderson et al. [3] and
an estimation procedure for fitting the models that builds
on the foundations laid by Lin et al. [20]. In addition,
we described a new R package joineRML that can fit
the models described in this paper, which leverages the
MCEM algorithm and which should scale well for increas-
ing number of longitudinal outcomes. This software is
timely, as it has previously been highlighted that there is a
paucity of software available to fit such models [19]. The
software is being regularly updated and improved.
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