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Abstract

Background: Composite endpoints comprising hospital admissions and death are the primary outcome in many
cardiovascular clinical trials. For statistical analysis, a Cox proportional hazards model for the time to first event is
commonly applied. There is an ongoing debate on whether multiple episodes per individual should be incorporated
into the primary analysis. While the advantages in terms of power are readily apparent, potential biases have been
mostly overlooked so far.

Methods: Motivated by a randomized controlled clinical trial in heart failure patients, we use directed acyclic graphs
(DAG) to investigate potential sources of bias in treatment effect estimates, depending on whether only the first or
multiple episodes are considered. The biases first are explained in simplified examples and then more thoroughly
investigated in simulation studies that mimic realistic patterns.

Results: Particularly the Cox model is prone to potentially severe selection bias and direct effect bias, resulting in
underestimation when restricting the analysis to first events. We find that both kinds of bias can simultaneously be
reduced by adequately incorporating recurrent events into the analysis model. Correspondingly, we point out
appropriate proportional hazards-based multi-state models for decreasing bias and increasing power when analyzing
multiple-episode composite endpoints in randomized clinical trials.

Conclusions: Incorporating multiple episodes per individual into the primary analysis can reduce the bias of a
treatment’s total effect estimate. Our findings will help to move beyond the paradigm of considering first events only
for approaches that use more information from the trial and augment interpretability, as has been called for in
cardiovascular research.
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Background
When analyzing composite endpoints that incorporate an
endpoint with multiple episodes, such as hospital admis-
sion, a time to first event approach is frequently adopted
for randomized clinical trials. Researchers from differ-
ent disciplines have called for more appropriate methods
of statistical analysis to more closely reflect the patients’
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disease burden. This involves a discussion on whether
multiple episodes per patient are to be analyzed. So far,
this discussion mostly has considered power issues, while
overlooking potential bias. In this work, we investigate
sources of bias and show that there can be a poten-
tially severe underestimation of treatment effect esti-
mates, when derived only based on first events, that can
be substantially reduced by adequately modeling multiple
episodes per patient.
Composite endpoints combine several events of inter-

est into a single variable, usually defined as a time to event
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outcome. They are frequently used as primary or sec-
ondary endpoints in cardiovascular clinical trials [1, 2].
Composite outcomes facilitate the evaluation of treatment
effects when unrealistically large sample sizes would be
required to detect differences in the incidence of single
outcomes among treatment groups, for example mor-
tality. While using a composite outcome may help in
terms of power, at the same time it introduces its own
difficulties concerning interpretation of trial results and
methodological challenges [2–6]. One major concern is
that endpoints occurring in individual patients usually
are clinically related (such as nonfatal and fatal myocar-
dial infarctions). Multi-state modeling of these relations
by allowing for separate transition hazards between the
different subsequent events has recently been proposed
for large cardiovascular observational studies [7, 8]. How-
ever, for randomized clinical trials this is suspected to
attenuate the power and confirmatory character of the
trial [9]. In the majority of clinical trials, the concern
for potential relations between clinical episodes is there-
fore addressed by counting only one event per patient
and analyzing the time to the first of all components. By
following this approach, only data on the first episode
per individual are used for the primary statistical anal-
ysis, even when subsequent episodes (including deaths)
have been recorded. There is an ongoing debate, in par-
ticular in cardiovascular research, on the efficiency and
validity of this practice because it ignores a great deal of
clinically relevant information [3, 10–12]. The impact of
multiple episodes per patient on the power of a clinical
trial is apparently promising [3, 13], and selected statisti-
cal methods have been exemplarily applied to single trial
data [14–16]. However, less attention is paid to the esti-
mation and interpretability of treatment effects that can
be substantially attenuated depending on whether multi-
ple episodes are analyzed or not. We consider this critical
since the choice of a statistical method for analyzing trial
data should not be mainly driven by power consider-
ations but by the objective to obtain an unbiased and
meaningful treatment effect estimate, i.e. to make causal
inferences about the treatment and its (added) benefit
and to understand how a treatment influences a patient’s
disease burden.
Although randomized clinical trials are often suspected

to produce unbiased results as the randomized treatment
allocation prevents confounding, hazard-based survival
analysis can introduce its own bias [17–20]. In particu-
lar, the Andersen-Gill approach [21] has been suspected
to introduce bias by erroneously modeling that a clini-
cal episode will leave a patient’s risk profile unchanged
and will not affect the incidence rate for future episodes
[22–25]. This finding has been controversially discussed
as it implicitly assumes that direct effects are to be esti-
mated [26]. The causal directed acyclic graphs approach

(DAG) [27, 28] has been proposed for defining adequate
statistical models that prevent or minimize bias in the
presence of confounding. It is a powerful tool for iden-
tifying and addressing bias and is increasingly popular,
but it is primarily applied in epidemiological research.
In this work, we will make use of this approach for
randomized clinical trials to provide an accessible expla-
nation of potential bias in proportional hazards-based
survival analysis of first and multiple episodes of a com-
posite endpoint and to define adequate statistical models
for reducing or preventing bias. While the use of DAGs
may be problematic in a continuous time setting [29], we
are avoiding such issues by first considering actual dis-
crete states in DAG analysis, and making the transition to
continuous time settings with evidence from simulations.
The article is organized as follows: We motivate this

research with a clinical example in “Cardiovascular clinical
trial example” section. Then, in “Methods” section, we
first formalize potential bias via directed acyclic graphs
and illustrate the findings on simplified examples. There-
after we identify statistical models that have the potential
to reduce that bias. We support our findings by simulation
studies that mimic the motivating clinical trial situation
and present the results in “Results” section. Finally, we
finish the article with a discussion in “Discussion” section.

Cardiovascular clinical trial example
This work has been motivated by the ST2 guided tReat-
ment upON discharGe in Heart Failure (STRONG-HF)
trial, a randomized controlled clinical trial that has been
planned to investigate whether heart failure patients will
benefit from a biomarker-based treatment scheme com-
pared to standard care. It is planned as a multicenter
prospective, randomized, open-label for patients, blinded-
endpoint and event-driven study. The primary endpoint
was defined as a composite of cardiovascular mortality
and recurrent worsening heart failure. Worsening heart
failure includes hospitalization due to heart failure or
urgent visit to the emergency department or heart failure
clinic due to decompensation needing unplanned intra-
venous diuretic treatment. Patients are to be uniformly
recruited over a period of one year and are to be fol-
lowed for one year after the end of the recruitment phase.
The two regimens are to be allocated randomly and in a
balanced fashion among the recruited patients. In addi-
tion to the treatments’ effect on the combined endpoint,
its effects on the single components, cardiovascular death
and disease-associated admissions, are also of major inter-
est. From previous data, an annual death rate of 0.14
and an annual admission rate of 1.17 is expected for the
patients under standard care (control group), defining a
hazard rate for the composite endpoint of λ = 1.31.
Treatment is expected to decrease that rate by 25%, cor-
responding to a hazard ratio of HR= 0.75. When the time
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to first composite endpoint is analyzed, a total number of
N = 465 patients is required to attain a power of 80% for
rejecting the null hypothesis of no treatment effect on the
incidence of the composite endpoint H0 = {HR = 1} [30].
Incorporating recurrent events into the statistical analysis
has the potential to decrease the sample size to up to N =
223 [13], and thus is apparently promising for improving
the feasibility and efficiency of the trial. However, disease-
associated complications that require a hospital admission
will obviously affect the risk for further non-fatal and fatal
outcomes. For example, patients who acquire a non-fatal
MI have an increased risk for fatal and non-fatal outcomes
thereafter. Concern arises if this might question the study
results, and, more generally, how incorporating recurrent
events into the primary statistical analysis will affect the
treatment effect estimates and thus the interpretation of
trial results.

Methods
Formalizing potential bias via directed acyclic graphs
The graphical representation of causal effects between
variables [27, 28] helps to understand the sources of
potential bias when estimating some causal effect of an
exposure to an outcome and how different statistical mod-
els differently address that bias. In the causal directed
acyclic graph (DAG) approach, an arrow connecting two
variables indicates causation; variables with no direct
causal association are left unconnected. We will use this
approach for illustrating the causal system in randomized
clinical trials when a composite endpoint is investigated
that comprises fatal and non-fatal events. An example
is the composite of cardiovascular death and hospital
admission for heart failure disease as defined in the moti-
vating clinical trial example (“Cardiovascular clinical trial
example” section). Effect estimation is assumed to be
hazard-based with a proportional hazards assumption.

Selection bias
Figure 1 illustrates the causal system in a time to first
composite endpoint approach. The randomized treatment
(X) is the exposure variable, that is assumed to affect the
fatal and non-fatal outcomes and thus the composite end-
point. In addition to treatment, further disease or patient

Fig. 1 Directed acyclic graph for the causal system between
treatment (X), being free of any event at time t (St ) and t + � (St+�),
and unobserved variables (Z) that are unrelated to treatment (for
example by randomization) and affect the event rate. Figure
according to Aalen et al. [20]

characteristics will affect the risk for adverse outcomes.
Some are known, others are unknown or unmeasurable
(summarized as a single unobserved variable Z). Obvi-
ously, being free of any event at time t (St) is a collider on
the path between the exposure treatment and the unob-
served variable Z. Conditioning on a collider will open the
path between the variables that are connected by the col-
lider and thus artificially introduce spurious associations
[31]. Each contribution to the partial likelihood in the Cox
proportional hazards model is a conditional contribution,
conditional on being free of any event up to that time.
Therefore, an association is induced between the actu-
ally unrelated randomized treatment and the unobserved
variable Z. As Z affects the outcomes, this association
will bias the treatment’s effect estimate for the fatal, non-
fatal and composite outcome. This bias is called selection
bias and has been investigated for incidence rate ratios
[28] and hazard ratios [17, 18, 20, 32] before. We will
illustrate selection bias by a simple example at the end of
this subsection. Whereas conditioning on being alive is an
unavoidable step in the hazard-based analysis, we can pre-
vent conditioning on being free of any event by including
the recurrent non-fatal events into the statistical model:
the at-risk set in the partial likelihood estimator then com-
prises all subjects that are still alive in contrast to a set of
those subjects only that are free of any event at the partic-
ular time point. This way, incorporating recurrent events
will reduce selection bias when estimating the treatment
effect on the fatal and non-fatal outcomes and will thus
also reduce the bias when estimating the treatment effect
on the composite endpoint. In summary, the first insight
gained from a formalization via DAGs is that analyzing all
non-fatal events, also the recurrent ones, in the statistical
model for the composite endpoint will reduce selection
bias.

Example Consider a balanced randomized trial compar-
ing the time to first event under a particular treatment, as
compared to some control intervention. Further assume
that the study population consists of two equally-sized
subgroups, a low-risk group and a high-risk group, spec-
ified by an unobserved variable Z (Fig. 1). For illustrating
selection bias we consider a setting with discrete times
(which can be readily transferred to the continuous time
Cox proportional hazards model [33]) with failures occur-
ring only at times t1 and t2. In the control group the risk
for experiencing an event at time t1 is assumed to be
1/3 in the low-risk-group and 2/3 in the high-risk-group,
respectively. The same risk probabilities are assumed for
experiencing an event at time t2 in the subset of subjects
that are still at risk before t2, i.e. having not experienced
an event at t1. The odds ratio for treatment compared
to control, which is the discrete-time equivalent to the
continuous time hazard ratio [33], is assumed to be 1/2
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within each subgroup and for each time t1 and t2 (con-
stant hazard ratio assumption). From the odds ratio and
the expected failure rates per subgroup in the control
group at t1, we can derive the expected failure rates at t1
for the treatment group, which are 1/5 and 1/2, respec-
tively. For the example of a sample size of N = 1800 per
treatment group, Table 1 shows the number of event-free
subjects just before t2 per treatment group and subgroup
and the expected number of failures at t2 as derived from
the expected failure rates of 1/3 and 2/3 in the control
group and 1/5 and 1/2 in the treatment group. Whereas
the odds ratio is unbiased when estimated within each
subgroup (0.5), the crude odds ratio estimated from the
marginal table is 0.57, indicating a smaller treatment effect
(selection bias) that is obtained when conditioning on
being event-free but not taking Z into account. As indi-
cated, Z might be unobserved, making conditioning on
Z problematic. The selection bias does not depend on
sample size, which was chosen to be large in this data
example to obtain integer patient numbers. The difference
between conditional and unconditional modeling remains
when moving from discrete time to continuous time, i.e.
when the interval between two potential failures becomes
infinitesimally small and the hazard ratio is defined on
a continuous time scale. Simulation results (“Simulation
studies” section) will further support this finding.

Direct effect bias
When following the recommendation to include recur-
rent events into the statistical model as derived from the
previous section, concern might arise as to how to model
the transitions from one non-fatal event to a succeeding
fatal or non-fatal event. From cardiovascular research it is
well known that the different components in a composite
endpoint are related. For example, a non-fatal myocar-
dial infarction will apparently affect the risk for further
fatal or non-fatal cardiovascular outcomes. To address

Table 1 Expected patient numbers in the discrete failure time
example for time to first event stratified by subgroup (“Selection
bias” section)

Stratum Group Event at t2 No event at t2 At risk at t2 OR

Low-risk
subgroup

Treatment 144 576 720 0.5

Placebo 200 400 600

High-risk
subgroup

Treatment 225 225 450 0.5

Placebo 200 100 300

All patients
(unstratified)

Treatment 369 801 1170 0.57

Placebo 400 500 900

Patients are at risk for a first event at t2, if they have not experienced an event at t1.
Odds Ratio (OR) for experiencing an event under treatment as compared to control

this concern, we will again apply the approach of directed
acyclic graphs. Figure 2 illustrates the causal system when
more than only the first event is considered and the risk
for further events is potentially changing with each non-
fatal event. The number of events experienced until time
t, N(t), is a mediator lying along the causal pathway
between treatment X and the number of events at t + �,
N(t + �). Conditioning on or stratifying by the num-
ber of previously experienced events will close this path,
and the treatment effect estimate is reduced to the treat-
ments’ direct effect on the outcome, whereas its indirect
effect is not considered. While direct effects are interest-
ing from a biological viewpoint, estimation of total effects
is important from the clinical, health care, and patients’
perspective. For example, themortality rate increases after
a non-fatal myocardial infarction, and therefore a treat-
ment that effectively prevents myocardial infarctions in
general reduces the mortality (indirect effect), besides its
direct effect onmortality. Both, direct and indirect effects,
define a treatment’s total effect. We will illustrate the dif-
ference between direct and total effect estimation in a
simple example at the end of this section. In summary,
the second insight gained from a formalization via DAGs
is to not condition on the individual’s event history by
stratifying or adjusting for the previous non-fatal events
for estimating a treatments total effect. In contrast, in a
time to first event analysis, the effect estimate is natu-
rally restricted to the direct effect as it is derived only
from those pathways, that start from the exposure variable
treatment. We use the term direct effect bias when effect
estimates are reduced to direct effects only.

Example Again, consider a balanced randomized trial
comparing the time to event under a particular treatment
as compared to some control intervention. As before, we
consider a setting with discrete times, that can be trans-
ferred to the continuous time Cox proportional hazards
model. We assume that non-fatal events are experienced
at time t1 and can be followed by death at time t2. The
risk for experiencing a non-fatal event at t1 is assumed
to be 2/3 in the control group and 1/3 in the treament
group, respectively. The mortality rate in patients who
have acquired the non-fatal event at t1 increases to 40% as
compared to a 20% risk in those subjects who are free of an
event at t1. Mortality rates are assumed to be not affected
by treatment conditionally on the number of prior events,

Fig. 2Directed acyclic graph for the causal system between treatment
(X) and the number of events up to time t (Nt) and t + � (Nt+�)
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i.e. neither before nor after having experienced a non-fatal
event. For the example of a total sample size of N = 1800,
Table 2 shows the expected number of death cases strat-
ified by having experienced a preceding non-fatal event
at t1 and marginally over all subjects. Whereas within
each stratum no treatment effect on mortality is observed,
respectively, the odds ratio estimated from the marginal
table is 0.73, indicating a positive treatment effect on
mortality. This result indicates that treatment effectively
reduces mortality by preventing subjects from entering
that stratum, which is characterized by a higher mortality
rate (total effect), although it has no direct effect on the
mortality rates at all. Effect estimates differ when condi-
tioning on prior events or not, irrespective of sample size,
and when moving from discrete time to continuous time,
thus when deriving the hazard ratio in a continuous time
scale. Simulation results (“Simulation studies” section)
will further support this finding.

Reducing bias by statistical modeling
We will now transfer the insights on biased effect esti-
mation as derived from the DAGs to identify statistical
analysis models that have the potential to reduce that bias.
Consider a randomized clinical trial with n subjects fol-
lowed for a composite endpoint. Subjects will be indexed
by i, events by j. Let T∗

CE,ij be a series of random vari-
ables that describe the time from starting point 0 to the
j-th occurrence of the composite endpoint in subject i. Let
further Ci be independent identically distributed random
variables that describe the time to censoring. We observe
TCE,ij = min(T∗

CE,ij,Ci), the time to composite endpoint
or censoring, whichever comes first, and the indicator
variables δij = I

{
T∗
CE,ij ≤ Ci

}
.

It has been proposed to describe the distribution of
TCE,ij by a multiplicative intensity process [34], Yi(t) ·
λCE,i(t), of the underlying counting process

Ni(t) := #
{
j; TCE,ij ≤ t ∧ T∗

CE,ij ≤ Ci
}
,

with deterministic hazard function λCE,i(t) (Fig. 3) and
Yi(t) = I{t ≤ Ci}. Figure 3 sketches a model that

comprises all events, also the recurrent ones (CE1,
CE2. . . ), without conditioning on or stratifying by the
event history (transition hazards between the succeed-
ing events do not change). If conditional on covariates
λCE,i has a Cox proportional hazards shape, this model is
known as the Andersen-Gill [21] model.

λCE(t|Xi) = λCE,0(t) · exp(βX′
i) (1)

with Xi being the p-dimensional vector of covariates for
subject i and β being the vector of regression coeffi-
cients. The Andersen-Gill model was recently applied to
re-analyze clinical trials in patients suffering from heart
failure to evaluate the effect of new therapies on the
patients risk of the composite of hospitalizations due to
heart failure and cardiovascular death [14–16]. The treat-
ment effect β is then estimated by maximizing the partial
likelihood

PLAG(β) =
∏
i

∏
j

⎛
⎝ exp(βX′

i)∑
k∈RAG

(ij)
exp(βX′

k)

⎞
⎠

δij

(2)

The at-risk set RAG
(ij) includes all subjects who have not

been censored and have not died before time tij, the time
when individual i experiences its j-th event. In contrast,
in a stratified model as proposed by Prentice et al. [35],
the at-risk set RPWP

(ij) is restricted to only those subjects
who are at risk for experiencing the j-th event at time tij,
thus having experienced j− 1 events before. However, fol-
lowing the arguments of “Formalizing potential bias via
directed acyclic graphs” section, the Andersen-Gill model
allows the estimation of total effects by not stratifying on
the event history, in contrast to the stratified model that
is estimating direct effects only [26]. Both models are still
susceptible to selection bias as they naturally restrict the
risk sets to subjects being alive. However, they reduce the
selection bias as compared to results derived from a Cox
proportional hazards model with partial likelihood

Table 2 Expected patient numbers in the discrete failure time example for time to death stratified by previously experienced non-fatal
event (“Direct effect bias”section)

Stratum Group Death at t2 Alive at t2 At risk OR

Non-fatal event at t1 Treatment 120 180 300 1

Placebo 240 360 600

No non-fatal event at t1 Treatment 120 480 600 1

Placebo 60 240 300

All patients (unstratified) Treatment 240 660 900 0.73

Placebo 300 600 900

Odds Ratio (OR) for mortality under treatment as compared to control
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Fig. 3 Unstratified transition hazard model for the transitions between
study start (S) and the recurrent composite endpoints (CE1, CE2. . . )

PLC(β) =
∏
i

⎛
⎝ exp(βX′

i)∑
k∈RC

(i)
exp(βX′

k)

⎞
⎠

δi1

(3)

as in this model the risk sets RC
(i) are restricted to subjects

that are not only still alive but also free of any previous
non-fatal event at time ti1, the time of the first event or
censoring of individual i.
The partial likelihood (2) of the unstratified maximally

unrestricted Andersen-Gill model (1) can be re-written as

PLAG(β) =
∏
l

∏
i

∏
jl

⎛
⎝ exp(βX′

i)∑
k∈RAG

(ijl)
exp(βX′

k)

⎞
⎠

δijl

(4)

with l = 1, . . . , L indexing the L components of the
composite and jl indexing the events of type l and δijl
again being the corresponding event indicator. Therefore,
model (2) can also be described as amulti-statemodel that
allows for different baseline transition hazards for the dif-
ferent components. Figure 4 sketches this model for the
motivating example of two components: death (D) and
hospital admission (H1,H2 . . .) with

λl(t|Xi) = λl,0(t) exp(βX′
i), l = 1, 2. (5)

By defining a single vector β for both the transition
hazards λ1 and λ2, a constraint is induced, namely that
the covariates equally affect fatal and non-fatal events.
In particular, for our motivating example this means that
treatment has the same effect on the fatal and non-fatal
outcomes. This constraint has in fact been described as a
requirement for the proper use of composite endpoints,
for example by regulatory agencies [36]. However, at the
same time it has been observed that in practice this
assumption is frequently violated. Ferreira-Gonzalez et al.
[37] conclude from a systematic literature review that
effects of treatments in cardiovascular clinical trials differ

strongly between the components, with larger effects in
less relevant components and the smallest effects in mor-
tality. The same has been observed in several clinical trials
on heart failure disease [14, 16]. To relax the constraint
of a common treatment effect on all components, the
more general multi-state model (MS) can be defined by
transition hazards

λl(t|Xi) = λl,0(t) exp(βlX′
i), l = 1 . . . L (6)

and partial likelihood

PLMS(β1, . . . ,βL)=
∏
l

∏
i

∏
jl

⎛
⎝ exp(βlX′

i)∑
k∈RMS

(ijl)
exp(βlX′

k)

⎞
⎠

δijl

. (7)

and risk sets RMS
(ijl) that include all subjects who have

not been censored and have not died before the par-
ticular event time, respectively. This generalization of
the Andersen-Gill model allowing for separate treatment
effects for each component, βl, can be proposed when-
ever sample size and event frequency allow for such an
approach. It still does not stratify on the event history and
does not restrict the at-risk-set only to those subjects that
are free of any event, but allows for a higher flexibility with
respect to differential treatment effects.
Note, that we focus on marginal models within this

manuscript. By introducing a (joint) frailty term into
model (5) or (6) and applying penalized likelihoods [38],
a conditional joint frailty model could also be fitted. By
conditioning on the frailty term the selection bias as
illustrated in Fig. 1 is minimized, however at the price
of increasing the model complexity by introducing fur-
ther model assumptions (joint frailty distribution) and
parameters (frailty variance). We will show in the next
section that in many applications one can safely stay with
the marginal model, thereby following the Occam’s razor
principle.

Simulation studies
We investigate the bias in treatment effect estimation
as identified in “Formalizing potential bias via directed
acyclic graphs” section (selection bias, direct effect bias) in
simulation studies. The simulation study mimics the clini-
cal trial situation that has motivated this research. For this

Fig. 4Multi-state model for the transitions between study start (S), recurrent hospital admissions (Hi) and death (D) stratified by the event type but
un-stratified by the number of preceeding hospital admissions
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purpose, we consider a balanced randomized clinical trial
with a follow-up of two years and uniformly distributed
recruitment of N = 380 individuals over the first year.
The transition hazards λ1 and λ2 (Fig. 4 and Eq. (6)) for
the transitions to fatal and non-fatal events, respectively,
are defined by λl(t|Xi) = λl · exp(βlXi).
Baseline annual death and admission rates are defined

as λ1 = 0.14 and λ2 = 1.17, respectively. Further sim-
ulations are performed where fatal and non-fatal events
equally contribute to the same overall annual event rate,
thus λ1 = λ2 = 0.655. Treatment is assumed to equally
affect both components of the composite, and we define
β = β1 = β2 = log(0.75) as was expected in the
planning phase of the STRONG-HF trial. We addition-
ally consider situations where treatment has aminor effect
on mortality (β1 = log(0.92)), following the findings of
a systematic literature review on cardiovascular clinical
trials [37]. To consider that unobserved or unmeasurable
variables affect the outcomes, we define an unobserved
variable Zi per individual i. The Zi are generated as inde-
pendent and gamma-distributed random variables with
mean 1 and variance θ . Following a frailty approach, Zi is
assumed to act multiplicatively on the hazard by

λl(t|Xi,Zi) = λl,0(t) · Zi · exp(βlXi), l = 1, 2 (8)

Note that the unobserved variable acts on both tran-
sition hazards, inducing a correlation between both pro-
cesses. Such a joint model [38] is considered to more
closely mimic real clinical trial data as compared to
simulation models assuming independency between the
event processes, as in most situations it can be expected
that patient and disease characteristics will affect adverse
disease outcomes towards the same direction. Different
θ ∈ {0, 0.2, . . . , 1} reflect different strengths of association
between the unobserved variable and the fatal and non-
fatal outcomes and will therefore cause different degrees
of selection bias. In a second simulation study we add an
indirect effect of treatment on the composite outcome by
defining the transition hazards to be increasing by a factor
of ρ with each non-fatal event. By applying a range of val-
ues between ρ = 1 (no increase of hazards) and ρ = 1.3
(increase of hazards by 30% with each non-fatal event),
different degrees of the indirect effects are evaluated.
In a third simulation study we investigate treatment

effect estimation when both effects are present, that is the
transition hazards increase with each non-fatal events by
a factor of ρ (ρ ∈ [1, 1.3]) while in addition a gamma-
distributed frailty term with mean 1 and a moderate
variance of θ = 0.6 acts on all transition hazards. For each
simulation model 5000 datasets are simulated, respec-
tively.
All simulated data are analyzed by the Andersen-Gill

model for the composite endpoint (1) and its multi-state
extension (6) to estimate separate treatment effects on

fatal and non-fatal outcomes. Both models are applied
to the full simulated datasets and to datasets that are
restricted to the first composite endpoint per individ-
ual. For the restricted data, the Andersen-Gill model then
reduces to a Cox proportional hazards model and its
multi-state extension to a competing risk model.
All data are simulated and analyzed in the open-source

statistical environment R, version 3.1.0 (2014-04-10) [39]
and by extending the published simulation algorithm for
recurrent event data [40]. Mean regression coefficient
estimates are derived together with standard errors as
estimated from their variability among the simulations.

Results
Simulation results are presented in Tables 3 and 4 for
λ1 ∈ {0.14, 0.655}, β1 ∈ {log(0.92), log(0.75)}, ρ ∈
{1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3} and θ ∈ {0, 0.6}. In addi-
tion, Fig. 5 summarizes the simulation results for data
following model (8), where transition hazards are equally
affected by treatment and unaffected by non-fatal events
(ρ = 1), but a common unobserved variable Z acts mul-
tiplicatively on each transition hazard. Mean treatment
regression coefficient estimates are given dependent on
the variance of Z (θ ) when applying the Cox proportional
hazards analysis for the time to first event to each particu-
lar outcome (1st events), when applying the Andersen-Gill
modeling approach (1) for the time to recurrent compos-
ite endpoints (all events, composite outcome) and when
applying the multi-state modeling approach (6) to the
recurrent events (all events, fatal and non-fatal outcome).
The extent of bias that is introduced by conditioning on
being event-free (1st event analyses) is increasing with
the strength of association between the unobserved vari-
able and the fatal and non-fatal outcomes, supporting the
findings of “Formalizing potential bias via directed acyclic
graphs” section. The statistical analysis models incorpo-
rating recurrent events do not condition on being event-
free and thus substantially decrease the selection bias.
The bias that is still remaining is only small, because it is
caused by conditioning on survival status and the mortal-
ity rate was assumed to be low as observed in most cardio-
vascular trials [37]. When the mortality rate has a larger
contribution to the overall event rate of λ1 + λ2 = 1.31
(λ1 = 0.655), selection bias in the analysis of recurrent
events slightly increases as compared to the situation with
a mortality rate of only λ1 = 0.14. The higher the mortal-
ity rate, the more conditioning on being alive is affecting
the partial likelihood estimates, which explains this result.
However, bias remains small (exp(β̂1) = exp(β̂2) = 0.78
when exp(β1) = exp(β2) = 0.75 and exp(β̂1) = 0.93,
exp(β̂2) = 0.76 when exp(β1) = 0.92 and exp(β2) = 0.75)
for θ = 0.6 and ρ = 1 (Table 4). When treatment dif-
ferentially affects the risk for fatal and non-fatal outcomes
(Fig. 6), the treatment regression coefficient estimates
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ŜE

(β
CE

)
ex
p(

β̂
1
)

ŜE
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Fig. 5Mean hazard ratio estimates in the simulation model under
λ1 = 0.14, λ2 = 1.17, ρ = 1, a common treatment effect on non-fatal
and fatal outcomes (β1 = β2 = log(0.75)) and varying influence of an
unobserved variable Z (having variance θ ). Cox proportional hazards
analysis for the composite and the single components, respectively
(1st events), Andersen-Gill analysis (all events, composite outcome)
and multi-state analysis (all events, fatal and non-fatal outcomes)

Fig. 6Mean hazard ratio estimates in the simulation model under
λ1 = 0.14, λ2 = 1.17, ρ = 1, a lower treatment effect on fatal than on
non-fatal outcomes (log(0.92) = β1 > β2 = log(0.75)) and varying
influence of an unobserved variable Z (having variance θ ). Cox
proportional hazards analysis for the composite and the single
components, respectively (1st events), Andersen-Gill analysis (all
events, composite outcome) and multi-state analysis (all events, fatal
and non-fatal outcomes)

differ by outcome. However, compared to the setting with
a common treatment effect (Fig. 5), all effect estimates
are similarly affected by selection bias with respect to the
direction and magnitude of that bias.
Figure 7 shows the simulation results for data ran-

domly generated under transition hazards for fatal and
non-fatal events that are equally affected by treatment
and increase by a factor of ρ with each non-fatal event.
No unobserved variable is introduced in this simula-
tion model to clearly differentiate between the different
sources of bias. Whereas direct and total effects coincide
when transition hazards remain unaffected by previous
events (ρ = 1), Fig. 7 clearly shows that direct and
total effects substantially differ when transition hazards
increase with non-fatal events (ρ > 1). The analysis of 1st
events provides direct effect estimates whereas the anal-
ysis of all events provides total effect estimates according
to the findings of “Formalizing potential bias via directed
acyclic graphs” section. By preventing experiencing a first
non-fatal event, the treatment prevents the patients from
becoming at an increased risk for further events. This con-
tributes to the indirect effect, and thus to a larger total
treatment effect as compared to its direct effect. Under
an increased mortality rate (λ1 = 0.655), the process for
recurrent events stops earlier on average due to the higher
frequency of competing terminal events. Thus, the indi-
rect effect of the treatment (preventing later events that
occur with an increased risk rate), contributes less to the

Fig. 7Mean hazard ratio estimates in the simulation model under
λ1 = 0.14, λ2 = 1.17, θ = 0, a common direct treatment effect on
non-fatal and fatal outcomes (β1 = β2 = log(0.75)) and transition
hazards that increase by a factor of ρ after each non-fatal event. Cox
proportional hazards analysis for the composite and the single
components, respectively (1st events), Andersen-Gill analysis (all
events, composite outcome) and multi-state analysis (all events, fatal
and non-fatal outcomes)
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total effect estimates. Therefore, differences between total
and direct effect estimates become smaller: whereas under
λ1 = 0.14, θ = 0 and ρ = 1.3 the total effect in terms
of the hazard ratio is estimated as 0.65 as compared to
the direct effect of 0.75 (Table 3), under λ1 = 0.655 the
total effect estimate of 0.72 is more closely approaching
the direct effect (Table 4).
Again, when treatment differentially affects the risk for

fatal and non-fatal outcomes (Fig. 8), direct and total
effect estimates also differ for each single outcome. The
direction andmagnitude of these differences are compara-
ble to the results observed for common treatment effects
(Fig. 7).
As the hazard for the composite endpoint is the sum

of the hazards over the two components [41], the hazard
ratio can be derived as 1/(λ1 + λ2)

∑2
i=1 λi exp(βi) in the

situation of constant hazards. This weighted sum is esti-
mated when analysing the composite outcome using first
events only or all events as long as no selection bias and
no indirect effects are present, that is θ = 0 for the anal-
ysis of 1st events and ρ = 1 for the analysis of all events
(Figs. 6 and 8). θ > 0 and/or ρ > 1 then affect the esti-
mates for the composite endpoint in the same direction as
the estimates for the single components.
Whereas selection bias is attenuating the treatment

effect estimates, hazards that increase with each non-
fatal event induce the total effect estimates to become
larger than the direct effect only. As a consequence, the

Fig. 8Mean hazard ratio estimates in the simulation model under
λ1 = 0.14, λ2 = 1.17, θ = 0, a lower direct treatment effect on fatal
than on non-fatal outcomes (log(0.92) = β1 > β2 = log(0.75)) and
transition hazards that increase by a factor of ρ after each non-fatal
event. Cox proportional hazards analysis for the composite and the
single components, respectively (1st events), Andersen-Gill analysis
(all events, composite outcome) and multi-state analysis (all events,
fatal and non-fatal outcomes)

differences between direct and total treatment effect esti-
mates decrease with increasing degree of selection bias.
Whereas exp(β̂2) decreased from 0.75 to 0.65 when haz-
ards increase by 0 to 30% with each non-fatal event, under
θ = 0.6 only a decrease up to 0.72 is still observed
(Table 3). Under a highermortality rate of λ1 = 0.655 even
not any decrease in the total effect estimate is observed
(exp(β̂2) = 0.78) as here the selection bias starts to
prevail (Table 4).

Discussion
Potential biases in analysis of composite endpoints that
comprise endpoints with multiple episodes, such as hos-
pital admission, have been mostly overlooked so far. To
advance the state-of-the-art, we provided an accessible
explanation of biases in this setting, that is supported by
simulation results. Our results show that the initial step
in modeling must be defining the treatment effect that is
of interest: A total treatment effect estimate can only be
derived by analysing all events, whereas only the direct
treatment effect can be estimated from analyses of 1st
events or from analyses that are stratified by event his-
tory. When interpreting trial results, eventually derived
from different statistical models, one must be aware, that
the direct effect estimates can be severly more prone to
selection bias. Our findings will help to move beyond the
paradigm of considering first events only for approaches
that use more information from the trial and augment
interpretability, as has been called for in cardiovascular
research [11, 12].
The association of some variable with the outcome is

not a reasonable criterion for covariate selection in mul-
tiple regression, as has been described in epidemiology
for example to explain the birth-weight paradox [42]. We
use similar arguments in randomized clinical trials to jus-
tify that adjusting or stratifying for the patients’ disease
history within trial time is inadequate for estimating a
treatments’ total effect.
Selection bias in the Cox proportional hazards model as

arising from the non-collapsibility of the hazard ratio esti-
mate [18, 28] has recently been described by Aalen et al.
[20]. They use a hypothetical example, where each individ-
ual who dies is replaced by an identical individual having
the same covariate structure, which would prevent selec-
tion bias. In a way, the Andersen-Gill model implements
this idea for non-fatal recurrent events by leaving indi-
viduals in the risk set after having experienced an event.
A terminal component of the composite will still cause
selection bias under the Andersen-Gill and multi-state
approach. Its magnitude depends on the terminal event
rate. Whereas in our simulations, the terminal event rate
was small, as observed for most cardiovascular studies
[37], and the multi-state models provided nearly unbiased
results, Rogers et al. [43] advocate the need for joint frailty
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models [38, 44] to prevent from bias. However, their find-
ings are based on simulation studies with high mortality
rates (up to 31%), which explains these controversial con-
clusions. Balan et al. [45] recently proposed a score test
for deciding between multi-state and joint frailty mod-
eling. All these findings confirm, that using composite
endpoints in randomized clinical trials can not eliminate
the bias arising from the association between the risk pro-
cesses of the single components as long as only the first
event is analyzed [46].
We have focused on the estimation of a treatment effect

based on proportional hazards. Additive hazard models
have been recommended instead as they are unaffected by
non-collapsibility [20, 47].
Hazard ratios are used to assess the early benefit of new

drugs compared to some control [48]. Our results indicate
the need to further specify the estimand, the assessment
refers to: a treatment’s direct or its total effect as both can
differ substantially.
In recent years alternatives to hazard-based analyses

of composite endpoints have been proposed based on
weighted outcomes [49–51] to consider that not all com-
ponents are of the same clinical relevance and importance
for the patients. Themulti-state approach proposed in this
paper allows a separate investigation of treatment effects
on the different components, and it seems to be important
to compare both approaches with respect to interpretabil-
ity of treatment effect estimation and power. Concern-
ing power, the multi-state approach requires some kind
of multiplicity adjustment as different treatment effects
are estimated for the different components. Sequentially
rejective test procedures provide a powerful and flexible
tool to control type I error. As with other multivari-
ate time to event outcomes, closed form solutions for
sample size planning will be difficult to obtain [52], but
simulation algorithms allow for an extensive investiga-
tion of sample size requirements, including for complex
models [40, 52].

Conclusion
This manuscript provides an accessible explanation of
potential biases in treatment effect estimation when
analysing composite endpoints. It illustrates that the risk
for bias and its degree depend on whether first or multi-
ple episodes per patient are analysed. Integrating multiple
episodes into the statistical analysis model has the poten-
tial to reduce selection bias and to additionally capture
indirect treatment effects. In particular for cardiovascu-
lar research, these findings may help to move beyond the
paradigm of considering first events only.
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