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Abstract

Background: Investigating the impact of a time-dependent intervention on the probability of long-term survival is
statistically challenging. A typical example is stem-cell transplantation performed after successful donor identification
from registered donors. Here, a suggested simple analysis based on the exogenous donor availability status according
to registered donors would allow the estimation and comparison of survival probabilities. As donor search is usually
ceased after a patient’s event, donor availability status is incompletely observed, so that this simple comparison is not
possible and the waiting time to donor identification needs to be addressed in the analysis to avoid bias. It is
methodologically unclear, how to directly address cumulative long-term treatment effects without relying on
proportional hazards while avoiding waiting time bias.

Methods: The pseudo-value regression technique is able to handle the first two issues; a novel generalisation of
this technique also avoids waiting time bias. Inverse-probability-of-censoring weighting is used to account for the
partly unobserved exogenous covariate donor availability.

Results: Simulation studies demonstrate unbiasedness and satisfying coverage probabilities of the new method.
A real data example demonstrates that study results based on generalised pseudo-values have a clear medical
interpretation which supports the clinical decision making process.

Conclusions: The proposed generalisation of the pseudo-value regression technique enables to compare survival
probabilities between two independent groups where group membership becomes known over time and remains
partly unknown. Hence, cumulative long-term treatment effects are directly addressed without relying on proportional
hazards while avoiding waiting time bias.

Keywords: Cox model with a time dependent covariate, Cumulative hazard ratio, Genetic randomization,
Non-proportional hazards, Stem cell transplantation, Waiting time bias
Background
Evaluating the effect of a partly unobserved, exogenous,
binary time-dependent covariate on long-term survival
probabilities is statistically demanding in particular if
non-proportional hazards are present. All these chal-
lenges are comprised in the motivating example from
paediatric oncology.
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Although survival after childhood leukaemia has
greatly improved over the last decades, there are still
subgroups of patients where conventional chemotherapy
leads to poor survival outcome. For these high-risk pa-
tients, more intense therapies are needed and allogeneic
stem cell transplantation (SCT) is often considered a
therapeutic option compared to conventional chemo-
therapy. Due to higher treatment intensity and the graft
versus leukaemia effect, SCT may be more efficient in
preventing disease recurrences. Contrary, higher rates of
early treatment related mortality have to be anticipated
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with SCT. Hence, it is nearly certain that the hazards are
increasing shortly after SCT compared to continuous
conventional chemotherapy and decreases over time, ex-
pectedly below hazards of continuous conventional
chemotherapy. Consequently, non-proportional hazards
are frequently observed in studies where SCT is com-
pared with ongoing chemotherapy [1–3]. Patients usu-
ally enter a study, when they are considered to be
eligible for SCT. Although donor search is initiated im-
mediately thereafter, it can take several months before a
donor is found and SCT can be performed. In the mean-
time, patients are treated with conventional chemother-
apy. If no matched donor can be found, conventional
chemotherapy remains the only administered treatment.
Typically, the effect on the proportion of long-term sur-
vivors (cured patients) is most interesting in paediatric
oncology studies.
The so-called genetic randomisation approach has

been suggested to analyse SCT trials [3–5]. The efficacy
of the treatment options “potential SCT after chemo-
therapy” and “chemotherapy alone” is assessed by simply
comparing the long-term survival of those patients who
have a donor available and can potentially receive an
SCT with those who do not have a suitable donor and
for whom SCT is impossible. If actually performed SCT
is used as treatment indicator, then waiting time
(immortal time) and selection bias will be introduced.
Genetic randomisation follows the ideal of the intention-
to-treat approach in randomised trials by using the
presence or absence of a donor as a surrogate for random-
ized treatment options. However, its validity requires that
both, donor availability status and time until donor identi-
fication are independent of patient’s prognosis. These as-
sumptions are usually justified in the context of SCT in
childhood leukaemia, where donor availability status only
depends on HLA-type which is measured at baseline and
is assumed to be independent on the current and future
disease state of the patient. Genetic randomisation can
straightforwardly be applied if donor availability status is
observed for all patients. However, it is common – in par-
ticular in studies with matched unrelated donors - that for
financial and ethical reasons donor search is ceased after a
patient has died. Donor availability status remains unob-
served for these patients and genetic randomisation can-
not be used anymore.
In this situation, a statistical approach which considers

the waiting time to donor availability has to be applied.
Currently, Cox regression with a binary time-dependent
covariate and landmark analysis are frequently applied.
However, with the anticipated non-proportional hazards,
the Cox model with a time-dependent covariate is hardly
able to provide conclusive information on long-term sur-
vival treatment effects. Ignoring time-dependent covari-
ates for the moment, extensions of the Cox-model to
deal with non-proportional hazards, i.e. weighted ap-
proaches [6–8] or extensions considering time-varying
hazard ratios [9–13] do not address long-term survival.
These approaches investigate the relative instantaneous
risks, i.e. the weighted average of hazard ratios over time
or the variation of hazard ratios in time. With non-
proportional hazards the interpretation of weighted ap-
proaches remains ambiguous; neither does a weighted
hazard ratio in favour of an experimental arm automat-
ically imply better long-term survival, nor does a
weighted hazard ratio of one necessarily imply that long-
term survival probabilities are unaffected by therapy.
With time-varying hazard ratios, the hazard ratio at a
specific time is conditional on being at risk at this time,
which addresses a question that differs from the primary
interest in cumulative survival effects [14, 15]. Conse-
quently, extending these approaches to allow for time
dependent covariates will not work as well.
The second approach, landmark analysis [16–19] and

its extension dynamic prediction by landmarking [20] is
mainly used to estimate survival probabilities and to
graphically represent survival curves. Here, a later start-
ing point for survival, the landmark time, is arbitrarily
chosen and the interpretation of landmark results is nat-
urally hampered by the intrinsic conditioning on being
alive at the landmark time and ignoring potential im-
portant information before the landmark time point.
In particular with non-proportional hazards, it is cru-

cial to directly address the primary interest on long-term
survival [14] either by testing for differences in estimated
survival probabilities [15] or by using pseudo-values
[14], both for a pre-specified long-term time point.
When survival curves reach a plateau, cure rate models
[21] are another sensible alternative that allows to com-
pare the probabilities of ‘cured’ long-term survivors
without the need to pre-specify a long-term time-point.
Survival probabilities are directly linked to cumulative

hazards (minus-log-survival). Consequently, the ratio of
the cumulative hazard functions at a pre-specified time
point is an alternative natural choice to quantify and
compare treatment effects [22–24] with the straightfor-
ward interpretation that a cumulative hazard ratio below
and above one implies higher and lower long-term sur-
vival probabilities, respectively. The concept of cumula-
tive hazard ratios is naturally linked to the recently
developed pseudo-value regression technique [25–30]
for censored survival data. However, the original
pseudo-value regression technique as well as other
techniques that directly address long-term survival rates
[15, 21] do not allow for time-dependent covariates.
Hence, a generalisation to evaluate and compare cumu-
lative treatment effects in the presence of an exogenous
binary time-dependent covariate is introduced here. This
generalised approach mimics the intention-to-treat
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analysis of a genetic randomisation in an SCT trial
where donor availability is partly unknown. In the fol-
lowing methods sections the new approach is presented,
followed by a simulation study that elaborates its proper-
ties. Subsequently, the novel approach is applied to real
data in paediatric oncology. The discussion section sum-
marises the properties of the new approach and critically
outlines its advantages and disadvantages.

Methods
The compartment representation for transplant data
By focussing on cumulative treatment effects and prediction
of survival probabilities as primary aim, the most interesting
outcome of such studies is survival at a pre-specified long-
term time point t� , e.g., in order to investigate 5-years sur-
vival probabilities, t� would be set equal to 5 years. In line
with the approach of genetic randomisation, two separate
populations have to be distinguished conditional on their
donor availability status, and survival probabilities in patients
with and without a donor available, S1 t�ð Þ and S0 t�ð Þ, have
to be compared, respectively. Donor availability is defined as
the identification of a donor in the time interval from study
entry to maximum donor search time tsearch, with tsearch≤t�.

Survival in patients with donor available
At first, survival S1 t�ð Þ in patients with an available
donor is investigated. Let W denote a random vari-
able representing the (waiting) time from a given
origin (time 0) to the time when a donor is identified,
0≤W≤tsearch. The distribution of W is characterised by
the density f 01 tð Þ with corresponding hazard function
λ01 tð Þdt ¼ P W∈ t; t þ dt½ ÞjW≥tð Þ. In theory, W can al-
ways be observed for this population independently of
the survival or censoring status of the patients by
prolonging donor search until tsearch . In practice, as
outlined above, donor availability remains unobserved
in patients that die or become censored before donor
identification.
a

Fig. 1 Stochastic process in the two populations with (a) and without (b) d
a donor and move from state 0 either to state 1 or state 2 until tsearch
Survival in the population with available donor corre-
sponds to a stochastic process with three states (Fig. 1a),
where all patients start at the initial state 0.
Let T denote the failure time to reach state 2. The

absorbing state 2 can be reached either directly (0→2) if
T < W or through the intermediate state 1 (0→1→2) if
T≥W . Let λ02 tð Þ denote the hazard function for a transi-
tion at time t from the initial state 0 direct to the ab-
sorbing state 2. Accordingly

λ02 tð Þdt ¼ P T∈ t; t þ dt½ ÞjT≥t;W > tð Þ
Note that in patients with a donor (Fig. 1a), no pa-

tients remain in state 0 at tsearch as all patients have ei-
ther moved to state 1 or to state 2 until tsearch.
Let λ12 t; t−wð Þ denote the hazard function for a transi-

tion from the transient state 1 to the absorbing state 2
which may depend on both, time since start, t , and time
since transition to state 1, t−w.

λ12 t; t−wð Þdt ¼ P T∈ t; t þ dt½ ÞjT≥t;W ¼ w; t≥wð Þ
Note that donor availability can be considered an ex-

ternal (exogenous) stochastic process with

P T∈ u; uþ du½ ÞjX uð Þ;T≥uð Þ¼ P T∈ u;uþ du½ ÞjX tð Þ;T≥uð Þ

for all u; t such that 0<u≤t and X tð Þ ¼ x uð Þ; 0≤u<tf g
denotes the covariate history of the external time-dependent
covariate x tð Þ ; for details see p.196 of Kalbfleisch and
Prentice [31].
Denote

S1 t�jwð Þ ¼ exp −
Zw
0

λ02 vð Þdvþ
Zt�
w

λ12 v; v−wð Þdv
8<
:

9=
;

2
4

3
5
ð1Þ

as survival in a population with a fixed waiting time W ¼ w.
That is, before transition to state 1 the hazard
b

onor available, w is time of transition to state 1. In a, all patients have
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function λ02 tð Þ applies and λ12 t; t−wð Þ thereafter. Sur-
vival in the population with a donor is then

S1 t�ð Þ ¼
Zt�
0

λ01 wð Þ exp −
Zw
0

λ01 vð Þdv
2
4

3
5

exp −
Zw
0

λ02 vð Þdv−
Zt�
w

λ12 w; vð Þdv
8<
:

9=
;

2
4

3
5dw

¼
Zt�
0

f 01 wð ÞS1 t�jwð Þdw

ð2Þ

Survival in patients without donor available
In a genetic randomisation study, patients without a
donor available until tsearch form the control group. Let

T
0
denote the failure time in a classical two-state sur-

vival process (Fig. 1b) with

λ
0
02 tð Þdt ¼ P T

0
∈ t; t þ dt½ ÞjT 0

≥t
� �

and

S0 t�ð Þ ¼ exp −
Zt�
0

λ002 vð Þdv
8<
:

9=
;

2
4

3
5: ð3Þ

Since donor availability is stochastically independent

of patients’ prognosis under standard treatment, λ02 vð Þ
¼ λ

0
02 vð Þ until tsearch. This independence has two import-

ant consequences. Firstly, S0 t�ð Þ is identical to the coun-
terfactual survival probabilities in a population where
there is no change in therapeutic strategies after a donor

is identified, i.e. λ12 vð Þ ¼ λ
0
02 vð Þ; v≥w ; secondly, in order

to estimate S0 t�ð Þ the survival information of the donor
available group can be exploited up to time w.

Pseudo-values
In the following the original pseudo-value approach is
briefly outlined. Subsequently, generalised pseudo-values
for the estimation of S0 t�ð Þ and S1 t�jwð Þ are introduced.
Furthermore, appropriate weights for S1 t�jwð Þ are de-
fined to compensate for partly unobserved waiting times
when estimating S1 t�ð Þ.

Common pseudo-values
The pseudo-value regression technique [25–30] for cen-
sored survival data provides an attractive alternative to
methods commonly applied in survival analysis. The ap-
proach specifically allows the modelling of survival prob-
abilities at pre-specified interesting time points. Without
relying on proportional hazards, pseudo-values can be
flexibly regressed on common baseline covariates within
the framework of a generalised linear model [15].
Let Ti denote the time to failure and Ci the time to

censoring for the i -th patient, i ¼ 1;…; n . Usually ~T i

¼ min Ti;Cið Þ and Di ¼ I T i≤Cið Þ can be observed. Let Ŝ

tð Þ denote the ordinary Kaplan-Meier estimate and let Ŝ
−i

tð Þ denote the Kaplan-Meier estimate where the i-th ob-
servation is excluded (jacknife statistic). The pseudo-value
at time t� [25] for the i-th patient is now defined as

V̂ i t
�ð Þ ¼ nŜ t�ð Þ− n−1ð Þ̂S−i t�ð Þ; i ¼ 1;…; n:

Individual pseudo-values can attain values below zero
and above one. The approach relies on the fact that the
Kaplan-Meier estimate is (approximately) unbiased for
the marginal survival function [25]. Accordingly, i.i.d.
observations, independent right censoring and a suffi-
ciently large risk set at time t� have to be assumed.
Asymptotic conditional unbiasedness of the pseudo-
values given covariates can be shown [25, 32–34], which
allows the use of regression models with pseudo-values
as outcome (further details can be found in [25, 29]).
Generalised 0➔2 pseudo-values for the estimation of S0 t�ð Þ
For notational convenience let the first m out of n pa-
tients be those with an observed transition to state 1 at
times w1;…;wm.

Let Ŝ0 tð Þ denote the Kaplan-Meier estimate for the
risk of a direct transition from state 0 to state 2 with
censoring at w1;…;wm of those patients with observed
transitions to state 1. Hence, only direct transitions from
state 0 to state 2 are considered as event. Given the as-
sumed independence between the two stochastic pro-

cesses (transitions 0→1 and 0→2), Ŝ0 tð Þ is an
asymptotically unbiased estimate of S0 tð Þ.
Now, for all n patients 0→2 pseudo-values for t�-year

survival based on Ŝ0 t�ð Þ are generated according to the
standard approach [25],

V̂ i;0 t�ð Þ ¼ nŜ0 t�ð Þ− n−1ð ÞŜ−i
0 t�ð Þ: ð4Þ

As all patients start in state 0 and are at risk for a dir-
ect transition to state 2, it is of importance that a 0→2
pseudo-value has to be calculated for each patient. That
is, patients with a transition to state 1 are censored at
w1;…;wm but not ignored, as the latter would lead to
selection bias due to over-representing direct transi-
tions from state 0 to state 2. Since V̂ i;0 t�ð Þ is an asymp-
totically unbiasedly estimate for S0 t�ð Þ , its mean
V 0 ¼ 1

n

Pn
i¼1V̂ i;0 t�ð Þ is asymptotically unbiased as well

[25, 32].
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Generalised 0➔1➔2 pseudo-values for the estimation
of S1 t�jwð Þ
To estimate S1 t�jwið Þ; i ¼ 1;…;m, 0→1→2 pseudo-values
have to be defined. Firstly, covering only the time after
transition to state 1, 1→2 pseudo-values are calculated.

For i ¼ 1; …;m; let Ŝ t� T≥wijð Þ denote the survival prop-
ability at t� estimated by Kaplan-Meier based on all ni pa-
tients still at risk at wi . Note that t� is the long-term time-
point of interest since time 0, and Kaplan-Meier estimates
at t�−wið Þ after wi are used. The 1→2 pseudo-value for
the i-th patient is now defined as

Û i;1 t� wijð Þ ¼ niŜ t� T≥wijð Þ− ni−1ð ÞŜ−i
t� T≥wijð Þ: ð5Þ

Here, the interval of the Kaplan-Meier estimate starts at
time wi , and accordingly the waiting time history up to wi

can be considered as standard baseline information (see
Additional file 1, Section A). Conditional on the observed
waiting time wi for patient i , this pseudo-value Û i;1 t� wijð Þ
shares the properties of the original approach [25, 32–34]
and

E Û i;1 t� wijð Þ� � ¼ S t� T≥wi;W ¼ wijð Þ þ op 1ð Þ
holds with S t� T≥wi;W ¼ wijð Þ ¼ Rt�

wi

λ12 v; v−wið Þdv (for

details see Additional file 1, Section A).
The definition of 0→1→2 pseudo-values for S1
t�jwið Þ requires to consider the risk of an event in
state 0 until transition time wi as well. The Kaplan-

Meier estimate Ŝ0 wið Þ can be used for this adjust-
ment, so that the 0→1→2 generalised pseudo-value
is defined by

V̂ i;1 t� wijð Þ ¼ Ŝ0 wið Þ Û i;1 t� wijð Þ: ð6Þ

Utilising the independence between Ŝ0 wið Þ and
Û i;1 t� wijð Þ, V̂ i;1 t� wijð Þ is asymptotically unbiased too,

E V̂ i;1 t� wijð Þ� � ¼ S0 wið ÞS t� T≥wi;W ¼ wijð Þ þ op 1ð Þ ¼ S1 t� wijð Þ þ op 1ð Þ:

Estimation of S1 t�ð Þ
While the individual V̂ i;1 t� wijð Þ provide an estimate of

S1 t� wijð Þ; i ¼ 1;…;m , their mean 1
m

Pm
i¼1

V̂ i;1 t� wijð Þ
estimates

S1 t�ð Þ ¼
Zt�
0

q wð ÞS1 t� wjð Þdw; ð7Þ

where q wð Þ is the density of the distribution of observ-
able waiting times before tsearch (Additional file 1:
Section B). This density describes waiting times up to
tsearch not prevented by the competing risks death and
early censoring with the hazard functions λ02 tð Þ and
λC tð Þ , respectively. According to eq. 2, our primary
aim is to estimate survival in the population with a
donor, that is

S1 t�ð Þ ¼ Rt�
0
f 01 wð ÞS1 tjwð Þdw:

Note that, unless λ02 vð Þ ¼ 0 and λC vð Þ ¼ 0 for v < tsearch;
q wð Þ≠f 01 wð Þ and consequently S1 t�ð Þ≠S1 t�ð Þ. Since for
some patients donor availability is unknown due to
censoring or 0→2 transitions before time w , long
waiting times are under-represented in q wð Þ compared
to f 01 wð Þ.
In order to account for unobserved 0→1 transitions

due to early 0→2 transitions and censoring, inverse
probability of censoring [35] can be used to estimate the
weights

γ i;1 ¼
f 01 wið Þ
q wið Þ ð8Þ

for every observed 0→1 transition at wi; i ¼ 1;…;m. As
donor availability is independent of patients behaviour
before wi, all n patients with and without donor available
can be used. Let Ĝ wð Þ denote the Kaplan-Meier estimate
on the whole sample, where censoring and 0→2 transi-
tions are considered as events and 0→1 transitions are
considered as censored observations. Then

E Ĝ wð Þ� � ¼ exp −
Zw
0

λ02 vð Þ þ λC vð Þdv
2
4

3
5þ oP 1ð Þ

which is the probability of being uncensored and free of a
0→2 transition at time w . In patients with a donor avail-
able at waiting time wi this is equivalent to the probability
q wið Þpm
f 01 wið Þ of acutally observing the 0→1 transition.
The weights are then γ̂ i;1 ¼ 1

Ĝ wið Þ p̂m , i ¼ 1;…;m , and

p̂m ¼ mPm
j¼1

1

Ĝ wjð Þ
so that

Pm
i¼1

γ̂ i;1 ¼ m.

Now, the weighted mean V 1 ¼ 1
m

Pm
i¼1

γ̂ i;1V̂ i;1 t� wijð Þ is a

consistent estimator of S1 t�ð Þ [35].

Weighted generalised linear model for comparing S0 t�ð Þ
with S1 t�ð Þ
Analogous to the original pseudo-value approach, a
weighted generalised linear model is utilized for in-
ferential purposes with log-log link function, normal
response probability distribution, and the parame-
ters β0 and β1. Whereas β0 corresponds to the inter-
cept, β1 corresponds to the binary indicator x1i, with
x1i ¼ 0 for i ¼ 1;…; n and x1i ¼ 1 for i ¼ nþ 1;…;
nþm . The nþmð Þ -dimensional response vector is

V̂ ¼ V̂ 1;0 t�ð Þ;…; V̂ n;0 t�ð Þ; V̂ 1;1 t� w1jð Þ;…; V̂ m;1 t� wmjð Þ� �0
.

The weights γ̂ i;1 for V̂ i;1 t� wijð Þ are defined in the
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previous chapter and the weights γ̂ i;0 for V̂ i;0 t�ð Þ are
set to one.
The parameter estimates are functions of the weighted

means of the two types of pseudo-values; β̂0 ¼ g V 0
� �

and

β̂1 ¼ g V 1
� �

−g V 0
� �

. When the log-log link function is

used, g Vð Þ ¼ log − log Vð Þð Þ and exp β̂1

� �
is an asymptot-

ically unbiased estimate of the cumulative hazard ratio at
time t� comparing patients with and without donor
available.
Estimation of standard errors

When using the Kaplan-Meier estimate Ŝ0 wið Þ in the es-

timation of V̂ i;1 t� wijð Þ; i ¼ 1;…;m (eq. 6), the individual
patients’ variation is not properly represented. Conse-
quently, the weighted generalised linear model with a
sandwich estimator underestimates the standard errors

of bβ0 ¼ β̂0; β̂1

� �
on average. More appropriate standard

errors can be attained by replacing Ŝ0 wið Þ in eq. 6 by
random draws from Bernoulli variables Bi with
BieBernoulli exp − exp pið Þf g½ �

where pieΝ log − log Ŝ0 wið Þ� 	� �
;

σ̂ 2 Ŝ0 wið Þð Þ
Ŝ0 wið Þ log Ŝ0 wið Þf g½ �2


 �
and σ̂ 2 Ŝ0 wið Þ� �

denotes the variance estimator of the
Kaplan-Meier estimator (Greenwood’s formula). This ad-
hoc approach exploits the asymptotic normality of the
log-log transformation of the Kaplan-Meier estimator
[31]. In practical applications, the imputations should be
repeated several times and the obtained standard errors
should be averaged for stability reasons.
Software implementation
The proposed method can be straightforwardly imple-
mented using standard routines available in the majority
of statistical software packages. Details on the imple-
mentation in SAS and R are described in the Additional
file 1 (Section D).
Results
Simulation studies
Simulation studies have been designed with
tsearch ¼ t� ¼ 5 years. Survival times were generated
using the inversion method [36]. Assuming survival
functions from a parametric mixture cure model [21],
the approach was extended to allow for a plateau of the
survival curve that represents cured patients (Additional
file 1: Section C). Uniform censoring times between 0 to
11 years (Table 2, Scenario A-G) and 0 to 6 years
(Table 1, Scenario I and Table 2, Scenario G) were
superimposed in the simulation scenarios. For each
scenario, sample sizes of 400 and 1000 are investigated
in 1000 simulation runs each.

Simulation study 1
This simulation study was performed to examine the
properties of individual components of our approach, i.e.
(1) the weights γ̂ i;1 to estimate S1 t�ð Þ, (2) the survival esti-
mates for S0 t�ð Þ, S1 t� wijð Þ and S1 t�ð Þ, and (3) the standard
error estimates. Details of the simulation setup are pro-
vided in scenario I in Table S1 of the Additional file 1.
Seventy-five percent of all patients have a donor avail-

able. These patients equally split between discrete waiting
times at w = 0.5, 1 and 3 years and the according probabil-
ity mass function is f 01 wð Þ ¼ 1=3 . The true survival
probabilities and simulation results are given in Table 1.
For a sample size of 1000, the means of the observed

distribution of waiting times q̂ wð Þ are 0.46, 0.39 and
0.15 for w = 0.5, 1 and 3, respectively. Hence short wait-
ing times are over- and long-waiting times are underrep-
resented compared to f 01 wð Þ . The means of the
estimated weights γ̂ i;1 are 0.72, 0.86 and 2.26 for w = 0.5,
1 and 3, respectively, and the correct waiting time distri-

bution can be restored for all w with f̂ 01 wð Þ ¼ 0:33.
Table 1 also considers estimates from a weighted gener-

alised linear model with a log-log link with and without
the ad-hoc correction for standard error estimation. For a
sample size of 1000 the bias of the log − log Sð Þð Þ estimate
for both approaches is negligible with a maximum abso-
lute value of 0.011. SEest is the mean of the empirical sand-
wich estimates of the standard error of the log − log Sð Þð Þ
estimates from the 1000 simulation runs (Table 1). Note
that in the analysis of a single data set, several repeated im-
putations are needed to get stable standard error estimates.
The mean empirical standard errors are already replicated
within the 1000 simulation runs and so no repeated impu-
tations are needed to get stable results.
Monte Carlo standard deviations are similar to mean

SEest and shown in Table S2 (Additional file 1). In the un-
corrected case, SEest tends to become smaller for increas-
ing w. As expected, SEest is generally larger in the ad-hoc
corrected case. Consequently, with uncorrected SEest esti-
mation the coverage of the 95% confidence intervals de-
creases with increasing w and is only 86.4% for w ¼ 3 .
When V̂ i;1 t�ð Þ are dervied using the ad-hoc approach, the
coverage substantially improves to 93.7% for S1 5 wj ¼ 3ð Þ.
The results for a sample size of 400 show a similar good
performance with regard to unbiasedness of survival esti-
mates and confidence interval coverage (Table 1).

Stimulation study 2
This simulation study was performed to demonstrate
both, approximate unbiasedness of the parameter esti-
mates and approximate confidence interval coverage
within the weighted generalised linear model with a log-



Table 1 Results of the simulation study 1 (scenario I) using a weighted generalised linear model

Truth Waiting times wGLMk wGLM ad-hocl

Patientsm Donor w Survival S log(−log(S))d f 01 wð Þ q wð Þe γ1
f f̂ 01 wð Þg Biash SEest

i Coveragej Biash SEest
i Coveragej

n ¼ 1000 No – 0.333a 0.10 – – – – −0.003 0.125 95.5% −0.003 0.125 95.5%

Yes – 0.620b −0.74 – – – – −0.002 0.078 92.2% −0.002 0.098 94.0%

0.5 0.733c −1.17 0.33 0.46 0.72 0.33 −0.003 0.164 94.7% −0.002 0.172 94.0%

1 0.681c −0.96 0.33 0.39 0.86 0.33 −0.010 0.134 94.6% −0.011 0.161 95.1%

3 0.451c −0.23 0.33 0.15 2.26 0.33 0.000 0.106 86.4% 0.004 0.191 93.7%

n ¼ 400n No – 0.333a 0.10 – – – – −0.004 0.210 95.6% −0.003 0.210 95.6%

Yes – 0.620b −0.74 – – – – −0.007 0.124 92.8% −0.007 0.156 92.0%

0.5 0.733c −1.17 0.33 0.46 0.72 0.33 −0.024 0.263 95.4% −0.019 0.277 95.4%

1 0.681c −0.96 0.33 0.39 0.86 0.33 −0.019 0.224 93.8% −0.026 0.269 94.9%

3 0.451c −0.23 0.33 0.15 2.26 0.33 −0.001 0.170 85.6% −0.017 0.309 93.4%

Weighted generalised linear model (wGLM) with log-log link; 0–6 years uniform censoring was used
aTrue survival S0 5ð Þ in patients without a donor available
bTrue survival S1 5ð Þ in patients with a donor available
cTrue survival S1 5 wjð Þ in patients with a donor available at waiting time w
dlog-log transformation of true survival probabilities S
eMean observed proportion of patients with a 0 → 1 transition at w = 0.5, 1 and 3
fMean estimated weight for w = 0.5, 1 and 3
gMean estimated probabilities for f 01 wð Þ at w = 0.5, 1 and 3
hMean difference between estimated and true log − log Sð Þð Þ values
iMean of standard errors of log − log Sð Þð Þ estimates
jCoverage of the 95% confidence intervals for log − log Sð Þð Þ
kThe weighted generalised linear model (wGLM) uses V̂ i;1 t�ð Þ according to eq. (6)
lThe weighted generalised linear model (wGLM) uses the ad-hoc correction suggested to estimate V̂ i;1 t�ð Þ (with one repetition per observation per simulation run)
mn represents the size of the entire sample where 25% of the patients have no donor; 25% of the patients have a donor available at w =0.5, 25% at w =1, and
25% at w =3, respectively
nTwo of 1000 simulation runs were excluded due to non-convergence during parameter estimation
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log link. The standard error ad-hoc correction was used
throughout in this section.
Four realistic scenarios from pediatric oncology and four

theoretical scenarios are considered. Scenarios A-D are
based on published results [5, 37–39] and represent realis-
tic situations that cover all main potential types of depart-
ure from proportional hazards: differences in long-term
survival only (A), crossing survival curves (B-C) and a
situation where only differences in short-term survival (D)
are observed. Additionally, a proportional hazards model
(E), a null-model (F) and a scenario with unrealistically
long-waiting times (G) were investigated. Scenario G is
implemented under both, the commonly used and a much
more pronounced censoring scheme, that is 0–11 and
0–6 years uniform censoring, respectively. True survival
curves of patients with and without donor available are
shown in Additional file 1: Figure S1 for the various
scenarios together with the corresponding waiting time dis-
tributions. Details of the simulation setup are provided in
scenarios A-G Table S1 and in Section C in the Additional
file 1.
The results are summarised in Table 2. In scenario

A, initially similar survival is observed until year 1
and afterwards stem-cell transplantation has lower
hazards, leading to an inferior long-term survival
probability with chemotherapy alone; S0 5ð Þ ¼ 40:4%
compared to S1 5ð Þ ¼ 56:2% . Accordingly, using the
log-log link, β0; β1 and the cumulative hazard ratio
(cHR) are −0.098, −0.453 and 0.636, respectively. For
a sample size of 1000, the bias is 0.001 and −0.001
for β̂0 and β̂1 , respectively. Similar small biases of
0.001 and −0.002 are seen for a sample size of 400,

respectively. The mean standard errors of β̂0 (SEest)
obtained from the weighted generalised linear models
are 0.053 and 0.085 for sample sizes of 1000 and 400,
respectively. Furthermore, the observed coverages of
the 95% confidence intervals (CI) for β0 are 96.2%
and 95.4%, respectively. Similar satisfying results are
seen for the CI coverages of β1 and β0 þ β1.
Likewise, convincing results are seen for Scenarios

B-G as well (Table 2). In particular scenario G with
uniform censoring between 0 and 6 is challenging -
long waiting times coincides with heavy censoring.

Even in this difficult situation, the biases of β̂0 and

β̂1 are close to zero; the corresponding CI coverages
are 95.0% and 96.0% for n = 1000 and 94.9% and
96.5% for n = 400, respectively.
Monte Carlo standard deviations are similar to mean

SEest and shown in Table S3 (Additional file 1).
In summary, in all scenarios the biases are negligibly

small. Note that, the maximum bias on the scale of



Table 2 Results of the simulation study 2 using a weighted generalised linear model with log-log link and ad-hoc correction of SEest
(with one repetition per observation per simulation run)

Truth Results (n ¼ 1000)e Results (n ¼ 400)e

Scenario uniform censoring S0 5ð Þa β0 Biasb SEest
c Coveraged Biasb SEest

c Coveraged

A 0–11 0.404 −0.098 0.001 0.053 96.2% 0.002 0.085 95.4%

B 0–11 0.291 0.211 0.001 0.062 94.8% 0.000 0.098 95.7%

C 0–11 0.511 −0.398 0.000 0.067 94.2% 0.000 0.107 94.9%

D 0–11 0.703 −1.040 0.001 0.079 95.2% 0.000 0.126 95.2%

E 0–11 0.291 0.211 0.001 0.062 94.8% 0.000 0.098 95.7%

F 0–11 0.511 −0.398 0.000 0.067 94.2% 0.000 0.107 94.9%

G 0–11 0.333 0.095 −0.002 0.060 93.3% −0.004 0.095 94.7%

G 0–6 0.333 0.095 −0.003 0.083 95.0% −0.001 0.133 94.9%

S1 5ð Þa β0 þ β1 Biasb SEest
c Coveraged Biasb SEest

c Coveraged

A 0–11 0.562 −0.551 −0.001 0.111 95.0% 0.000 0.177 94.9%

B 0–11 0.547 −0.505 −0.002 0.087 94.7% 0.006 0.137 93.9%

C 0–11 0.659 −0.875 −0.003 0.099 96.1% −0.010 0.157 95.3%

D 0–11 0.703 −1.040 0.001 0.101 95.0% 0.001 0.161 95.4%

E 0–11 0.390 −0.060 0.003 0.082 95.2% 0.005 0.130 95.8%

F 0–11 0.511 −0.398 −0.006 0.087 95.0% −0.001 0.138 94.7%

G 0–11 0.569 −0.573 −0.004 0.115 93.5% −0.002 0.182 95.1%

G 0–6 0.569 −0.573 0.000 0.149 93.5% −0.028 0.239 94.6%

cHRa β1 Biasb SEest
c Coveraged Biasb SEest

c Coveraged

A 0–11 0.636 −0.453 −0.001 0.123 95.4% −0.002 0.196 95.5%

B 0–11 0.489 −0.716 −0.004 0.107 93.8% 0.006 0.169 94.9%

C 0–11 0.621 −0.476 −0.003 0.119 95.4% −0.010 0.190 95.3%

D 0–11 1.000 0.000 0.000 0.129 95.2% 0.001 0.204 95.4%

E 0–11 0.763 −0.271 0.001 0.103 94.8% 0.005 0.163 95.6%

F 0–11 1.000 0.000 −0.006 0.110 95.2% −0.001 0.174 95.7%

G 0–11 0.513 −0.668 −0.003 0.131 95.0% 0.002 0.208 95.7%

G 0–6 0.513 −0.668 0.004 0.173 96.0% −0.027 0.278 96.5%
aFor the log-log link and t� ¼ 5 : S0 5ð Þ ¼ exp − exp β0ð Þð Þ; S1 5ð Þ ¼ exp − exp β0 þ β1ð Þð Þ; cHR ¼ exp β1ð Þ
bMean difference between parameter estimates and true parameters
cMean standard error of the parameter estimates
dCoverage of the 95% confidence interval of the parameters
eentire sample with and without a donor
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survival probabilities is smaller than one percentage
point over all scenarios and sample sizes. The coverage
probabilities of the confidence intervals are convincingly
close to the nominal 95% level. As expected, the good
performance of the method does not depend on the pro-
portional hazards assumption.

Benefit of SCT in paediatric leukaemia patients
A real dataset from a recently published international
study in children with newly diagnosed Philadelphia
chromosome-positive (PH+) acute lymphoblastic leukaemia
[40] is used for illustrative purposes. The aim of the study
is to compare SCT to conventional chemotherapy only with
disease free survival (DFS) as primary endpoint. A total of
542 patients were eligible and included in the study. Of
these, 217 were treated with chemotherapy only and 325
switched to SCT after a suitable donor was identified. Note
that, here we only have information when an SCT was ac-
tually performed and we assume that patients received SCT
immediately after their donor was identified. SCT was per-
formed after a median waiting time of 5.1 months; the ma-
jority (95%) of SCTs were performed within 1 year.
The application of the generalised pseudo-values ap-

proach is contrasted to the popular Cox model. The ori-
ginal analysis allowed for non-proportional hazards [40]
by including a time-dependent treatment indicator and its



a

b

c

Fig. 2 Philadelphia chromosome-positive acute lymphoblastic leukaemia: results of Cox regression with a binary time-dependent covariate with/
without log(time) interaction versus the generalised pseudo-value approach (no adjustment for baseline covariates)
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interaction with log(time) in a Cox regression model. The
hazard ratios at 6 months and 5 years were estimated to
be 1.56 and 0.39, respectively (Fig. 2). While there is a
clear evidence of lower hazards with SCT at later time
points, the average hazard ratio of 0.91 (p = 0.39) from a
Cox regression model with a time-dependent treatment
indicator shows little evidence of a beneficial SCT effect
(Fig. 2). However due to the ignorance of the non-
proportional hazards these results may be overly sensitive
to the initial disadvantage of SCT and may understate the
positive impact of SCT in the long term.
For 5-years DFS, the generalisation of pseudo-value regres-

sion for a time-dependent covariate is applied with a log-log
link and tsearch ¼ t� ¼ 5 years. The log-cumulative hazard
ratio is −0.26 and the estimated 5-year cHR is 0.77. Using
the ad-hoc approach as described in subsection ‘Estimation
of standard errors’ with 1000 repeated imputations, the mean
standard error of the log-cumulative hazard ratio is 0.123.
The corresponding 95% confidence interval for cHR is 0.61
to 0.98 (Fig. 2) showing a positive cumulative effect of SCT
at 5 years with a Wald-type p-value of 0.042. This cHR is dir-
ectly related to the 5-year DFS probability estimates of 42%
and 32% with and without donor, respectively.

Discussion
Unresolved methodological challenges when comparing
long-term survival probabilities with and without stem-
cell transplantation are the motivation of this work.
Although the medical interest is in assessing the effect
of this time-dependent intervention, the comparison has
to be based on donor availability. Firstly, donor availabil-
ity is an external process defining two populations and
allowing proper estimation and interpretation of survival
probabilities. Secondly, as donor availability is independ-
ent of patient’s prognosis, patients with and without
donor available are comparable before the intervention
so that selection bias can be ruled out. On the contrary,
if donor availability status is not properly documented
and donor identification does not immediately or not at
all lead to an SCT then a selection bias might occur and
the results of any statistical analysis may lack sensible
interpretation.
If for some patients donor availability is unknown due

to early death or censoring before tsearch , a simple com-
parison according to donor availability is not possible. In
such situations, Cox-regression with a binary time-
dependent covariate is often considered as a seemingly ob-
vious choice. However, severe violations of the propor-
tional hazards assumption renders the results of such an
analysis useless. Even if the time-varying hazard ratio is
appropriately modelled, the results of a Cox model do not
clearly show, whether the long-term intervention benefit
is able to outweigh the short-term intervention risks.
In contrast, the generalised pseudo-values approach

investigates the primarily interesting cumulative hazards
in both populations up to a long-term time point of
interest t�. Now, allowing for incomplete information on
donor availability and without relying on proportional
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hazards, the generalised pseudo-value approach provides
a direct comparison and helps to decide whether the
benefits of SCT justifies its therapeutic use in future
patients.
Due to the presence of long-term survivors and cured

individuals in paediatric oncology, the choice of an ap-
propriate long-term time point t� is usually straightfor-
ward. In other situations, in particular when cure of
patients is less common, the choice of a single time
point t� might be less obvious; a simultaneous investiga-
tion of several time points may then provide a more
complete picture analogous to the original pseudo-value
approach.
Finally, note that a further investigation of the associ-

ation between waiting times and 0→1→2 pseudo-values
could provide an answer to the clinical research ques-
tion, whether a late identified donor should still lead to
an SCT. Additionally, the generalised pseudo-values
method can be adapted to include (baseline) covariates.
These aspects will be investigated in future work.

Conclusion
Mimicking a randomised comparison, the proposed gen-
eralisation of the pseudo-value regression technique en-
ables to compare survival probabilities in patients with
and without a donor, although donor availability is in-
completely observed. A clinically relevant but methodo-
logically difficult situation can now be reasonably
addressed with results that are reliable and easy to
communicate.

Additional files

Additional file 1: Section A. Properties of the 1→ 2 pseudo-value.
Section B. Waiting time distribution in patients with a donor.
Section C. Generation of simulated data. Section D. Software
implementation (PDF 396 kb)
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