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Predictor characteristics necessary for @
building a clinically useful risk prediction
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Abstract

Background: Compelled by the intuitive appeal of predicting each individual patient’s risk of an outcome, there is
a growing interest in risk prediction models. While the statistical methods used to build prediction models are
increasingly well understood, the literature offers little insight to researchers seeking to gauge a priori whether a
prediction model is likely to perform well for their particular research question. The objective of this study was to
inform the development of new risk prediction models by evaluating model performance under a wide range of
predictor characteristics.

Methods: Data from all births to overweight or obese women in British Columbia, Canada from 2004 to 2012
(n=75,225) were used to build a risk prediction model for preeclampsia. The data were then augmented with
simulated predictors of the outcome with pre-set prevalence values and univariable odds ratios. We built 120 risk
prediction models that included known demographic and clinical predictors, and one, three, or five of the simulated
variables. Finally, we evaluated standard model performance criteria (discrimination, risk stratification capacity,
calibration, and Nagelkerke's r*) for each model.

Results: Findings from our models built with simulated predictors demonstrated the predictor characteristics required
for a risk prediction model to adequately discriminate cases from non-cases and to adequately classify patients into
clinically distinct risk groups. Several predictor characteristics can yield well performing risk prediction models; however,
these characteristics are not typical of predictor-outcome relationships in many population-based or clinical data sets.
Novel predictors must be both strongly associated with the outcome and prevalent in the population to be useful for
clinical prediction modeling (e.g., one predictor with prevalence 220 % and odds ratio 28, or 3 predictors with
prevalence 210 % and odds ratios 24). Area under the receiver operating characteristic curve values of >0.8 were
necessary to achieve reasonable risk stratification capacity.

Conclusions: Our findings provide a guide for researchers to estimate the expected performance of a prediction
model before a model has been built based on the characteristics of available predictors.

Keywords: Epidemiologic methods, Risk prediction model, Discrimination, Risk classification, Model performance, Area
under the receiver operating characteristic curve

* Correspondence: lauraschummers@mail.harvard.edu

'Department of Epidemiology, Harvard TH. Chan School of Public Health,
677 Huntington Avenue, Boston, MA 02115, USA

Full list of author information is available at the end of the article

- © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
( B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-016-0223-2&domain=pdf
http://orcid.org/0000-0003-3536-0498
mailto:lauraschummers@mail.harvard.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Schummers et al. BVIC Medical Research Methodology (2016) 16:123

Background

Given the intuitive appeal of individual-level risk predic-
tion, there is growing interest in developing clinical risk
prediction models. By tailoring each individual’s esti-
mated risk of an adverse outcome according to their
demographic and clinical characteristics, risk prediction
models can distinguish high and low risk patients. This
has the potential to improve health outcomes and re-
duce health care costs by identifying patients who would
benefit from additional diagnostic procedures or treat-
ment options, and those who would not.

While the statistical steps used to build prediction
models are well described and increasingly well imple-
mented, the literature offers little insight to researchers
seeking to gauge whether a prediction model is likely to
perform well for their particular research question. Pepe
and colleagues [1] have demonstrated previously that a
single predictor must have an extremely strong associ-
ation with the outcome in order to sufficiently improve
a model’s ability to discriminate cases from non-cases.
However, it is difficult to generalize these findings to
studies that aim to collect multiple predictors, ranging
in prevalence and strength of association with the out-
come. Thus, few researchers know how to assess the
likelihood that their prediction model will perform ad-
equately a priori based on the characteristics of the pre-
dictors they expect to collect in their study, or the
extent to which the addition of novel predictors will im-
prove the performance of existing models.

Predicting an individual woman’s risk of developing
preeclampsia in pregnancy, a leading cause of maternal
and perinatal morbidity [2], is of particular interest in
perinatal epidemiology. Women identified as high risk in
early pregnancy may benefit from increased prenatal sur-
veillance, referral to tertiary care centers with high risk
specialists in maternal-fetal medicine, or treatment with
antiplatelet agents such as aspirin [2, 3]. Ruling out a
high risk of preeclampsia would avoid unnecessary sur-
veillance and maternal anxiety [2]. Accordingly, several
research groups have built clinical risk prediction models
for preeclampsia, each using commonly available demo-
graphic and clinical characteristics coupled with novel
predictors unique to their data (e.g., biomarkers or im-
aging studies) [4—9]. Despite considerable clinical detail
in these data sets, none of the models demonstrated suf-
ficient performance for routine use in clinical practice.

Using the example of preeclampsia, we evaluated per-
formance criteria (discrimination, risk stratification cap-
acity, and calibration) of a model built using standard
demographic and clinical predictors. We then augmented
this data with simulated predictors ranging in prevalence
and strength of association with preeclampsia, and built
multiple clinical prediction models that incorporated one,
three, or five of these new variables. The objective of this
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study was to guide the development of new risk prediction
models by establishing the performance of risk prediction
models under a wide range of predictor prevalence values
and univariable odds ratios with the outcome of interest.

Methods

Our study population included all overweight or obese
women (body mass index >25 kg/m?) who gave birth to
infants weighing at least 500 g or of at least 20 com-
pleted weeks of gestation in British Columbia, Canada
from April 1, 2004 to March 31, 2012. We restricted to
overweight and obese women because they are most
likely to receive pre-pregnancy counselling on modifiable
risk factors for adverse pregnancy outcomes such as pre-
eclampsia, and are thus a population for whom a risk
prediction model might be most useful. Data were ob-
tained from the British Columbia Perinatal Data Registry
[10], a high quality population-based data source admin-
istered by Perinatal Services BC that contains abstracted
linked maternal and newborn antenatal and delivery ad-
mission medical record data [11]. Preeclampsia was
identified using the International Classification of Dis-
eases Version 10 (ICD-10) codes O11, O13-O16.

We built a logistic regression model predicting risk of
pre-eclampsia using the following demographic and
clinical characteristics: prepregnancy body mass index,
maternal height, maternal age, parity, and smoking sta-
tus. This is our “original model”. Assumptions of linear-
ity were assessed for continuous variables (prepregnancy
BMI, height, and maternal age). Linear, quadratic, cat-
egorical, and restricted cubic spline transformations
were considered, and the transformation that minimized
the Akaike Information Criterion (AIC) was selected.
We used a ‘full model’ variable selection approach, in
which all variables expected to predict preeclampsia on
a priori grounds were included in the logistic regression
model. This method is known to minimize bias that can
be introduced by selecting variables according to statis-
tical criteria [12]. Multi-collinearity between predictors
was examined using Variance Inflation Factors, with a
value >3 as an indicator of multicollinearity.

To determine the predictor characteristics necessary
for a clinical prediction model to perform well in terms
of discrimination and risk stratification capacity, we then
augmented this “original model” with additional simu-
lated predictors of preeclampsia, as might occur with at-
tempts to improve current preeclampsia prediction
models by adding biomarkers such as PIGF [13] or other
novel predictors, such as sonographic imaging of placen-
tal morphology [14] that could potentially improve the
performance of existing models. The prevalence values
of the simulated predictors were set to 5 %, 10 %, 20 %,
or 40 %, and strengths of association (univariable odds
ratios) were set to range from 1 to 16. All simulated
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predictors were binary and independent of one another.
We built clinical prediction models that included our
original predictors, as well as one, three, or five of the
simulated predictors. We then built 120 models to
achieve every possible combination of these prevalence
and odds ratio values. We repeated variable generation
and all model building steps for the models built with
the new variables 5000 times to account for variability in
the random draws from the normal distribution used to
create each simulated variable.

Evaluation of model performance

We evaluated calibration of our models visually by com-
paring observed versus expected risks and formally using
the Hosmer-Lemeshow goodness-of-fit test [12]. Dis-
crimination was assessed using the c statistic (the area
under the receiver operating characteristic curve, AUC,
for binary outcomes), where 0.7 is commonly used to in-
dicate minimally acceptable discrimination [12, 15]. We
extended our assessment of discrimination by examining
the proportion of the population classified into a risk
stratum in which the likelihood ratio was greater than
10 or less than 0.1 [16]. Likelihood ratios were calculated
by dividing the percentage of women with preeclampsia
in each risk group by the percentage of women without
preeclampsia in that risk group. The proportion of vari-
ability in the outcome that was explained by the predic-
tors was measured using Nagelkerke’s r*, a summary
indicator of model performance [17].

We also examined risk stratification capacity, which
reflects the extent to which the model is able to divide
patients into groups with clinically distinct risk profiles
(i.e., high risk vs. low risk) [18]. These risk profiles are
intended to alter women’s clinical management. Risk
stratification capacity is most often assessed using dec-
iles of predicted risk, which reflects arbitrary cutoffs
based on statistical characteristics of the study popula-
tion. Instead, we opted to use groupings of predicted risk
that would reflect thresholds for treatment or surveil-
lance decisions in clinical practice. We measured risk
stratification capacity by assessing the proportion of the
population classified into a clinically distinct risk group,
defined as predicted risk greater than 15.0 % or less than
3.0 %. Given a population average risk of 8.4 %, these
thresholds were determined by a maternal-fetal medicine
physician (KPH) as the thresholds above or below which
clinical management would be altered by the prediction
score (that is, women with a predicted risk of >15.0 %
would likely be managed as ‘high risk, women with a
predicted risk <3.0 % would likely be managed as ‘low
risk; while predicted probabilities of 3.0-15.0 % would
be considered uninformative because they are clinically
equivalent to the risk estimated in the absence of a
model (8.4 %)).
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Model overfitting, or optimism, was evaluated with
200 bootstrap samples drawn with replacement from the
original sample. We repeated all model building steps to
fit the model in each bootstrap sample. Average opti-
mism (the average of the difference between the ob-
served AUC in the study population and the AUC in
each bootstrap sample) was subtracted from the AUC in
the study population to calculate the optimism-
corrected AUC [12]. We followed these steps for the
original model, as well as for all models including simu-
lated predictors.

Sensitivity analysis

We conducted sensitivity analyses using different risk
group definitions (2.0 %, 2.5 %, 18.0 %, 20.0 %) to evalu-
ate how sensitive our findings were to this definition. To
ensure that the performance of this prediction model
did not reflect unique characteristics of preeclampsia,
we built clinical prediction models for several other ad-
verse pregnancy outcomes as sensitivity analyses. These
outcomes were gestational diabetes, spontaneous pre-
term delivery before 32 weeks, indicated preterm deliv-
ery before 37 weeks, macrosomia, shoulder dystocia,
cesarean delivery, postpartum hemorrhage requiring
intervention to control bleeding, maternal mortality/se-
vere morbidity, stillbirth, NICU stay =48 h, and in-
hospital newborn mortality (see Schummers [19] for
detailed outcome definitions). In addition to those pre-
dictors included in the model for preeclampsia, we in-
cluded additional outcome-specific predictors in some
models (see footnote of Additional file 1 for complete
list). All analyses were conducted using Stata Version
12.0 [20].

Results
Of the 334,861 births in British Columbia during the
study period, 229,387 had available data on prepreg-
nancy body mass index. Of these, the 75,225 overweight
or obese women (body mass index >25) were included
in this analysis. Table 1 presents the prevalence and odds
ratios of the predictors of preeclampsia observed in our
data. Predictors in our data ranged in prevalence from
0.4 % (history of neonatal death) to 43.3 % (nulliparity).
Crude odds ratios ranged from 0.8 (history of stillbirth
or spontaneous abortion) to 2.9 (pre-existing diabetes).
The Hosmer-Lemeshow goodness-of-fit test indicated
adequate goodness of fit (calibration), with p=0.33.
Likewise, visual examination of observed versus pre-
dicted risks according to the original model indicated
adequate calibration (data not shown). As shown in
Table 2, the original model had poor risk stratification
capacity, with only 19.2 % of the population classified
into clinically distinct high or low risk groups (11.5 and
7.7 %, respectively). None of the strata had informative
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Table 1 Clinical characteristics and risk factors for preeclampsia
included in clinical prediction model in our data set and those
from a previously published cohort study of preeclampsia risk

Predictors in our data set

Prevalence Crude odds
n (%) ratio (95 % Cl)
Maternal age °
<20 1,624 (2.2) 1.0 (0.8, 1.2)
20-29 32,140 (42.7) REF
30-40 38,444 (51.1) 1.0 (0.9, 1.0)
240 3,017 (4.0) 14(13,1.6)
Prepregnancy body mass index °
25-29 46,979 (62.5) REF
30-34 17,692 (23.5) 16 (1.5 17)
35-39 6,968 (9.3) 2119, 23)
240 3,586 (4.8) 1.8 (25,3.1)
Maternal height <60 in. 4,280 (5.7) 0.9 (0.8, 1.0)
Nulliparity 32,571 (433) 2524, 26)
Pre-existing diabetes 769 (1.0) 29 (24, 35)
Smoking 8411 (11.2) 09 (0.8, 1.0)
History of stillbirth 713 (0.9) 0.8 (06, 1.1)
History neonatal death 281 (04) 1.0 (06, 1.5)
History of spontaneous abortion 18,046 (24.0) 1.0 (09, 1.0

#Prepregnancy body mass index and maternal age at birth were modeled
using restricted cubic splines

likelihood ratios (i.e., all likelihood ratios were between
0.1 and 10). Our original risk prediction model had an
AUC of 0.68, slightly below the 0.7 value widely used as
a threshold to indicate adequate discrimination perform-
ance [12]. The optimism-corrected AUC was also 0.68
(see Additional file 1), indicating minimal overfitting.
Similarly, overall model performance appeared poor,
with a Nagelkerke’s r2 indicating that this model ex-
plained only 7.2 % of the variability in preeclampsia risk.

The AUC obtained from the preeclampsia risk predic-
tion model was comparable to those we built for other
adverse pregnancy outcomes with AUCs ranging from
0.59 for stillbirth to 0.66 for gestational diabetes. All
models exhibited minimal overfitting, with estimated
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optimism ranging from 0.02 to <0.01. See Additional file
1 for the observed and optimism-corrected AUCs for
the prediction models for all outcomes we examined.

The models built after adding simulated predictors
demonstrate the prevalence and univariable odds ratio
values necessary for a model to perform well in terms of
discrimination, risk stratification capacity, and variability
in outcome risk explained by the predictors. Figures 1, 2,
and 4 show the model performance of each model by
plotting the performance metric (AUC, proportion of
the population classified into a clinically distinct risk
group, and Nagelkerke’s 1, respectively) on the y-axes
against the odds ratios of simulated predictors on the x-
axes. Each curve in the figure represents a specific
prevalence of the simulated predictors in the population,
ranging from 5.0-40.0 %. Each sub-figure A-C repre-
sents the number of simulated predictors added to the
models (one, three, and five, respectively).

The starting point for the AUCs of all models built with
simulated predictors is 0.68, the observed AUC for the ori-
ginal model. From Fig. 1a (left), we see that the odds ratio
for a single added predictor must be at least 6, and the
prevalence at least 20.0 %, to achieve an AUC of 0.8. One
common predictor (prevalence >20.0 %) with an odds ratio
of 16 yields an AUC approaching 0.85. In Fig. 1b (center),
we see that odds ratios for three common predictors (each
with prevalence 220.0 %) need only reach a magnitude of 4
to produce a model with AUC of 0.8. Three common pre-
dictors with odds ratios of 16 can yield an almost perfect
AUC, near 0.95. With five simulated predictors (Fig. 1c,
right), rare predictors (5.0-10.0 % prevalence) can yield an
AUC of 0.9, provided each odds ratio exceeds 10. Five
common predictors (prevalence >20.0 %) with odds ratios
of 3 to 4 can produce an AUC of 0.85, increasing to 0.95 as
odds ratios increase. As with the original model, models in-
cluding simulated predictors exhibited minimal overfitting,
with AUC estimates remaining unchanged to 2 decimal
places after correcting for optimism.

Figure 2 depicts the risk stratification capacity of each
model after adding simulated predictors according to the
proportion of the population classified into a clinically dis-
tinct risk group (i.e., a risk group that is meaningfully high

Table 2 Risk stratification capacity of the original model: observed vs. predicted risk

Predicted risk (%) No. of births per

Observed risk (%) Likelihood ratio

stratum (% of sample) (95 % Cl)
<30 5,788 (7.7) 134 (2.3) 03 (0.2-03)
3.0-55 21,654 (28.8) 876 (4.0) 04 (04-04)
55-12.0° 33,178 (44.11) 2,846 (8.6) 1.0 (1.0-1.1)
12.0-15.0 5,960 (7.9) 800 (13.4) 1.7 (1.6-1.8)
>15.0 8,645 (11.5) 1,660 (19.2) 2.7 (26-29)
Total 75,225 (100.0 %) 6,313 (84) -

Given a baseline risk of 8.4 %, this category is clinically equivalent to the population average risk
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Fig. 1 Discrimination performance (measured by area under Receiver Operator Characteristic curve) of risk prediction models according to
simulated predictor characteristics. The original risk prediction model was augmented with simulated predictors with prevalence from 5 to 40 %
and odds ratios ranging from 1 to 16: a one added simulated predictor per model; b three added simulated predictors per model; ¢ five added

or low risk from a clinical perspective). In the original
model, less than 20 % of the population was classified into
a clinically distinct risk group (19.2 %); this is the baseline
proportion for the models with simulated predictors.
Figure 2a, (left) shows the risk stratification for all models
augmented with one simulated predictor. With one rare
(5.0-10.0 % prevalence) simulated predictor added, none of
the models classified 50 % of the population into clinically
distinct risk groups, even with odds ratios of 16. With a
more common predictor (20.0 % prevalence), an odds ratio
of 8 was necessary to classify 50 % of the population into
clinically distinct risk groups. One predictor of 40.0 % preva-
lence with an odds ratio of 6 was needed to classify 50 % of
the population into a clinically distinct risk group, while an

odds ratio of greater than 12 was needed to classify 75 % of
the population into a clinically distinct risk group.

For models with three simulated predictors, shown in
Fig. 2b, rare predictors (5.0-10.0 % prevalence) required
odds ratios of 6 to 10, those with 20 % prevalence required
odds ratios greater than 4, and common predictors (40.0 %
prevalence) required odds ratios greater than 3 to classify
50 % of the population into clinically distinct risk groups.
Models with rare predictors (5.0-10.0 % prevalence) were
never able to classify 75 % of the cohort into clinically dis-
tinct risk group, though more common predictors did
reach 75 % with odds ratios from 8 to 12.

Not surprisingly, models with five simulated predictors
showed the best risk stratification performance, with
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Fig. 2 Proportion of population classified into a clinically distinct risk group (predicted risk <3.0 % or >15.0 %) from risk prediction models
according to simulated predictor characteristics. The original risk prediction model was augmented with simulated predictors with prevalence
from 5 to 40 % and odds ratios ranging from 1 to 16: a one added simulated predictor per model; b three added simulated predictors per
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lower required odds ratio and prevalence values (Fig. 2c).
Five predictors of 5.0 % prevalence require odds ratios of
6 to classify 50 % of the cohort into clinically distinct
strata and odds ratios of 12 to classify 75 % of the co-
hort. Models with 5 common predictors (20.0-40.0 %
prevalence) classified 50 % of the population into clinic-
ally distinct risk groups with odds ratios of 4, and classi-
fied 75 % of the population with odds ratios of 8.

Figure 3 provides an alternative approach to examine the
proportion of the population classified into clinically dis-
tinct risk groups. These histograms display the frequencies
of different predicted risks according to two models with
very different risk stratification capacities. In both sub-
figures, the area in green (left) indicates the number of
women with a predicted risk below 3.0 % (clinically distinct
low risk group); the brown area (center) indicates the num-
ber of women with an uninformative predicted risk, not
markedly different from the population average, or what we
would predict for individuals based on a null model (3.0—
15.0 %); the blue area (right) shows the number of women
with predicted risk above 15.0 % (clinically distinct high risk
group). The histogram on the left (Fig. 3a) shows predicted
risks from a model with one simulated predictor added to
the real data with an odds ratio of 1.5 and 5.0 % prevalence.
The histogram on the right (Fig. 3b) shows predicted risks
from a model with 5 simulated predictors with odds ratios
of 6 and 40.0 % prevalence. A perfect model would classify
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84 % of the population (the incidence of preeclampsia in
this population) as high risk and the rest as low risk. As ex-
pected, the model on the left shows poor performance, with
the majority of the population in the uninformative group
(79.8 %), and far too few in the low risk group (8.6 %). The
model on the right performs far better, and classifies the
majority of the population (74.0 %) into a clinically distinct
risk group. Appropriately, most (60.2 %) were classified into
the low risk group, a small number were classified into the
high risk group (13.8 %), and about a quarter (26.0 %) into
the uninformative group.

The proportion of variability in preeclampsia risk that
was explained by the predictors included in each model
(Nagelkerke’s r*) was plotted according to predictor charac-
teristics in Fig. 4. The observed predictors included in the
original model explained very little of the variability in pre-
eclampsia risk (7.2 %). As shown in Fig. 4a, models includ-
ing only 1 simulated predictor showed poor performance,
even when the added predictor was strongly associated
with the outcome (OR =16) and prevalent in the popula-
tion (=20.0 % prevalence). Model performance improved
greatly with 3 and 5 added predictors. When 3 predictors
with 220 % prevalence were included, models explained
50 % or more of the variability in preeclampsia risk when
odds ratios were equal to 8 or more. With 5 added predic-
tors, even uncommon predictors with large odds ratios
(=10) were able to explain more than 50 % of the outcome

A Original model + 1 predictor
with OR=1.5, prevalence=5%

Frequency
400 600 800
1 1

200
1

0 10% 20% 30%
Predicted risk of preeclampsia

B Original model + 5 predictors
with OR=6, prevalence=40%

800

600
1

Frequency
400
1

200
1

s T T T
0 10% 20% 30%
Predicted risk of preeclampsia

[ Uniformative predicted risk: 3%-15%
I High risk group: predicted risk >15%
I | ow risk group: predicted risk <3%

group (predicted risk >15.0 %)

Fig. 3 Histogram of predicted risk for each observation based on the original risk prediction model plus a one simulated predictor with an odds
ratio of 1.5 and 5 % prevalence, and b five simulated predictors with odds ratios of 6 and 40 % prevalence. Green bars indicate a clinically distinct
low risk group (predicted risk <3.0 %); brown bars indicate uninformative predicted risk (3.0-15.0 %); blue bars indicate a clinically distinct high risk
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Fig. 4 Overall model performance (measured by the proportion of variability in the outcome explained by the predictors, or Nagelkerge's r?) of
risk prediction models according to simulated predictor characteristics. The original risk prediction model was augmented with simulated
predictors with prevalence from 5 to 40 % and odds ratios ranging from 1 to 16: a one added simulated predictor per model; b three added
simulated predictors per model; ¢ five added simulated predictors per model

variability. As expected, models with 5 common (220.0 %
prevalence) and odds ratios =12 demonstrated excellent
performance, with r* values approaching 75 %.

Table 3 combines the model performance measures of
discrimination and risk stratification by presenting the
proportion of the population classified into a stratum
with an informative likelihood ratio. As the number,
prevalence, and odds ratios of simulated predictors in-
crease, model performance improves in terms of both
discrimination and clinically relevant risk stratification
capacity. This table illustrates a consistent relationship
between discrimination according to the AUC and risk

stratification capacity according to the proportion of the
population classified into a clinically distinct risk group.
Models that displayed minimum acceptable discriminative
ability, assessed by an AUC of 0.7, exhibited poor risk strati-
fication capacity, with 75 % of the population classified into
a group that was clinically equivalent to the population
baseline risk. In order to classify 50 % of the population into
a clinically distinct risk group (high or low risk), AUCs of
0.85 were needed, while AUCs of 0.95 were needed for
75 % of the population to be classified into clinically distinct
risk groups. A complete table with performance measures
for all 120 models we built can be found in Additional file

Table 3 Model performance measures according to odds ratio, number, and prevalence of simulated predictors

Simulated predictor characteristics

Model performance measures

OR of Number of simulated Prevalence of Proportion of population (%)  Proportion of population (%) AUC Nagelkerke's
simulated predictors added to simulated with informative likelihood assigned to clinically distinct risk r (%)
predictors original model predictors ratio ° group °

2 3 10 % 0.0 27.2 0.71 100
2 3 20 % 00 299 073 117
2 3 40 % 0.0 34.8 074 129
2 5 10 % 0.0 289 073 118
2 5 20 % 0.0 333 075 146
2 5 40 % 00 39.2 077 166
6 3 10 % 0.0 54.4 083 294
6 3 20 % 63.6 63.6 087 37.1

6 3 40 % 70.2 70.0 088 37.1

6 5 10 % 66.9 66.9 0.88 406
6 5 20 % 720 720 092 507
6 5 40 % 738 738 093 512

“Defined as the proportion of the population classified into a stratum with a likelihood ratio <0.10 or >10.0
PDefined as the proportion of the population classified into a stratum with predicted risk meaningfully different than the baseline rate of pre-eclampsia in the

population (<0.03 or >0.15)
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2. These findings remained stable in our sensitivity analyses
in we considered small changes in the thresholds used to
define clinically distinct low and high risk groups.

Discussion

Using the example of preeclampsia, our study estab-
lished the predictor characteristics required for a risk
prediction model to adequately discriminate cases from
non-cases and to adequately classify patients into risk
groups for whom distinct clinical management is war-
ranted. Our approach of defining risk strata using clinic-
ally meaningful risk thresholds (rather than the more
common method of using deciles of predicted risk)
helped to establish the extent to which the application of
the prediction models in clinical practice would likely in-
fluence clinical management decisions through improved
identification of high and low risk patients. This approach
helped to highlight that evaluation of a risk prediction
model based on standard discrimination criteria alone
may not provide a complete picture of the model’s clinical
utility. We found that, if an AUC threshold of 0.7 were
used to indicate acceptable risk prediction model perform-
ance, a substantial proportion of risk prediction models
would be of limited use in clinical practice due to their
poor risk stratification performance.

While our original data were population-based, and did
not include novel clinical predictors, the characteristics of
the preeclampsia predictors in our data are similar to
those of other data sets with which researchers often aim
to build risk prediction models. For example, a recently
published prediction model for preeclampsia from a de-
tailed clinical cohort included predictors with univariable
odds ratios ranging from 0.5 to 2.9 (compared to 0.8 to
2.9 in our data) and prevalence values ranging from 3.9 to
50.3 % (compared to 0.4 to 43.3 %) [4]. Accordingly, the
performance of our original model is expected to be simi-
lar to other models that aim to predict preeclampsia risk,
and the findings from our simulation study are expected
to be directly applicable to future work in this area.

Although risk stratification capacity is rarely the focus of
risk prediction model performance evaluations, risk stratifi-
cation capacity is central to the overall aim of risk predic-
tion models [18]. Risk stratification involves transformation
of continuous values of predicted risk into binary or cat-
egorical groups in which different levels of intervention or
monitoring are warranted. We evaluated risk stratification
capacity based on meaningful thresholds for identifying
high and low risk patients (rather than arbitrary quantiles
of risk in our study population) to maximize the clinical ap-
plicability of our findings. The primary method by which a
clinical prediction model can improve health outcomes is
by correctly classifying patients into groups with distinct
clinical management plans (binary or categorical groups).
For example, risk prediction models have been used to
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differentiate prostate cancer patients who would benefit
from radical prostatectomy from those who need only re-
ceive annual screening tests [21], to differentiate children
admitted to hospital with cerebrospinal fluid pleocytosis
who would benefit from parenteral antibiotics from those
who would not [22], and to identify children at high risk of
abuse or neglect who would benefit from an early interven-
tion strategy [23]. Thus, for a prediction model to change
the course of a patient’s care, the model must perform well
in terms of risk stratification capacity. We used a measure
of risk stratification capacity that equally weighted a
models’” ability to classify patients into low or high risk
groups in order for this methodological analysis to be most
broadly applicable. However, it is important to note that
the clinical implications of misclassification of high risk pa-
tients into a low risk group are often not equal to the clin-
ical implications of misclassification of low risk patients
into a high risk group, and the relative importance of each
depends on the specific research question.

Interestingly, the relationship between discrimination
(AUC) and risk stratification capacity (proportion of the
population classified into a clinically distinct risk group)
was robust across our 120 models. Shown in Additional
file 2, we see that a 0.7 AUC threshold for adequate dis-
crimination is consistent with 20-30 % of the population
being classified into clinically distinct risk groups. This
held true even in our sensitivity analyses with slightly dif-
ferent definitions for clinically distinct risk groups. This
calls into question the validity of an AUC of 0.7 indicating
acceptable performance of a clinical prediction model. It
is only when AUC values reach 0.8 or higher that any
women were classified into a stratum with an informative
likelihood ratio, and again, it is only when AUC values
reach 0.85 that a sizeable proportion of the population
(>40 %) is classified to a stratum with an informative like-
lihood ratio. While 0.7 is widely accepted as the lower
limit of acceptable discrimination, this threshold origi-
nated from a footnote of an early study of prediction
model performance [15], and has not since been formally
evaluated. Our findings suggest that a higher AUC thresh-
old (above 0.8) better indicate a model’s clinical utility, al-
though further research is needed to formally identify the
most appropriate threshold value.

The calibration of our original model was adequate, as
measured by the Hosmer-Lemeshow goodness-of-fit test
and visual comparison of observed versus predicted
risks. Our findings are applicable to models with ad-
equate calibration. Models with poor calibration should
not be used for risk prediction [20].

The findings of this simulation study must be inter-
preted in light of several limitations. First, evaluation of
a prediction model’s risk stratification capacity is heavily
dependent on the clinical context for the particular re-
search question at hand. For example, if classification
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into a high risk group would lead a clinician to perform
benign intervention, the threshold for defining the risk
group would be less stringent than for an intervention
that carries potential harms or side effects. Thus, the
particular thresholds we used to define clinically distinct
risk groups for this simulation study were based on the
clinical context of preeclampsia diagnosis and manage-
ment, and may not be generalizable to other research
questions. However, we do expect the broad take-home
message of our findings to be generalizable to a wider
array of clinical contexts, including prediction of out-
comes that are not as rare as preeclampsia.

To preserve interpretability of our results, we did not
build risk prediction models to simulate all situations that
a research team may encounter. The predictors we simu-
lated were binary and independent of one another, and all
regression models were logistic. Continuous predictors
may, in some cases, result in better predictive ability than
binary predictors. Conversely, non-independent predictors
may need to be more prevalent in the population and/or
have higher univariable odds ratios with the outcome to
achieve the same model performance we report. While
risk prediction models are most often based on logistic re-
gression models, extensions of this work to other model
types, such as linear regression models or Cox propor-
tional hazards models, merit further investigation.

Conclusions

Our findings can serve as a guide to researchers who
seek to develop a risk prediction model. In particular, by
examining the relationship between predictors’ univari-
able odds ratios and prevalences and model perform-
ance, researchers and peer reviewers should be able to
estimate a range of expected model performance param-
eters before a model has been built. This form of guid-
ance has not yet been available to researchers, and may
lead to increased efficiency of research efforts and funds.

Additional files

Additional file 1: Presents the observed and optimism-correct area
under the receiver-operator characteristic curve for risk prediction models
built for 12 pregnancy and birth outcomes, and provides a complete list
of included predictors for each model. (DOCX 30 kb)

Additional file 2: Presents all model performance measures for each of
the 120 models built using data augmented with simulated predictors.
Performance measures include the area under the receiver-operator char-
acteristic curve, the proportion of the population classified into a clinically
distinct risk group, the proportion of the population with an informative
likelihood ratio, and Nagelkerke's r*. (DOCX 47 kb)
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