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Abstract

Background: Modifications in root morphology are important strategies to maximize soil exploitation under
phosphorus starvation in plants. Here, we used two multiple interval models to map QTLs related to root traits,
biomass accumulation and P content in a maize RIL population cultivated in nutrient solution. In addition, we
searched for putative maize homologs to PSTOLT, a gene responsible to enhance early root growth, P uptake and
grain yield in rice and sorghum.

Results: Based on path analysis, root surface area was the root morphology component that most strongly
contributed to total dry weight and to P content in maize seedling under low-P availability. Multiple interval mapping
models for single (MIM) and multiple traits (MT-MIM) were combined and revealed 13 genomic regions significantly
associated with the target traits in a complementary way. The phenotypic variances explained by all QTLs and their
epistatic interactions using MT-MIM (23.4 to 35.5 %) were higher than in previous studies, and presented superior
statistical power. Some of these QTLs were coincident with QTLs for root morphology traits and grain yield previously
mapped, whereas others harbored ZmPSTOL candidate genes, which shared more than 55 % of amino acid sequence
identity and a conserved serine/threonine kinase domain with OsPSTOL1. Additionally, four ZmPSTOL candidate genes
co-localized with QTLs for root morphology, biomass accumulation and/or P content were preferentially expressed in
roots of the parental lines that contributed the alleles enhancing the respective phenotypes.

Conclusions: QTL mapping strategies adopted in this study revealed complementary results for single and
multiple traits with high accuracy. Some QTLs, mainly the ones that were also associated with yield performance in
other studies, can be good targets for marker-assisted selection to improve P-use efficiency in maize. Based on the
co-localization with QTLs, the protein domain conservation and the coincidence of gene expression, we selected
novel maize genes as putative homologs to PSTOLT that will require further validation studies.
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Background

The increasing demand for agricultural production poses
a global challenge to improve the phosphorus (P) use
efficiency in plants due to its low availability in a large
proportion of arable lands [1, 2]. Plants uptake phos-
phorus from the soil in the orthophosphate forms (P;),
which are available at low concentration in the soil solu-
tion [3]. In a large fraction of soils, P is tightly fixed to
the clay’s surface, which requires high amounts of phos-
phate fertilizers for high-yielding farming systems, in-
creasing production costs and hampering soil fertility
management [3-5]. However, low-input farmers have
limited access to phosphate fertilizer, which is the sec-
ond most used fertilizer for plant growth [6]. Maize is
the most common grain produced worldwide and a
major staple food in Africa and Latin America [7], where
soils often show limited P availability. Thus, improving
maize P-use efficiency is expected to increase yield sta-
bility and, consequently, food security [1, 4, 8].

Plants have evolved two major strategies to overcome
P limitation in the soil, which are P internal utilization
and P uptake [3]. P internal utilization mechanisms in-
volve transport, partitioning and remobilization of P
within the plant, whereas the mechanisms that increase
P uptake are associated with alterations in the root sys-
tem, interactions with microorganisms, and chemical
modifications of the rhizosphere [3]. Indeed, P acquisi-
tion efficiency has been considered from two to three
times more important than P internal utilization to ex-
plain the variability for P-use efficiency in tropical maize
genotypes evaluated in low- and high-P soils [9]. Consid-
ering the limited mobility and low P concentration in
the soil, mechanisms related to P acquisition are greatly
dependent of the proximity of this nutrient to the root
system [3, 10]. Thus, a well-developed root system should
be an important adaptation mechanism to maximize soil
exploitation, enabling plants to improve P acquisition effi-
ciency [11-13]. Studies have shown that plants that are
more efficient in P acquisition presented higher root:shoot
dry weight ratios [14, 15], reduced root diameters [16],
longer and denser root hairs [17], increased lateral roots
[18], greater lateral branching and shallower basal roots
[17, 19]. These changes in root morphology are key
strategies used by plants to improve soil exploitation at
a minimal metabolic cost [5, 20].

Root morphology is controlled by multiple genes in
maize [13, 21], but only a few of them such as roothair-
less (Rthl) [22], brittle stalk-2-like protein 3 (Bk2l3) [23],
and rootless concerning crown and seminal roots (Rics)
[24] have been cloned and characterized. However, an
appropriate strategy to dissect these traits is through
quantitative trait loci (QTL) mapping. Indeed, several
QTLs were mapped for root traits under contrasting
conditions of P availability in nutrient solution [25-27],
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in glasshouse [28] and in the field [29-32]. These QTLs
individually explained from 1 to 14 % of the phenotypic
variation, confirming the genetic complexity of root
traits. These studies were carried out using composite
interval mapping (CIM) strategy, however, multiple inter-
val mapping (MIM) [33] offers a significant improvement
on both statistical power and precision for detecting main
and epistatic QTLs over CIM. This happens because MIM
utilizes the estimated positions of QTLs as cofactors in
the multiple regression model, whereas CIM utilizes the
nearest markers to the estimated QTL as cofactors [34].
Besides all statistical advantages achieved by MIM, it still
cannot capture the genetic correlation that might exist be-
tween traits. The multiple-trait multiple interval mapping
(MT-MIM) method [35], which is an extension of MIM,
applies multiple regression on a multiple dimensional
(traits) space context, which enables it to capture infor-
mation that might be available from the existing genetic
correlation between traits, therefore, boosting the precision
and power to detect QTLs [35]. To the best of our know-
ledge, this method has never been applied to map QTLs
with effects on root morphology traits in maize.

In rice, a major QTL controlling phosphorus uptake
(Pupl) was mapped to chromosome 12, explaining ap-
proximately 80 % of the phenotypic variance of this trait
[36]. Rice near isogenic lines (NILs) carrying the Pupl
QTL showed a three-fold increase in P uptake and en-
hanced root surface area when grown in P-deficient soil
[36, 37]. Additionally, irrigated and upland rice varieties
introgressed with Pupl showed a significant improve-
ment in grain yield in different low-P soils compared to
their parents [38, 39]. The gene underlying the Pupl
locus was identified and named Phosphorus-starvation
tolerance 1 (PSTOL1), which encodes a serine/threonine
kinase of the LRK10L-2 subfamily [40]. The overexpres-
sion of PSTOLI in two transgenic rice varieties enhanced
the grain yield over 60 % under low-P conditions due to
larger root system (i.e., root length, and total root surface
area), which also improved the uptake of P and other nu-
trients [40]. Furthermore, Hufnagel et al. [41] showed that
sorghum homologs to OsPSTOL1 were associated with
enhanced P uptake and grain yield in sorghum grown in a
low-P soil due modifications on root system morphology
and architecture. A remarkable conservation of protein-
encoding genes among maize, sorghum and rice has been
confirmed in silico based on genome sequencing compari-
son, once approximately 89 % of the 11,892 maize gene
families predicted in the B73 genome were shared with
rice and sorghum [42]. Of these, genes encoding import-
ant adaptive traits are expected to be conserved among
these grass species.

In order to better understand the genetic basis of root
morphology and P acquisition related traits, as well as
the relationship between these traits, a path analysis and
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a QTL mapping study were carried out in a maize RILs
in nutrient solution cultivated under low P. We also in-
tegrated the QTL mapping, sequence comparison and
expression analysis to identify putative homologs to
PSTOLI in maize.

Results

Transgressive segregation of phenotypic traits in RlLs
Significant genetic variation in root morphology traits,
biomass accumulation and phosphorus content in the
seedlings were observed for the RIL population with high
broad sense heritability estimates, which ranged from 0.65
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for root:shoot dry weight ratio to 0.82 for root length
(Additional file 1: Table S1). The P-efficient line, L3,
tended to present superior phenotypic measurements for
all traits compared with the P-inefficient line L22, with the
exception of root diameter and root:shoot ratio (Fig. 1a).
The range of the phenotypic variation in the RILs was
larger than both parents, suggesting transgressive segrega-
tion for all phenotypic traits (Fig. 1a). The RILs showing
extreme root systems in comparison with their parental
lines were highlighted in the Fig. 1b. The parental lines
belonged to distinct heterotic groups (L3, flint and L22,
dent) [43], were genetically divergent based on SNP
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Fig. 1 a Frequency distribution of traits evaluated in 145 maize RILs grown in low-P (2.5 uM). The P-efficient (L3) and the P-inefficient (L22) parental
lines are indicated by arrows. b Root system of the parental lines (L3 and L22) and two extreme RILs (RIL 66 and 113) after 13 days cultivated in nutrient
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markers [44] and contrasted for grain yield in low-P
soil [45] and for root morphology traits in nutrient so-
lution [46].

Surface area is an important root trait contributing to
seedling dry weight and P content

Root length, root surface area and surface area of fine
roots were high and positively correlated with each other
(Table 1). The correlation coefficients among these traits
exhibited comparable magnitudes to those observed in a
sorghum diversity panel composed of 287 accessions [41]
and in a group of 30 maize lines [46]. These root traits also
showed strong correlation coefficients with total seedling
dry weight (0.77 to 0.86), moderate correlations with total
P content in the seedling (0.31 to 0.48), and negative corre-
lations with root:shoot ratio (-0.29 to —0.38) (Table 1). In
contrast, root diameter was negatively correlated with root
length, root surface area and total seedling dry weight, but
no significant correlation was found with total P content.
The negative correlation between root length and root
diameter (-0.62) was similar to the coefficients obtained
for root diameter with lateral (-0.65) and non-lateral
(—0.68) roots in temperate maize RILs [18].

To further investigate the relative importance of root
traits on seedling dry weight and P content, we per-
formed a path analysis, using the root traits as explana-
tory variables and the total seedling dry weight and P
content as dependent variables. As P content was the
product of total seedling dry weight and P concentration
as previously proposed [30, 31], both dependent variables
were significantly correlated (0.58) and were evaluated
separately. The partitioning of the correlation coefficients
revealed that root length had the lowest direct effect on
total seedling dry weight (-4.831) and P content (-0.997),
but had a strong indirect effect through root surface area
(5.816 and 1.565, respectively) (Table 2). Thus, the
negative direct effect of root length was counterba-
lanced by the indirect effect via root surface area, prob-
ably due to the high positive correlation between these
traits (r=0.98). A similar pattern was observed for

Table 1 Phenotypic correlation coefficients (r) among traits
evaluated in the RILs under low-P condition in nutrient solution

Traits RL SA2 RD RS oW Pcont
SA 098*  080**  -048*  -038** 0.86™* 0.39**
RL 0.69** -0.62** —0.38** 0.79%* 0.31%*
SA2 0.03 —0.29%* 0.77%* 0.48**
RD 026" —025** 0.14
RS —043** -0.02
TDW 0.58**

Traits: root surface area (SA), root length (RL), surface area of fine roots (SA2),
root diameter (RD), root:shoot dry weight ratio (R:S), total seedling dry weight
(TDW), and total P content (Pcont)

Correlation coefficients followed by ** are significant at p < 0.01
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surface area of fine roots, which was also positively cor-
related with root surface area (r = 0.8). This trait exerted
a minor negative direct influence on total seedling dry
weight (-0.681) and P content (-0.117), which were mit-
igated by the positive indirect effect via root surface area
(4.748 and 1.277, respectively). Root diameter also played
a more important effect indirectly via root surface area on
both variables, masking its direct contribution, which cor-
roborates with the negative correlation between these root
traits (r = —0.48). Therefore, root surface area contributed
the highest direct effect on total seedling dry weight
(5.935) and P content (1.597) and mediated an important
proportion of the indirect effects of the other root traits
on the dependent variables.

Thus, the path analysis clarified the direct and indirect
importance of a greater root surface area, which is a
combination of longer roots with smaller diameters, to
improve total dry weight and P content in the seedlings
under P deficiency. This root morphology also promoted
an additional advantage for shoot over root develop-
ment, confirming that the investment in root growth
was beneficial to P acquisition as discussed by Zhu and
Lynch [18].

Two distinct QTL mapping strategies reveal
complementary results

A linkage map was constructed using 292 markers that
covered 1787.5 cM of the maize genome, with an average
interval of 6.1 cM between adjacent markers (Additional
file 2: Figure S1). In addition to SSR and SNP markers, six
ZmPSTOL candidate genes and three genes previously as-
sociated with root morphology (Rthi, Bk2[3, and Rtcs)
were mapped to their predicted physical positions. Mul-
tiple interval mapping models for single (MIM) and
multiple traits (MT-MIM) provided statistical evidence
for 13 genomic regions harboring QTLs on all maize
chromosomes, with the exception of chromosome 5
(Tables 3 and 4). The QTL regions were named using the
trait initials if they were detected through single trait ana-
lysis or as “multi” if they were detected by multiple trait
analysis, followed by their genetic position in bin (Fig. 2).
A bin is the interval of approximately 20 cM between two
core markers previously defined and mapped in maize
[47], which are designated with the chromosome number
followed by a two-digit decimal.

MIM models for individual traits detected seven QTLs
controlling root length, root diameter, surface area of fine
roots, and root:shoot ratio. The proportion of the pheno-
typic variance explained by each QTL (R? ranged from
6.84 % (qRD4.05) to 15.12 % (gSA2_10.03). The magnitude
of QTL effects ranged from 0.270 standard deviations from
the progeny mean (sd) to —0.393 sd (Table 3).

The MT-MIM analysis revealed the presence of ten
QTLs with R? ranging from 2.04 % (qMulti8.02 for R:S)
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Table 2 Path analysis showing the partitioning of the phenotypic correlations into direct and indirect effects of root traits on total

seedling dry weight and P content

Independent variables

Dependent variables

Total dry weight Total P content

Root surface area Direct effect

Indirect effect via root length

Indirect effect via surface area of fine roots

Indirect effect via root diameter

Phenotypic correlation (1)
Root length Direct effect

Indirect effect via surface area

Indirect effect via surface area of fine roots

Indirect effect via root diameter

Phenotypic correlation (1)
Surface area of fine roots Direct effect
Indirect effect via root length

Indirect effect via surface area

Indirect effect via root diameter

Phenotypic correlation (r)
Root diameter Direct effect
Indirect effect via root length

Indirect effect via surface area

Indirect effect via surface area of fine roots

Phenotypic correlation (r)

Coefficient of determination

5935 1.597
—4.734 -0977
-0.544 —0.094

0.203 —-0.135

0.86 0.39
—4.831 -0.997

5816 1.565
—0462 —0.081

0.267 -0.177

0.79 0.31
—-0.681 -0.117
—3.284 -0.678

4.748 1.277
-0.012 0.008

0.77 048
—0424 0.281

3.043 0.628
—2.848 —-0.766
—-0.020 —-0.003
-0.25 0.14

0.869 0.295

up to 15.17 % (gMulti10.03 for SA2). The highest addi-
tive effect was also observed for gMulti10.03 for SA2
(-0.403 sd) (Table 4).

LOD estimates for the MT-MIM model were higher
and the confidence intervals were narrower than those
for the individual MIM models, suggesting superior stat-
istical power of MT-MIM compared with the MIM
models applied to each trait individually (Fig. 2). Despite
these differences, the MT-MIM and MIM models were
coincident in revealing QTLs at bins 1.03, 1.07, 3.06, and
10.03, whereas QTLs at bins 1.06, 2.08, 3.04, 6.06, 8.02,
and 9.04 were only revealed using the MT-MIM model.
Conversely, QTLs at regions 4.05, 7.02, and 8.05 were
only detected by MIM models. Therefore, combining the
results of MIM and MT-MIM analyses conveyed the most
accurate information regarding the genetic architecture
of the traits under investigation in this particular study.

Using a simulation, Silva et al. [35] showed that
when a QTL affects only a small subset of the traits,
the MT-MIM model might have a lower power than
MIM models to identify this QTL due to a greater
genome-wide threshold for the MT-MIM model. This
may be the reason why MT-MIM failed to identify QTLs
at regions 4.05, 7.02, and 8.05. Although the MT-MIM

LOD profile revealed peaks at these regions, the values
were not statistically significant according to the score
threshold employed.

The additive main effect of QTLs detected by MIM and
MT-MIM had both positive and negative signs, confirming
the contribution of favorable alleles coming from both par-
ental lines for most of the traits analyzed (Tables 3 and 4).
Additionally, five epistatic interactions were identified
using the MT-MIM model, including some with magni-
tudes comparable to the main additive effects (Table 5).
No epistatic effect was detected based on single trait
analysis. Taken together, the additive and epistatic effects
on the MT-MIM model explained between 23.41 % and
35.54 % of the phenotypic variance for each trait
(Tables 4 and 5).

ZmPSTOL predicted proteins share a conserved
serine/threonine kinase domain with OsPSTOL1

Using OsPSTOL1 [GenBank: BAK26566] as a query, six
predicted proteins were selected on the maize genome,
sharing more than 55 % amino acid sequence identity.
The genes encoding these proteins were predicted to be
located on chromosomes 3, 4 and 8, and named according
to their genetic position in bin (Table 6).
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Table 3 Quantitative trait loci (QTLs) identified using single trait-multiple interval mapping analysis for root length (RL), root diameter
(RD), surface area of fine roots (SA2) and root:shoot ratio (R:S) under low-P

Trait  QTL® Bin cMP Marker / Position (Mbp) ~ LOD  Flanking Markers® / Position (Mbp) R (%)  Effect® R (%)
RL gRL8.05 8.05 1004  PZA00766_1 2.24 PHM934_19 ZmPSTOL8.05_1 6.87 —0.271%* 6.87
1338 116.8 152.0
RD gRD1.03 1.03 944  umcl1073 3.80 bnlg1083 PZA03742_1 9.60 0.307*** 2564
329 27.5 445
gRD4.05 4.05 250  ZmPSTOL4.05 2.74 PHM15427_11 PHM3587-6 6.84 0.270%**
39.8 339 594
gRD7.02 7.02 760  PZA01690_7 395 PZA01933_3 PZA01946_7 10.01 —0.3371%%*
1231 98.1 1236
SA2 qSA2_10.03 10.03 342 PHM2770_19 5.16 PHM1155_14 PZA01877_2 15.12 —0.393%%* 15.12
726 62.1 775
RS gRS1.07 1.07  206.0 PHM12693_8 3.76 PZA01963_15 PZA03301_2 10.85 0.377%%* 1647
2235 203.7 240.6
gRS3.06 3.06 1320  PZA02212_1 3.00 PZA00186_4 PZA01154_1 8.53 0.310%%*
1745 165.8 216.0

?QTLs are named using the trait initials followed by their genomic position in bin

BcM and Mbp indicate the marker position in centiMorgans and in mega base pairs at maximum LOD value

Flanking markers are based on —1.5 LOD support interval

9R2: Ratio of the genotypic variance of the QTL effect to the phenotypic variance, times 100
®Effects measured as standard deviation from the progeny mean: Positive values indicate that L3 carries the allele for an increase in the trait, and negative values
indicate that L22 contributes the allele for an increase in the trait. Effect significance based on p-values estimated via score statistics resampling (*p < 0.1, *p < 0.05,

**p <0.01, ***p < 0.001)
fR%: genotypic variance of the full model

A phylogenetic analysis revealed that the six predicted
ZmPSTOL proteins clustered together with PSTOL1 from
rice, SNC4 and PR5 from Arabidopsis (circled in Fig. 3),
which were classified as LRK10L-2 subfamily of serine/
threonine receptor-like kinases by Gamuyao et al. [40]. In
a detailed alignment of structural predictions, all maize
PSTOL-like proteins shared conserved ATP-binding and
serine/threonine protein kinase domains with OsPSTOL1
(Additional file 3: Figure S2). A distinct glycosyl hydrolase
domain was predicted for ZmPSTOL4.05. The maize pro-
teins ZmPSTOL4.05, ZmPSTOLS8.02, ZmPSTOL8.05_1
and ZmPSTOLS8.05_2 were classified as receptor-like ki-
nases (RLKs), which are characterized by the presence of a
transmembrane domain for signal perception and an
intracellular kinase domain [48, 49]. In contrast, the pro-
teins ZmPSTOL3.04 and ZmPSTOL3.06 contained the
intracellular kinase domain but lacked the transmembrane
domain similarly to OsPSTOL1 [40], and thus were classi-
fied as receptor-like cytoplasmic kinases (RLCKs) [49].

ZmPSTOL candidate genes have distinct expression patterns
The expression analyses revealed that ZmPSTOL4.0S,
ZmPSTOL8.02 and ZmPSTOL8.05_1 were highly and
consistently expressed in the roots of the P-inefficient
genotype (L22) under low (2.5 uM) and high (250 uM) P
conditions, but were not responsive to P in either L22 or
L3 (Fig. 4). ZmPSTOL3.06 was preferentially expressed
in the roots of the P-efficient line (L3) with lower

expression under high-P compared to the low-P concen-
tration, and induced by high-P in roots of L22 (Fig. 4).
The expression of ZmPSTOL3.04 and ZmPSTOLS8.05_2
was induced in the root and repressed in the shoot of
L22 under high-P concentration, but were not differen-
tially expressed in L3 (Fig. 4). Additionally, the expres-
sion pattern of ZmPSTOL3.04 and ZmPSTOL8.05_2 in
roots may reflect the total P content in the seedling,
whereas the expression in shoots could be negatively
associated with the total P content in L22 (Additional
file 4: Table S2).

Discussion

Complex inheritance of root traits, seedling dry weight
and P content in maize

Two distinct and powerful statistical models for QTL
mapping (MIM and MT-MIM) were applied to dissect
root morphology traits, total seedling dry weight, root:-
shoot ratio and P content in tropical maize RILs. The
QTLs identified using the MIM model explained from 6
to 15 % of the total phenotypic variance for each trait,
which was similar to the QTLs previously mapped for root
traits and P efficiency indices in maize [25-27, 29, 31].
However, the proportion of phenotypic variance explained
by all QTLs and their epistatic interactions using MT-
MIM ranged from 23.4 to 35.5 %, which was higher than
in previous studies. To the best of our knowledge, the
present study demonstrates the first QTL mapping of root



Table 4 Quantitative trait loci (QTLs) identified using multiple traits-multiple interval mapping analysis for root length (RL), root diameter (RD), root surface area (SA), surface area
of fine roots (SA2), root:shoot ratio (R:S), total seedling dry weight (TDW) and total P content (Pcont)

qQrL® Bin cMP Marker/Position LOD Flanking markers/Position Main effect® / R? (%)°
(Mbp) (Mbp) RL RD SA SA2 RS oW Pcont
qMulti1.03 103 %44 umc1073 184 bnlg1083 PZA03742_1 -0.109 0.163* ~0075 0.110 —0168*  —0.147* 0026
329 9 275 445 118 264 056 119 282 214 065
gMulti1.06 106 183. PZA00619_3 507 bnlg1598 umc133s 0093 -0028 —0.084 0078 —0054 —0.004 0.210**
8 1954 1878 1969 085 008 070 060 027 000 433
gMulti1.07 107 2000  PHM114614.22 2001  PZA01963_15  PHM12693_8 -0185* 0010 —0231%*  —0224* 0373**  —0299***  _0138"
2056 2037 2235 303 001 473 441 1228 7.89 167
gMulti2.08 208 72.7 PZA01885_2 1610 PZA02077_1 PZA01885_2 0.116 ~0.109 0083 —0.041 ~0.111 ~0049 —0.262%**
2069 206.5 2069 128 113 065 002 116 023 6.50
gMulti3.04 304 830 PZA00297_2 790 ZmPSTOL3.04  PHMS5502_31 0217** —0216™  0.192* 0.119% 0.124* —0023 —0059
399 202 67.2 428 425 334 129 140 005 031
gMulti3.06  3.06 138, PZA01962 825 PZA02212_1 PZA03735_1 -0018 -0097 —0049 —0047 0306***  —0077 ~0025
0 1782 1745 1805 003 081 020 0.19 807 051 005
gMultis 06 6.06 130. PHM16607_11 688 PHM597_18 PZB01569_7 -0027 0.108 0010 0.178* —0.064 0111 0045
5 1602 1579 160.7 007 1 001 301 039 1.17 002
gMultis02 802 480  ZmPSTOL8.02 1576 ZmPSTOL8.02 ~ PHMI1978_111  —0252*  0.164 —0243*  —0184* —0177*  —0095 —0239*
133 133 218 414 176 383 220 204 059 371
gMulti9.04 9.04 275 PHM13183_12 2030  PZA0225_8 PZB01358_1 -0.022 -0.135" -0.079 —-0.286"** 0.083 -0.164" -0.148"%
1047 1045 106.8 004 171 058 767 065 253 205
gMulti’0.03 1003 380 PHM1155_14 1996 PHM1812.32  PZA01877.2 -0180*  —0.106 —0240%*  —0403** 1517  —0047 -0171* -0013
62.1 477 775 303 106 021 274 002
R 2617 3554 2451 3353 3404 2341 27.28

?QTLs are named using the “multi”, indicating that were detected using MT-MIM, followed by their genomic position in bin

cM and Mbp indicate the marker position in centiMorgans and in mega base pairs at maximum LOD value

“Flanking markers are based on —1.5 LOD support interval

dEffect measured as standard deviation from the progeny mean: Positive values indicate that L3 carries the allele for an increase in the trait, and negative values indicate that L22 contributes the allele for an increase
in the trait. Effect significance based on p-values estimated via score statistics resampling (*p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001)

°R% Ratio of the genotypic variance of the QTL effect to the phenotypic variance, times 100

fR%: genotypic variance of the full model (including epistasis shown in Table 4)
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Fig. 2 QTLs identified for root traits, seedling dry weight and P content using single and multiple traits MIM analyses. The markers are represented as
vertical traces along the horizontal lines, which represent the chromosomes and are numbered in centiMorgans (cM). The candidate genes are depicted
below the red vertical traces. QTL profiles for single trait MIM are shown as colored lines according to the legend for root length (RL), root average
diameter (RD), root surface area (SA), surface area of fine roots (SA2), root:shoot ratio (RS), total seedling dry weight (TDW) and total P content (Pcont).
Multi trait QTL profiles are shown as black line. The QTL peaks are depicted with an inverted triangle colored according to the legend followed
by the bin. The confidence interval (95 %) for each QTL is represented by a horizontal line above the chromosomes colored according to the legend

Table 5 Epistatic interactions for root morphology traits, total seedling dry weight and P content evaluated in low-P conditions

Interactions Interaction effect® / R (%)°
RL RD SA SA2 R:S TDW Pcont
gMulti1.03 X gMulti1.07 —-0.060 0.067 -0.078 —0.183* 0.054 —-0.053 —0.005
0.33 041 0.56 3.07 0.27 0.25 0.03
gMulti1.03 X gMulti10.03 —-0.009 -0.029 -0.029 -0.141* 0.148% -0.123 —0.235%*
0.01 0.08 0.08 1.85 2.04 141 5.12
gMulti1.07 X gMulti9.04 0.324%%* —0.358*** 0.280** 0.127 -0.108 0.196* 0.067
9.02 11.00 6.76 1.38 1.00 3.31 0.39
gMulti2.08 X gMulti10.03 —-0.071 0.179** -0.013 0.115 0.166* 0.028 0.077
045 286 0.02 1.18 247 0.07 053
gMulti8.02 X gMulti9.04 0.231%* -0.150 0.254* 0.188" —0.221* 0.307** 0.265**
324 137 393 216 299 574 429

Effects measured as standard deviation from the progeny mean; Positive values indicate that L3 carries the allele for an increase in the trait, and negative values
indicate that L22 contributes the allele for an increase in the trait. Interaction effect significances based on p-values were estimated via score statistics resampling
(*p<0.1, *p < 0.05, ** p < 0.01, ***p < 0.001)

PR Ratio of the genotypic variance of the QTL effect to the phenotypic variance, times 100

Traits: root length (RL), root average diameter (RD), root surface area (SA), surface area of fine roots (SA2), total seedling dry weight (TDW), root:shoot ratio (R:S)
and total P content (Pcont)
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Table 6 Maize candidate genes sharing more than 55 % amino acid sequence identity to OsPSTOL1

Predicted gene Gene ID Physical position (bp) Identity (%) Coverage (%) E-value
GRMZM2G412760 ZmPSTOL3.04 Chr3: 20,172,140 55 99 5.1e-104
GRMZM2G448672 ZmPSTOL3.06 Chr3: 206,918,421 66 97 4.7e-186
AC193632.2_FG002 ZmPSTOL4.05 Chr4: 39,792,602 69 95 2.0e-105
GRMZM2G172396 ZmPSTOL8.02 Chrs: 13,267,001 55 99 9.6e-123
GRMZM2G451147 ZmPSTOL8.05_1 Chr8: 152,043,859 70 97 34e-131
GRMZM2G164612 ZmPSTOL8.05_2 Chr8: 152,100,275 70 97 2.3e-127

morphology traits, seedling biomass and P content in
maize using the MT-MIM model, confirming that comple-
mentary information can be generated when this strategy
is combined with single trait MIM analyses, as previously
suggested by Silva et al. [35].

The genetic complexity of these traits was highlighted
by the epistatic interactions among QTLs that showed
effects of magnitudes comparable to those of main ef-
fects. The significant contribution of epistatic interac-
tions was also detected by other authors for root traits
in nutrient solution [25-27, 50] and for P-use efficiency
indices under field conditions [30, 51].

QTL mapping revealed that both parents contributed
favorable alleles for most of the traits evaluated, which
possibly leads to transgressive segregation. The parents
L3 and L22 were also shown to donate favorable alleles
for P acquisition efficiency and P-use efficiency based on
grain yield, when these RILs were backcrossed with both
parental lines and evaluated in low-P soil [51]. The occur-
rence of segregating progenies with extreme phenotypes,
out of the parental range, has been detected in plants sub-
jected to different abiotic stresses under field or nutrient
solution [50, 52, 53]. Transgressive segregation was also
observed in maize RILs derived from a cross between
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Fig. 3 Phylogenetic tree of predicted serine/theronine receptor-like kinases from maize, rice and Arabidopsis thaliana. The rice PSTOLI, the six
maize proteins sharing more than 55 % sequence identity to OsPSTOL1, PR5K and SNC4 from Arabidopsis thaliana were grouped separately from
other rice kinases, and are highlighted. Numbers on branches are bootstrap values for the percentage of coincidence (%) inferred from 1,000

replicates. Only percentage values higher than 50 % are shown
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Fig. 4 Expression profiles of the ZmPSTOL genes. The expression of the maize candidate genes are presented as relative gene expression (RQ)
evaluated in roots and shoots of maize seedlings of the two parental lines L3 (P-efficient) and L22 (P-inefficient) grown under two levels of P (2.5 and
250 uM) after 13 days of treatment. Error bars indicate the standard errors of three technical replicates composed of three seedlings each

Mol7 and B73 for the length and number of lateral and
seminal roots [25, 27] and for root hair length [26].

The QTL mapping results strongly reflected the pheno-
typic correlations among the target traits. The high correl-
ation between root length and root surface area (r=0.98)
reflected the coincidence in position and sign of the QTLs
detected based on MT-MIM (gMultil.07, 3.04, 8.02 and
10.03; Table 4). Additionally, two significant QTLs for root
diameter were either mapped to unique regions or with
opposite signs compared with other root traits, corrobor-
ating the negative correlations of these traits. Moreover,
the importance of the root surface area to seedling dry
weight and P content was supported by the presence of
multi-trait QTLs that significantly affected these traits
(gMulti1.07, 8.02 and 10.03; Table 4), which could be a
result of determinant genes with pleiotropic effects or the
presence of linked genes.

Coincidence of QTLs for root morphology in the seedling
stage with QTLs for grain yield

Three genes previously associated with root morphology
in maize (Rthl, Bk2[3 and Rics) were mapped to chromo-
some 1, but did not overlap with any mapped QTLs
(Fig. 2). Even though early root growth enhancement has
not always led to superior yield performance in the field

[54], a large number of QTL studies have indicated that
some genomic regions consistently affect root morphology
traits during the seedling stage and agronomic perform-
ance under different environments. A similar situation
was also found for three QTL regions on chromosome 1
in our current study, which were coincident with QTLs
previously reported for early root traits and for yield
components in the field.

qMultil.03 associated with root diameter, total seedling
dry weight and root:shoot ratio overlapped with the QTL
influencing seminal root length and weight [50], primary
axile root diameter [55], daily elongation rate of axile roots
[56] and total length of second-order lateral roots [57] in
nutrient solution. This region was coincident with QTLs
for drought tolerance index [50], grain yield, kernel num-
ber and weight in low-P soil [58]. This genomic region
was also detected in a meta-analysis for low-P tolerance in
maize as the consensus cQTL1-2 [59].

qMultil.06 was detected based on the multi-trait MIM
model and was significantly associated only with the total P
content in the seedling (Table 4 and Fig. 2). A major QTL
at bin 1.06 was associated with root traits in nutrient solu-
tion, grain yield under well-watered and water-stressed con-
ditions [50], and root-pulling resistance in adult plants [60].
Due to the consistency in the effects of this genomic region
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on root traits and grain yields in different studies, this QTL
was named root-yield-1.06, and validated as constitutively
affecting roots, agronomic features and grain yield under
different water regimens [61]. A QTL for P utilization effi-
ciency (gPUTILI) based on grain yield under low-P soil also
overlapped in this region [51].

The third QTL region on chromosome 1 was mapped
at bin 1.07 spanning from 214 to 223 Mbp (gMulti1.07),
which was associated with root length, root surface area,
surface area of fine roots, total seedling dry weight and
root:shoot ratio. This region was coincident with a cluster
of QTLs named Ax-2 that controlled the root numbers
and lengths identified in a meta-analysis combining 15
QTL studies [54]. QTLs for grain yield and drought toler-
ance index were also mapped to this genomic region [50].

The association of root morphology QTLs in early
stages of plant development with yield performance, in-
cluding the validation of the root-yield-1.06, suggested that
at least some of these genomic regions can be further used
in marker-assisted selection to improve vyield stability
under drought and other mineral stresses in maize.

ZmPSTOL genes co-localized with QTLs for root morphology,
biomass accumulation and P content

The QTL mapped using MT-MIM (gMulti8.02) that was
associated with root length, root surface area, root:shoot ra-
tio and P content co-localized with ZmPSTOLS8.02 (Fig. 2).
This ZmPSTOL candidate gene was highly expressed in the
roots of L22 (Fig. 4), the donor line of the favorable QTL
alleles for all traits mentioned above. In rice, the overexpres-
sion of OsPSTOL1 enhanced total root length and root sur-
face area in transgenic seedlings in nutrient solution as well
as grain vyield of transgenic varieties cultivated in P-
deficient soils [40]. According to these authors, the larger
root system contributed to a significant increase in the up-
take of nutrients such as phosphorus, nitrogen and potas-
sium in transgenic rice lines overexpressing OsPSTOLI.
The sequence similarity and conserved domains of these
protein kinases from rice and maize combined with the evi-
dences shown here suggest that ZmPSTOL8.02 could be
one of the genes underlying gMulti8.02, sharing similar
functions in root development and P acquisition efficiency
in maize to OsPSTOLI in rice. Additionally, QTLs associ-
ated with seminal root number in high-P levels [27], shoot
dry weight [32] and primary root length [56] overlapped
with gMulti8.02, confirming that genes controlling root
and shoot development in this genomic region are also
expressed in other genetic backgrounds.

The other three ZmPSTOL genes co-localized with single
trait QTLs for root length (ZmPSTOLS8.05_I), root diam-
eter (ZmPSTOL4.05), and root:shoot ratio (ZmPSTOL3.06).
These genes were preferentially expressed in the roots
of the donor line that contributes positive alleles for the
respective QTLs under low- and high-P conditions.
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ZmPSTOL8.05_1 was mapped to 117 ¢cM on chromo-
some 8, flanking gRL8.05. Additionally, a weak LOD
peak for total P content was coincident with this candi-
date gene (Fig. 2). The MIM model based on score as a
significance threshold was not able to detect this QTL,
but a minor effect QTL was detected using the Bayesian
Information Content threshold with LOD 1.8 and
explaining 6.5 % of the total variance for the total P con-
tent in the seedling (data not shown). This genomic re-
gion also harbored QTLs explaining 5 to 6 % of the
phenotypic variance for P acquisition efficiency based on
grain yield [51], indicating that this genomic region con-
sistently contributed to P acquisition during the seedling
and adult plant stages. Additionally, QTLs in this genomic
region were mapped for root length and grain yield under
field conditions [32], root length and root dry weight in
nutrient solution [26, 50, 62]. The coincidence of QTLs
for root traits and for grain yield from different studies as-
sociated with the superior expression of ZmPSTOLS8.05_1
in roots under low-P are highly compatible with the role
of its putative homolog (OsPSTOL]I) in rice.

ZmPSTOL3.06 was mapped to 169.6 cM on chromo-
some 3 within the confidence interval of gRS3.06 for
root:shoot ratio (Fig. 2). This genomic region spans bin
3.06 that harbored QTLs for root traits in a meta-
analysis using 15 QTL studies in nine maize mapping
populations [54]. This candidate gene was highly expressed
in roots cultivated with both P levels of the P-efficient line
L3 (Fig. 4), which contributed with positive alleles for the
root:shoot ratio QTL. ZmPSTOL3.06 had the lowest e-
value with OsPSTOLI (Table 6) and its predicted protein
lacks the transmembrane domain, similarly to OsPSTOL1
(Additional file 3: Figure S2). This combined information
makes this predicted gene also a candidate to OsPSTOLI
homolog in maize.

ZmPSTOL4.05 was coincident with the gRD4.05, with
L22 donating the allele that reduced the root diameter.
ZmPSTOL4.05 was highly expressed only in roots of the
donor line, L22, cultivated in both P availability. Under
P starvation conditions the root diameter decreases,
while the root surface area increases, enabling the root
system to explore a larger volume of soil [11]. Thus, as
observed in the path analysis, fine roots are an import-
ant component to improve the root surface area, which
played a strong contribution to total seedling dry weight
and to P content in maize seedlings cultivated in low-P
conditions. A QTL controlling the plasticity of lateral
root number (i.e., change in the lateral root number in
response to P availability) in hydroponics [26] was also
mapped at this same region, suggesting that genes har-
boring in this genomic region may control root traits
across different populations.

The finding that ZmPSTOL genes were preferentially
expressed in the roots of the lines that contributed the
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allelic enhancing root traits, seedling dry weight and P con-
tent indicate that at least ZmPSTOL3.06, ZmPSTOL4.05,
ZmPSTOL8.02 and ZmPSTOLS8.05_1 may have a functional
relationship with root morphology and/or with P acquisi-
tion in maize. Considering the role of PSTOLI genes in rice
and sorghum, it could be expected that genes encoding
important adaptive traits would be shared among rice,
sorghum and maize, such as the case for the major Al
tolerance gene in sorghum (SbMATE) [63] that was found
to be functionally conserved in maize (ZmMATEI) [64]
and rice (OsFRDL4) [65].

Conclusions

Comprehensive QTL analyses revealed important re-
gions associated with root traits, seedling dry weight and
P content in maize under low-P concentration. Using
the multiple trait-multiple interval mapping model, these
QTLs explained a larger extent of the phenotypic vari-
ance for the target traits compared with previous studies.
The complementary genomic regions identified using
both models jointly offered putative targets for molecu-
lar breeding aiming to improve P acquisition efficiency
in maize. Additionally, this study identified new maize
candidate genes sharing high identity with OsPSTOLI
that were preferentially expressed in the roots and co-
localized with QTLs for root morphology and P acquisi-
tion related traits.

Material and methods

Mapping population

The segregating population was composed by 145 maize
recombinant inbred lines (RILs) derived from a bi-parental
cross of lines L3 (P-efficient) and L22 (P-inefficient). F;
plants were self-pollinated and individual F, plants were
advanced for seven cycles of selfing by single seed descent,
after which seeds were bulked for multiplication. The par-
ental lines and the population were developed at Embrapa
Maize and Sorghum (Brazil, latitude 19_270S and 716 m
above sea level). The parental lines were previously charac-
terized as contrasting for P-use efficiency under low and
high P conditions in the field [45] and for root morphology
traits [46].

Quantitative analysis of root traits, seedling biomass
accumulation and P content using a paper pouch system
The mapping population and parents were evaluated in
randomized complete block design with four biological
replicates, each composed by three plants per pouch. Each
biological replicate was evaluated in an identical but inde-
pendent experiment performed on a seven-day interval.
Maize seeds were surface sterilized with 0.5 % (v/v) sodium
hypochlorite for 5 min and germinated in moistened ger-
mination paper rolls. After four days, uniform seedlings
were transferred to moist blots in paper pouches after

Page 12 of 17

removing the endosperm to eliminate seed reserves [46]. A
modified Magnavaca nutrient solution [66] containing
2.5 uM P was replaced every three days and the pH was
maintained at 5.65. Each container was filled with 5 1 of nu-
trient solution with the bottom 3 cm of the pouches
immersed in the solution. The containers were maintained
in a growth chamber with a 12 h photoperiod at 27/
20 °C day/night temperatures and 330 pmol m™> s™" of
light intensity. After 13 days, root images were cap-
tured using a digital photography setup and analyzed
using RootReader2D (http://www.plantmineralnutrition.net/
rr2d.php) and WinRHIZO (http://www.regent.qc.ca/assets/
winrhizo_about.html) software according to de Sousa et
al. [46]. The total root system, which includes all to-
gether primary, seminal and initial adventitious
roots, was evaluated for total root length (RL) (cm), aver-
age root diameter (RD) (cm®), total root surface area (SA)
(cm? and surface area of fine roots (SA2) (1.0<d<
2.0 mm) (cm?).

Root and shoot tissues were dried separately at 65 °C
in a forced-air oven until a constant weight was obtained
to determine the root:shoot dry weight ratio (R:S) and
total seedling dry weight (TDW). For P analysis, root
and shoot tissues were subjected to nitric perchloric acid
digestion [67]. The total P content in the seedling
(Pcont) was calculated as the sum of the P content in
each seedling component, which was the product of the
dry weight and the P concentration in the root and
shoot. As maize absorbs phosphate in its orthophos-
phate form (Pi), the P in the nutrient solution refers to
phosphate, whereas the total P content in the seedling
comprises both organic and inorganic P forms.

Analysis of variance (ANOVA), correlations between
pairs of traits and path analysis were performed using
the GENES software [68]. The phenotypic correlations
were calculated based on the mean values. Broad sense
heritability was estimated as #’=6%/(6%+6%) with
6%= (MSg-MSg)/r and 63=MSg, where % and 62
are the estimates of genetic and error variance, respectively;
MSg and MSg are the genetic and error mean squares,
respectively, and r is the number of replications.

For the path analysis [69], the five root traits (total
root length, root average diameter, surface area and sur-
face area of fine roots) were considered as independent
variables x; (i=1, 2, ..., 5). The total seedling dry weight
and phosphorus content were considered as dependent
variables y; (j=1, 2) in two distinct path analyses. The
estimated path coefficient (P;) was considered as the dir-
ect effect of variable x; on y;. Indirect effects of x; on y;
mediated by variable x;- were calculated by multiplying
the correlation between x; and x; (r;-) by P;;. Root:-
shoot ratio was excluded from the analysis due to its
contribution to both dependent variables.


http://www.plantmineralnutrition.net/rootreader.htm
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Linkage map

DNA was isolated from young leaves using the CTAB
method [70]. Initially, 60 polymorphic SSR markers were
genotyped in the RIL population according to [71]. A
total of 332 SNPs (Single Nucleotide Polymorphisms)
were genotyped in the population using Kompetitive
Allele-Specific PCR or the KASP™ assay (LGC Genomics,
Teddington, UK). The sequences, genetic and genomic
locations of SSR and SNP markers are available at the
Maize Genetics and Genomics Database (http://
www.maizegdb.org/data_center/locus).

The markers were tested for the expected segregation ra-
tio of 1:1 using chi-square statistics (p < 0.05) corrected for
multiple tests based on Bonferroni’s method. The linkage
map was constructed using MapMaker/EXP 3.0 [72] con-
sidering a minimum LOD of 3.0 and a maximum frequency
of recombination (r) of 0.4. The mapping function Kosambi
[73] was used to convert recombination fractions into map
distances. The final linkage map was drawn using Windows
QTL Cartographer v 2.5 (http://statgen.ncsu.edu/qtlcart/
WQTLCart.htm).

QTL mapping
Phenotypic fitted values were obtained from the following
statistical model adjusted for each single trait:

Yy =#+Bi+Gjteg

where y; is the phenotypic observation from the i
(i=1, ..., 4) replication on the j”* genotype (j=1, ...,
145); u is the phenotypic average; B; is the effect of the i
block; G; is the j™ genotype; and g; is the residual associ-
ated with the y; observation. We tested the fit of two
models by first assuming that the residuals were normally
distributed with constant variance, ¢;~N(0, ¢®) and by
second considering the heteroscedasticity, &;~N(0, af).
Both models were fitted using the gis function from the
nlme R package [74] and compared using the ANOVA
function from the same package. For each trait, the fitted
phenotypic values were extracted from the model with the
best fit. Each replicate was composed by three plants that
were bulked for all laboratorial analyses.

Due to the large variability in the absolute values, all
phenotypic fitted values were standardized to achieve
unity as standard deviations and zero means as follows:

2y = Yit ~ /’lt’
Ot
where z;; is the standardized observation of trait ¢ (=1,
2, ..., 7) on subject i; y; is the observation of trait ¢ on
subject i; p, is the average of trait ¢; and o, is the stand-
ard deviation of trait ¢.

For the joint QTL analysis, a multiple trait-multiple

interval mapping (MT-MIM) model was evaluated as
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previously described [35]. The complete model was fit-
ted using the following equation:

m b
Zy = p+ E Boxirt+ E W rixirxi+e,

r=1 r<l

where z,; is the standardized observation of trait ¢ on
subject i; p, is the intercept for trait ¢; the parameter f3,,
has the genetic interpretation of the additive effect of
QTL r on trait ¢ (r=1, 2, ..., m QTLs included in the
model); and the regressive variables x;, represent the con-
trast coefficients codified according to the Cockerham
model [33, 75] (i.e, x;, is 1 for the dominant and -1 for
the recessive homozygous). The third component on the
right side of the model refers to a subset of the p pairwise
interactions among QTLs previously included in the
model, where w,,; is the epistatic effect between QTL r
and QTL [ on trait ¢ and the random error &; was as-
sumed to be independent and identically distributed ac-
cording to a multivariate normal distribution, with a mean
vector of zero and a positive definite symmetric variance-
covariance matrix Y, i.e., &; = MVN(O, X,).

Multi-trait QTL mapping was initiated with a forward
search for the main effect QTL using a grid of 1 cM in
the genome and a 15 % genome-wide significance level.
After three rounds of QTL search, the positions of all
QTLs in the model were re-estimated as along with all
other parameters in the model. After the inclusion of the
main effects in the model, the forward search for epista-
sis was performed by testing all pairwise interactions
among QTLs already included in the model, employing
a 5 % genome-wide significance level. Only the epistatic
effects that displayed at least one significant marginal ef-
fect were kept in the final model. The Haley-Knott regres-
sion [76] was used to estimate the model parameters, and
the resampled score statistics [35, 77] were employed to
obtain the empirical genome-wide threshold for the QTL
mapping analysis. Using this approach, a final model was
selected to calculate the proportion of phenotypic variance
explained by all QTLs as the ratio between the genotypic
variance of the QTL effect to the phenotypic variance
times 100 (coefficient of determination R?), and the LOD
profile along the chromosomes. The R* values were
estimated using the fitted full model, including non-
significant QTL effects. The QTL confidence intervals
were obtained using the drop 1.5-LOD support interval
method with approximately 0.95 confidence levels [78].

Multiple interval mapping (MIM) analysis was per-
formed for each single trait [33, 79] in a similar proced-
ure to that performed for the joint analysis, considering
t=1. All QTL analyses were performed using R software
(version 2.15.2) and a QTL mapping package named
OneQTL that is under development by L.C. Silva.


http://www.maizegdb.org/data_center/locus
http://www.maizegdb.org/data_center/locus
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Identification of maize PSTOLT homologs

Using the OsPSTOL1 amino acid sequence [GenBank:
BAK26566] we performed searches against the maize gen-
ome database (http://ensembl.gramene.org/Zea_mays/Info/
Index) using BLASTp. Six predicted maize proteins with
more than 55 % sequence identity to rice PSTOL1 were se-
lected and aligned using ClustalX software version 1.83 [80];
the alignment included OsPSTOL1 and the Arabidopsis
protein kinases SNC4 [81] and PRK5 [82]. The phylogenetic
tree was constructed based on the maximum likelihood
method with 1000 bootstraps [83] using MEGA software
[84]. The protein domains were identified using the CDART
(Conservative Domain Architecture Retrieval Tool (http://
www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi).

Mapping candidate genes

Specific primers for the maize candidate genes were de-
signed using Primer Blast (ncbi.nlm.nih.gov/tools/primer-
blast/index.cgi). PCR reactions were performed using 30 ng
of DNA, 0.2 mM of each dNTP, 2 mM of MgCl,, 10 pmols
of each primer, 5 % (v/v) dimethyl sulfoxide (DMSO) and 1
U of Taq DNA polymerase (Invitrogen, Carlsbad, CA). The
amplification profile included an initial step of 95 °C for
1 min, followed by 35 cycles of denaturing at 94 °C for
1 min, annealing at 58 to 60 °C for 30 s, depending on the
primers, and extension at 72 °C for 1 min. The amplifica-
tion products were treated with ExoSAP-IT reagent (USB
Corporation, Cleveland, OH) and sequenced using the
BigDye Terminator v3.1 cycle sequencing kit on an ABI
PRISM 3100 genetic analyser (Applied Biosystems, Foster
City, CA) to identify polymorphisms between the
parental lines.

Sequence-tagged site (STS) markers were developed to
map genes previously associated with root morphology
in maize. For the roothairless gene (Rthl) [22], a 22-bp
indel was amplified using the primers 5'-TTGCCCAC
GGCTGGCAAGAG-3" and 5'- GGCTCTGTAGCACG
CCCCTC - 3" and resolved on a silver-stained polyacryl-
amide gel [85]. The same strategy was used for the brit-
tle stalk-2-like protein 3 gene (Bk2[3) [23], which was
revealed after the amplification of a 15-bp indel using the
primer pair: 5'-GCTGGTTAGATCCCCCGCCCA-3" and
5'-GCACTGGAGCCACCGACACTG-3". The rootless
concerning crown and seminal roots gene (Rics) [24] was
genotyped as a CAPS marker obtained after digestion of
the amplification product of genomic DNA with the
primers 5-CGCGCCATAGCCCGCAGTAA-3" and 5'-
GATTGGCACGGGCCGGTCAG-3" with the restriction
enzyme Acil and was visualized on a silver-stained poly-
acrylamide gel [85].

Cleaved amplified polymorphic sequence (CAPS)
markers were developed for the other candidate genes.
For ZmPSTOL3.04 the PCR product amplified using
the primers 5'-ACGGGGCTTGGAGGCACATG-3" and
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5'-TGAGACCGCGTGGGGAAGGG-3" was digested with
the restriction enzyme Stul. The polymorphism for
ZmPSTOLS8.02 was obtained after digestion with Rsal
of the genomic fragment amplified with the primers
5-TGACTGGTGCCAGAGGTACGC-3" and 5'-TGC
ATACAAGGGACTGCTTCGGA-3". CAPS markers were
resolved on silver stained polyacrylamide gels [85]. The im-
ages were digitally captured using a Nikon digital camera.

ZmPSTOL3.06 was mapped based on the presence and
absence of the amplification product using the primers
5'-AAGGGCGTCCAACCGCCTTG-3" and 5'-TTGTT
GGCCGGTCCGTTGGG-3" on a 1 % (w/v) agarose gel
stained with ethidium bromide.

A G/A SNP was revealed after sequencing the amplified
product obtained using the primer pair 5'-CCGCTA
CGCCTTGGTTGCCA-3" and 5'-CGCCGTAGTTAGCG
GAGCCG-3' to map ZmPSTOL4.05, the primer pair
5'-AGCCTCCACGATGGCCGACA-3" and 5'-TGCA
TTTGTGTGACCTGGAA-3" to map ZmPSTOLS8.05_1I,
and the primers 5'- TCCACGGCCGACAGGTAGCA-3’
and 5-GCTCAAGAGAACTCAGGGTGGC-3" to map
ZmPSTOL8.05_2.

Gene expression analysis

The expression profiles of the candidate genes were
assessed in the roots and shoots of the L3 and L22 geno-
types harvested after 13 days in modified Magnavaca’s
nutrient solution containing low (2.5 uM) and high
(250 puM) P. Total RNA was extracted from a bulk of
three plants using the RNeasy Plant Mini kit (Qiagen,
Valencia, CA), and 1 pg of total RNA pretreated with
DNase I was used for cDNA synthesis using the High
Capacity cDNA Reverse Transcription kit (Applied Bio-
systems, Foster City, CA) according to the manufac-
turer’s instructions. Gene expression was determined by
quantitative PCR (qPCR-RT) using SYBR Green I and Taq-
Man assays in the ABI Prism 7500 Fast System (Applied
Biosystems, Foster City, CA). Primers were designed for
all target genes using Primer Express Software (Applied
Biosystems, Foster City, CA), and 18S rRNA was used
as an endogenous constitutive control (Additional file 5:
Table S3). With the exception of ZmPSTOL4.05, two
primers pair were designed for each gene to confirm
their expression pattern. However, only the expression
profile obtained with the primer pairs highlighted in
bold in the Additional file 5 are shown. The relative
gene expression was calculated using the 2°*“T method
[86], with three technical replicates and L3 roots under
low-P conditions as a calibrator. Variance analysis of the
gene expression and total P content was performed
using GENES software [68].

Availability of supporting data
http://purl.org/phylo/treebase/phylows/study/TB2:517800.
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Additional files

Additional file 1: Table S1. Trait means, coefficients of variation (CV),
genetic variances (03), environmental variances (07) and heritability estimates
(h?) in 145 RILs derived from a cross between maize lines L3 and 122.

Additional file 2: Figure S1. Genetic linkage map including 292 markers
in a maize RIL population derived from a cross between L3 and L22. For each
chromosome (chr), marker names are indicated on the right and the genetic
distance in centimorgans (cM) is on the left. The colored bars indicate the
position of QTLs for root traits, total plant dry weight, root:shoot ratio and P
content (for details see Fig. 3, Tables 3 and 4).

Additional file 3: Figure S2. Alignment of the OsPSTOLT and six maize
serine/theronine receptor-like kinases highlighting the predicted domains.
Letters in green indicate the glycosil hydrolase domain and in red, the
transmembrane domain. The kinase domain is represented by a gray
background, whereas the ATP-binding site is highlighted with black
background with white letters and the Serine/Threonine protein kinase
active site with yellow background.

Additional file 4: Table S2. Total P content in the seedling and relative

expression of ZmPSTOL genes in shoots and roots of both parental lines
in low- and high-P concentration.

Additional file 5: Table S3. Primers used for gene expression analyses.
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