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Abstract

Background: Tropospheric ozone (Os) is a secondary air pollutant and anthropogenic greenhouse gas.
Concentrations of tropospheric Oz ([Os] have more than doubled since the Industrial Revolution, and are high
enough to damage plant productivity. Soybean (Glycine max L. Merr.) is the world’s most important legume crop
and is sensitive to Os. Current ground-level [O5] are estimated to reduce global soybean yields by 6% to 16%. In
order to understand transcriptional mechanisms of yield loss in soybean, we examined the transcriptome of
soybean flower and pod tissues exposed to elevated [Os] using RNA-Sequencing.

Results: Elevated [Os] elicited a strong transcriptional response in flower and pod tissues, with increased expression of
genes involved in signaling in both tissues. Flower tissues also responded to elevated [Os] by increasing expression of
genes encoding matrix metalloproteinases (MMPs). MMPs are zinc- and calcium-dependent endopeptidases that have
roles in programmed cell death, senescence and stress response in plants. Pod tissues responded to elevated [Os] by
increasing expression of xyloglucan endotransglucosylase/hydrolase genes, which may be involved with increased pod
dehiscence in elevated [O3].

Conclusions: This study established that gene expression in reproductive tissues of soybean are impacted by elevated

[Os], and flowers and pods have distinct transcriptomic responses to elevated [Os].

Keywords: Oxidative stress, Glycine max, RNA-Sequencing, Matrix metalloproteinases, Cell wall modification

Background

Current tropospheric Oz concentrations ([Oz]) are esti-
mated to cost $14 to $26 billion in annual global crop
economic losses [1] and severely impact human health,
accounting for an estimated 0.7 million deaths per year
[2]. Ozone in the troposphere is formed through the
photochemical oxidation of volatile organic compounds
(VOCs), carbon monoxide and methane in the presence
of nitrogen oxides (NO,) [3]. Ozone is a dynamic pollu-
tant and concentrations vary temporally and spatially,
with higher concentrations in the Northern Hemisphere
compared to the Southern Hemisphere, and typically
higher [O3] in the summer compared to the winter [3].
Background tropospheric [O3] have more than doubled
since the Industrial Revolution and are projected to in-
crease by an additional ~20% by the year 2100 if current
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high emission rates continue [4]. In the crop growing
regions of the Northern Hemisphere, summer concen-
trations of O3 often exceed 40 ppb, which exceeds the
critical threshold for damage to sensitive crops, inclu-
ding soybean (Glycine max) [5].

When taken up by plants, O3 is converted into other
reactive oxygen species (ROS), and can induce signaling
pathways that lead to programmed cell death, especially
with exposure to very high [O3] [6]. At lower concen-
trations, chronic exposure to elevated [O3;] decreases
photosynthetic carbon assimilation and stomatal con-
ductance, and accelerates the process of senescence
[7,8]. In addition to leaf-level effects, O3 negatively im-
pacts plant fitness and reproductive development, which
can be mediated through reduced carbon allocation
from source tissues and/or through direct effects on re-
productive tissues [9,10]. A meta-analysis of published
studies from 1968 to 2010 of Oj effects on plant repro-
ductive processes reported that exposure to elevated
[O3] decreased seed number and seed size, as well as
fruit number and fruit size when compared to plants
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grown in charcoal-filtered, O3-free air [11]. However, the
meta-analysis also showed that elevated [O3] did not sig-
nificantly alter inflorescence number, flower weight or
flower number [11]. This suggests that plants can com-
pensate to some extent from Oz damage [12], and also
that the effects of O3 can be tissue-specific.

Soybeans have naturally high levels of floral and pod
loss, and subsequent seed and yield loss is greatest when
stress occurs during flower and early pod development
[13]. Flower and pod abscission can range from 32 to
82% in soybean [14-16], but this varies considerably with
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location on the plant [15-17], location in the canopy
[18], source-sink relations [19], hormone levels [13,20,21],
shade [22] and water status [13,23,24]. Ethylene promotes
flower and pod abscission in soybean [25], and elevated
[O3] can increase ethylene emission in plants [26].
Therefore, elevated [O3] has the potential to increase
flower and pod abscission. In field-grown soybean ex-
posed to elevated [O3] for an entire growing season
[27], pod production was decreased by elevated [O3],
but flower number was not affected (Figure 1). Based on
this evidence from the field, it is hypothesized that the
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Figure 1 The effect of O; on the number of flowers and pods produced per node in field-grown soybean. (a) Linear regression of the
average number of pods per node for soybean plants grown under eight [Os] at the SoyFACE facility (http://www.igb.illinois.edu/soyface/) in
Champaign, lllinois in 2009 and 2010. Blue lines show the 95% confidence intervals. Experimental design, planting conditions, meteorological data
and harvesting methods are found in [27]. (b) Average flower number per node for soybean plants grown under ambient (44 ppb) and elevated
(100 ppb) [03] at the SoyFACE facility in 2011. Flower number per node was monitored daily for five plants per ambient and elevated [Os] plot
(n = 2 for ambient, n =4 for elevated [O3]).
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transcriptional responses of soybean flowers and pods
to elevated [O3] would be distinct.

Previous studies have examined changes in transcript
abundance in plants in response to elevated [O3] [6,28-35];
however, most of these studies have focused on leaves. In
soybean, both flower and pod tissues also have stomata
through which O3 could enter and elicit a signaling re-
sponse [36,37]. Next-generation sequencing technology
allows examination of changes to the entire transcriptome,
which could facilitate interpretation of the complex phe-
notypes that underpin O3 response in plants. By inves-
tigating how elevated [Oj] affects the transcriptome of
reproductive tissues, we can begin to understand the dis-
tinct responses in different tissues and identify potential
targets for improving tolerance. Therefore, in this study,
the transcriptome of flower and pod tissue from chamber-
grown soybean plants at ambient (<20 ppb) and elevated
[Os] (150 ppb) was investigated. Both flower and pod tis-
sues showed significant transcriptomic responses to ele-
vated [O3]. While 277 transcripts were responsive to
elevated [Os] in both tissues, most of those transcripts did
not change in the same direction or at the same magnitude
in flowers and pods, indicating that the transcriptional re-
sponse to Oj in different reproductive tissues was distinct.

Results and discussion

Overlapping effects of elevated [Os] on the transcriptome
of flower and pod tissue in soybean

Flower and pod development in soybean are sensitive
to environmental stress [23,24,38,39], and elevated [Os]
significantly impacted pod production, but not flower
production (Figure 1). In order to identify the genetic
mechanisms underpinning O3 response in soybean pods
and flowers, the transcriptome of flower and pod tissues
was compared using RNA-Sequencing (RNA-Seq). The
global transcriptional analysis showed the magnitude of
potential responses to elevated [Os] in flowers and pods
was similar, with genes showing approximately the same
range of both mean expression values in flowers and
pods, and similar potential log fold change responses to
elevated [O3z] in the two tissues (Figure 2). However,
more than three times as many genes were differentially
expressed in flower tissue (4,595 genes) than in pod tis-
sue (1,375 genes; Figure 3) in response to elevated [O3],
and only 277 of those genes were differentially expressed
in both flowers and pods (Figure 3).

Differentially expressed genes in pods and flowers
were grouped into functional categories (Figure 4). Nine
of 15 total functional categories showed pod and flower
genes changing in the same direction in response to ele-
vated [O3] (Figure 4). Transcripts involved in signaling,
development, transport, stress, protein and RNA were
expressed at greater levels on average in both pods and
flowers exposed to elevated [O3z] compared to control
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Figure 2 Comparison of differential gene expression in flower
and pod tissue under elevated [Os]. The log fold change for all
genes differentially expressed in flower and pod tissue (p <0.05) was
plotted against the mean expression value for that gene measured
in both ambient and elevated [Os]. Black circles represent genes
differentially expressed in flowers and red circles represent genes
differentially expressed in pods. Green triangles represent MMP
genes differentially expressed in flowers. Yellow squares represent
XTH genes differentially expressed in pods. Reference line represents
a log fold change of zero. Values above the reference line are genes
increased in abundance compared to ambient [O5] and values
below the reference line are genes decreased in abundance

compared to ambient [Os].

(Figure 4). While average changes in expression based
on functional categories suggests that there was overlap
in the transcriptional response of flowers and pods to
elevated [Os], investigation of individual genes showed
that there was not good correspondence of the direction
or magnitude of the response (Figure 5). Less than half
of the 277 genes that were significantly affected by ele-
vated [Os] in both flowers and pods responded in a simi-
lar direction, with 78 of the 277 genes increasing in both
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Figure 3 Venn diagram of differentially expressed genes in
flower and pod tissues in response to elevated [Os]. Numbers of
genes that were differentially expressed in response to elevated [Os]
in flowers (green), pods (purple) and in both tissues (overlapping).
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Figure 4 Average fold change of genes differentially expressed in both flowers and pods in response to elevated [Os]. Average log fold
change of all genes within a functional category that significantly responded to elevated [Os] in both flowers (black bars) and pods (red bars). A
positive log fold change indicates increased abundance in elevated [Os] compared to ambient [Os], while a negative log fold change indicates
decreased abundance in elevated [Os].
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Figure 5 Comparison of expression changes in response to elevated [Os] in soybean flowers and pods. The log fold change of the 277
individual genes significantly changing in response to elevated [Os] in both pods vs. flowers is shown. Functional groups are represented by
different symbols/colors. The 1:1 line represents genes that have the same direction of fold change in flower and pod tissue.
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tissues in response to elevated [O3] and 33 decreasing in
both tissues in response to elevated [Oj] (Figure 5).
Many of the transcripts that fell on the 1:1 line in
Figure 5 were involved in signaling and RNA processing,
including 12 leucine-rich repeat receptor-like kinases
(RLKs) and 3 cysteine-rich Domain of Unknown Func-
tion 26 (DUF26) RLKs (also known as cysteine-rich
receptor-like kinases, CRK). Plant RLKs are transmem-
brane proteins involved in signal perception and form a
large multi-gene family with regulatory roles in deve-
lopment, abiotic and biotic stress responses in plants
[40,41]. Recent analysis of the response of Arabidopsis
DUF26 RLKs showed that many of the 44 RLKs were
specifically up-regulated in response to O3 stress in
leaves [42], including DUF26 30 (CRK 26), DUF26 29
(CRK 29) and DUF26 41 (CRK 2), which also had a
significant increase in expression in soybean pods and
flowers exposed to elevated [O3]. Wraczek et al. [42]
found that the general pattern of DUF26 expression re-
sponses to O3 was most similar to the transcriptional re-
sponse to pathogen infection, which like Oj elicits an ROS
burst in the apolost. The transcriptional response to O3
however, was very different from expression responses to
high light treatments or chemical treatments that in-
creased ROS production in chloroplasts or mitochondria
[42]. Thus, it was further suggested that the DUF26 do-
main, which has a conserved cysteine motif C-8X-C-2X-C,
could act as an apolastic ROS sensor [42].

A number of WRKY domain transcription factors also
showed significantly greater expression under elevated
[Os] in both soybean flowers and pods (Glyma04g40130,
Glyma06g14720, Glymal4g36430, Glymal4g36438, Gly-
mal4g36446). The WRKY transcription factor family is
one of the largest families of transcription factors in
plants, with 133 members in the soybean genome [43].
WRKYs function in many plant processes including re-
sponse to biotic and abiotic stresses, and senescence
[44]. Up-regulation of WRKY transcription factors in re-
sponse to O3 stress has been previous reported, pri-
marily in the leaves of trees [45-47]. Two of the WRKY
transcription factors with increased expression in both
flower and pod tissues in response to elevated [O3] (Gly-
ma04g40130 and Glyma06g14720) were likely formed
through a segmental duplication event that is estimated
to have occurred 20 million years ago [43].

Distinct effects of elevated [O3] on the transcriptome of
flower and pod tissue in soybean

Although there was some overlap in transcriptional re-
sponses to elevated [O3] in flowers and pods, the vast
majority of genes changing in either tissue were distinct
(Figure 3), and even among the genes that were expressed
in both flower and pod tissues, the fold changes in ex-
pression were of different magnitudes or in the opposite
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direction (Figure 5). In flower tissue, the genes with the
greatest increase in abundance in response to elevated
[O5] included matrix metalloproteinase (MMP) genes
and genes related to hormone metabolism and signaling
(Table 1). Genes annotated as MMPs also had high mean
expression levels (Figure 2). While little is known about
their role in soybean flowers, in other tissues MMPs func-
tion in degradation of the extracellular matrix (ECM) in
response to senescence, stress and programmed cell death
[48-51]. Domain analysis indicated that 7 of the 9 diffe-
rentially expressed genes annotated as MMPs had both a
cysteine switch domain and a zinc-binding domain, both
of which are required for characterization as a MMP
(Figure 6) [52-54]. Those genes with both required do-
mains were termed putative soybean flower MMP genes.

The putative MMP gene Glyma02g03301 had two iden-
tical cysteine switch domains and zinc-binding domains,
which was unique compared to the other putative flower
MMP genes. All putative flower MMP genes had a signal
peptide and transmembrane domain, with the exception
of Glyma02g03250 (Figure 6; Additional file 1). Several of
the putative flower MMP genes contained a GPI-anchor
modification site, which was similar to 3 Arabidopsis
MMP genes, At2-MMP, At4-MMP, At5-MMP [47], and
the known soybean MMP gene GmMMP2 (referred to as
Gm2-MMP) [42] (Figure 6). None of the putative flower
MMP genes or known soybean genes (Gm2-MMP or
SMEP1) [48,55,56] contained a furin cleavage site, which
was present in several Arabidopsis MMP genes. When
amino acid sequence similarity identity was compared bet-
ween all putative flower MMP genes and Gm2-MMP using
Clustal W (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?
page=/NPSA/npsa_server.html), little homology between
the flower MMP and leaf MMP genes was found, with the
exception of Glyma01g04350 which showed 99% sequence
similarity to Gm2-MMP (data not shown). All putative
flower MMP genes, with the exception of Glyma01g04350,
had an E (glutamate) to Q (glutamine) residue substitution
in the zinc-binding motif of the catalytic domain, which
has been identified in other legume species [51]. The
glutamate residue is required for functional protease ac-
tivity [57], thus the amino acid switch in soybean flower
MMPs may render these inactive. Still, they may be im-
portant for Oj stress response because experiments with
Medicago truncatula have also demonstrated a func-
tional role for proteolytically-inactive MMPs in biotic
stress response [51].

The responsiveness of putative soybean flower MMPs
to elevated [O3] is consistent with the ECM being the
primary point of O3 contact within plant cells and the
location where antioxidant metabolism begins to protect
cells from ROS damage [34,58]. Stress-responsive sig-
naling pathways, including jasmonic acid, salicylic acid
and ethylene-dependent redox signaling are all triggered
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Table 1 Genes with the greatest log fold change in response to elevated [O;] in flower tissues

Gene p- value Log fold change Functional group Description

Glyma02g03250 0.018 263 Protein Matrixin family protein

Glyma02g03301  0.019 251 Protein Matrixin family protein

Glyma02g03320  0.023 243 Protein Matrixin family protein

Glyma02g03230  0.021 242 Protein Matrixin family protein

Glyma01g04370  0.024 237 Protein Matrixin family protein

Glyma0420s50 0.024 232 Protein Matrix metalloproteinase

Glyma02g03335  0.028 232 Protein Matrix metalloproteinase

Glyma02g03280  0.026 214 NA NA

Glyma02g03210  0.019 212 Protein Matrix metalloproteinase

Glyma16g01990  0.019 2.09 Hormone metabolism  2-oxoglutarate (20G) and Fe(ll)-dependent oxygenase superfamily protein
Glyma07g32650  0.042 1.93 Protein Cysteine proteinases superfamily protein
Glyma12g02410  0.024 1.83 Miscellaneous Glycosyl hydrolase superfamily protein
Glyma01g04350  0.029 1.69 Protein Matrix metalloproteinase

Glyma07g05420  0.017 167 Hormone metabolism  2-oxoglutarate (20G) and Fe(ll)-dependent oxygenase superfamily protein
Glyma08g21321  0.024 147 Signaling Leucine-rich repeat receptor-like protein kinase
Glyma13g41330 0015 146 Transport ZIP Zinc transporter

Glyma15g04090 0.014 140 Transport ZIP Zinc transporter

Glyma12g31250 0.028 1.37 NA NA

Glyma16g28510  0.046 137 Signaling Leucine-rich repeat receptor-like protein kinase
Glyma07g28940  0.038 133 Cell wall BURP domain-containing protein
Glyma16g28530  0.030 1.32 Signaling Leucine-rich repeat receptor-like protein kinase
Glyma14g37946  0.023 1.29 Cell Exocyst subunit exo70 family protein B1
Glyma02g09181  0.041 1.27 Signaling Leucine-rich repeat receptor-like protein kinase
Glyma16g28460  0.044 1.26 Signaling Leucine-rich repeat receptor-like protein kinase
Glyma12g31280  0.025 1.21 NA NA

‘NA’ indicated genes not assigned an annotation. FDR-adjusted p-values are shown.

by the redox sensing that occurs in the ECM [34]. The
soybean MMP gene Gm2-MMP was up-regulated con-
sistently with the release of ROS during pathogenic in-
fection [50], possibly linking ROS signaling and MMP
gene expression in soybean stress response. Previous
analysis of Arabidopsis MMP gene expression revealed
that At3-MMP was expressed at greater abundance in
response to O3 treatment, with a slight increase in At2-
MMP in response to O3 as well [59]. While the putative
MMP genes are present in high abundance in flower tis-
sues exposed to elevated [O3], analysis of the expression
profiles of the putative MMP genes in soybean using
RNA-Seq Atlas (http://soybase.org/soyseq/) found that
these genes were not present, or present in low abun-
dance in other soybean tissues. Therefore, it is hypo-
thesized that the increase in abundance of the putative
MMP genes identified in this study may represent a dis-
tinct flower response to Os stress in soybean.

In pod tissue, cell wall modification and calcium sig-
naling genes showed the greatest increase in abundance

in response to elevated [O3] (Table 2). Gene ontology
(GO) enrichment analysis of biological processes was
performed for genes differentially expressed only in pod
tissue. Apoptosis, signal transduction, ATP biosynthetic
processes, cellular glucan metabolic processes, protein
amino acid phosphorylation and innate immune re-
sponses were enriched in pod tissue (Additional file 2).
These activities are known to increase in plants in re-
sponse to both abiotic and biotic stress [60-65], and the
possibility that Os stress co-opts pathways involved in
biotic stress response has been previously proposed
[66,67]. The genes with the greatest increase in abun-
dance in response to elevated [O3] were xyloglucan
endotransglucosylase/hydrolase family proteins (XTH)
(Table 2). Genes annotated as XTHs also had high mean
expression, along with the greatest increase in abun-
dance in response to Oz in pod tissue (Figure 2). These
genes belong to the GO biological process of cellular
glucan metabolic processes, which is highly enriched in
pod tissues (Figure 7). Analysis of the putative XTH
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Figure 6 Domain analysis of plant matrix metalloproteinase (MMP) genes. General structure of known plant MMPs and putative MMPs
identified in soybean flowers. The cysteine switch and zinc binding domain sequence motifs are shown for all genes (when present). The E to Q

\

residue substitution in the zinc-binding motif of the catalytic domain is indicated in red.

genes in soybean using RNA-Seq Atlas (http://soybase.
org/soyseq/) showed that these genes were not present
or in low abundance in other tissues, indicating that
these genes may represent a distinct pod response to
elevated [Os].

XTH is a well-known cell wall-modifying enzyme that
plays a role in growth and differentiation in plants [68].
Genes in the XTH family are involved in cell elongation
in vascular cells [69,70], epidermal cells [71], inflores-
cence apices [72], primary roots [73] and during somatic
embryogenesis [74]. XTH also plays a role in floral
organ abscission [75,76]. Due to the similarity of flower
abscission and pod dehiscence zone [77] and the known
response of XTH genes to oxidative [78], water [79] and
biotic stress [80], it is hypothesized that XTH genes may
play a role in pod dehiscence in soybean exposed to ele-
vated [Os].

Conclusion

Soybean is an Oj-sensitive crop, with current tropo-
spheric [O3] costing billions of dollars in lost production
annually. In this study, it was established that gene ex-
pression in reproductive tissues in soybean is altered by
elevated [O3]. There were 4,703 transcripts responsive to
elevated [O3] in both flower and pod tissues, yet those
genes did not respond consistently in the two tissues.
This indicates that reproductive tissues have more dis-
tinct than similar transcriptomic responses to elevated
[Os]. Flower tissues responded to elevated [O3] through
increased expression of MMP genes. It was notable that
these flower MMP genes may not be proteolytically
active based on amino acid composition, but they clearly
respond to Oj stress. Pod tissues responded to eleva-
ted [O3] through increased expression of cell expansion
genes. The increased transcript abundance of XTH
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Table 2 Genes with the greatest log fold change in response to elevated [03] in pod tissues

Gene p- value Log, fold change Functional group Description

Glyma17g07260 0.043 291 Cell wall Xyloglucan endotransglucosylase/hydrolase family protein
Glyma17g07240 0.043 291 Cell wall Xyloglucan endotransglucosylase/hydrolase family protein
Glyma13g01120 0.035 283 Cell wall Xyloglucan endotransglucosylase/hydrolase family protein
Glyma17g07250 0.043 2.55 Cell wall Xyloglucan endotransglucosylase/hydrolase family protein
Glyma17g07280 0.046 252 Cell wall Xyloglucan endotransglucosylase/hydrolase family protein
Glyma01g03005 0.022 245 NA NA

Glyma13g01131 0.038 2.36 Cell wall Xyloglucan endotransglucosylase/hydrolase family protein
Glyma13g01140 0.042 233 Cell wall Xyloglucan endotransglucosylase/hydrolase family protein
Glyma17g07220 0.039 232 Cell wall Xyloglucan endotransglucosylase/hydrolase family protein
Glyma06g10700 0.043 2.23 Signaling Phosphate-responsive 1 family protein

Glyma06g11700 0.038 220 RNA AP2 domain

Glyma13g01110 0.043 220 Cell wall Xyloglucan endotransglucosylase/hydrolase family protein
Glyma17g07270 0.043 2.13 Cell wall Xyloglucan endotransglucosylase/hydrolase family protein
Glyma12g31150 0.050 2.09 Development No apical meristem (NAM) protein

Glyma18g03066 0.026 2.06 Signaling Leucine-rich repeat receptor-like protein kinase
Glyma13g05090 0.026 202 NA NA

Glyma10g37510 0.014 202 Transport Heavy metal associated protein

Glyma13g35950 0.027 2.00 Signaling Calcium-binding EF hand family protein

Glyma08g04920 0.017 1.99 Signaling Calcium binding protein-like

Glyma11g35334 0.022 1.96 Protein Leucine-rich repeat receptor-like protein kinase
Glyma12g01420 0.021 1.95 Stress NB-ARC domain-containing disease resistance protein
Glyma10g37500 0.021 1.94 NA Heavy metal associated protein

Glyma14g22970 0.043 1.92 RNA AP2 domain

Glyma12g34580 0.017 191 Signaling Calcium-binding EF-hand family protein

Glyma02g04620 0.027 1.90 Transport Mitochondrial carrier protein

‘NA’ indicated genes not assigned an annotation. FDR-adjusted p-values are shown.

genes supports a role of these genes in pod dehiscence
in soybean exposed to elevated [O3].

Methods

Growth chamber experimental design and conditions
Soybean (Glycine max L. Merr. cv. 93B15; Pioneer Hi-
Breed) was grown in ambient air (<20 ppb) and elevated
ozone (150 ppb) in 14 h/10 h day/night schedules under
PPED of ~650-750 pmol m ™ s™; RH 60%; 25°C day/21°C
night conditions in 8 growth chambers (Conviron,
Winnipeg, Manitoba, Canada). Soybean plants were
grown in 6-L pots (Classic C600, Nursery Supplies,
Chambersburg PA, USA) in sterilized soil (LC-1 Sunshine
Mix (SunGro Horticulture Canada Ltd, Bellevue, WA,
USA)) and treated with 50% Long Ashton solution
supplemented with 3 mM NH,NOj; [81]. Two seeds
were planted per pot ~4 cm below the soil surface and
then thinned to one plant per pot once seeds success-
fully germinated. A total of 12 plants were grown per
chamber in a randomized complete block design (n = 4).

Plants were rotated among chambers once a week and
within chambers every two days to minimize chamber
effects.

Tissue sampling and molecular analyses

Tissue sampling for RNA was done during R2 (full
bloom) and R4 (full pod) for growth chamber grown
plants. Plants were considered at full bloom when there
was an open flower at one of the first two uppermost
nodes with a fully expanded leaf. Plants were considered
at full pod when there was a pod 2 cm in length present
on one of the four uppermost nodes with a fully ex-
panded leaf. At each stage the appropriate tissue was
sampled (full open flowers at R2 and initiating pods at
R4). Sampling was done at the nodes 2—4 (from the top
of the plant) in order to avoid compensation and senes-
cence effects on the upper and lowermost nodes. Tissue
from four plants was sampled per developmental stage
per block. Immediately after collection flower and pod
tissue was plunged into liquid N and stored at —-80°C.
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Flower or pod tissue was ground to a fine power using a  Corp., Grand Island, NY, USA) according to the manu-

mortar and pestle.

facturer’s protocol. RNA quantity was determined with

Total RNA was extracted from ground tissue using Pure-  a spectrophotometer (Nanodrop 1000, Thermo Fischer
Link Plant RNA Reagent (Ambion, by Life Technologies  Scientific, Waltham, MA, USA) and RNA quality was
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assessed using the Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA) on an RNA Nano
chip. Genomic DNA contamination was removed from
RNA samples using Turbo DNase treatment (Applied
Biosystems/Ambion, Austin, TX, USA) according to the
manufacturer’s protocol. cDNA library preparation was
done using the Illumnina TruSeq Sample Prep kits (Illumina
Inc. San Diego, CA, USA). Each library fragment was bar-
coded during library preparation and multiplexed for se-
quencing. Tissue samples per block (4 subsamples) were
pooled for a total of 8 libraries prepared for each tissue
(16 libraries total).

RNA-sequencing (RNA-seq), bioinformatics and statistical
analysis

Sequencing was done at the Roy J. Carver Biotechnology
Center using the Illumina Genome HiSeq 2000 (Illumina
Inc. San Diego, CA, USA, http://www.illumina.com) and
Cassava pipeline 1.8 to obtain 100 nt single-end reads.
Samples were sequenced in groups of 4 across 4 lanes
and generated ~31-63 million reads per sample. All
FASTAQ files from all sequencing runs are located in the
Small Read Archive (http://www.ncbi.nlm.nih.gov/sra),
SRP035871, BioProject number PRJNA236472. Quality
control for reads generated from sequencing was performed
using FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). Sequenced reads were aligned to the soy-
bean reference genome (Gmax_189.fa, www.phytozome.
net) using Bowtie [82]. All valid alignments per read were
reported allowing up to three mismatches. Alignment
summary statistics are presented in Additional file 3.
Aligned sequence reads and a list of genomic features
(Gmax_189_gene.gff3, www.phytozome.net) were input
into HTSeq to generate read counts using the htseq-count
and —m union options. These counts were then input into
SAS (SAS Institute, Version 9.2, Cary, NC, USA) for
normalization and statistical analysis. Genes with counts
of 10 or less were removed from all subsequent statistical
analyses. Read counts were normalized using the natural
log of the upper quartile (In_uq) [83,84]. All count data
can be found in Additional files 4 and 5. Differential
gene expression was determined using a mixed effects
linear model Yjjq=m +t; +Yj+ px+ €. Y is the nor-
malized estimate of the expression for the fixed effect
of condition (i = ozone/ambient), the random effect of
block (j=1,2,3,4) and the random effect of lane (k=
1,2,3,4). A log fold change represents the difference of
the In_uq normalized count data for elevated [O3]
minus ambient [O3]. The assumptions of normality
were tested using the Shapiro-Wilk test [85] for each
gene. A multiple test correction was applied using the
linear step-up method of [86]. Analyses were conducted
in SAS (SAS Institute, Version 9.2, Cary, NC, USA).
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Availability of supporting data

The data set supporting the results of this article are in-
cluded within the article (and its additional files). Additio-
nally, all FASTQ files from all sequencing runs are located
in the Small Read Archive (http://www.ncbi.nlm.nih.gov/
sra), SRP035871, BioProject number PRINA236472. .

Additional files

Additional file 1: Domain analysis of putative MMP genes found in
flower tissue. The general structure (domain analysis) of all members of
the Arabidopsis MMP family (At1-MMP to At5-MMP), and the two known
soybean MMPs (SMEP1 and GmMMP2) was found in [59]. Domain analysis
of the putative MMP genes found in flower tissue in our dataset was also
completed to compare with known MMP genes. The protein sequence for
each gene in our data set was determined using the Phytozome database
(http//www.phytozome.net/) and the amino acid length and the presence
of a signal peptide, transmembrane and catalytic domain was analyzed
using InterPro (https//www.ebi.ac.uk/interpro/). The signal peptide cleavage
site and C-terminal transmembrane domain were also analyzed using the
predictive software program SignalP 4.1 (http://www.cbs.dtu.dk/services/
SignalP/) [87] and Localizome (http://localodom kobic.re kr/LocaloDom/),
respectively. The presence of a furin cleavage site was analyzed using the
predictive software ProP 1.0 (http//www.cbs.dtu.dk/services/ProP/) and the
presence of a GPI anchor domain was analyzed using the predictive
software big-PI Plant Predictor (http//mendelimp.ac.at/gpi/plant_server.
html). The cysteine switch and zinc-binding motifs of putative soybean
flower MMP genes were determined using sequence alignment with known
Arabidopsis and soybean MMP genes and generated using PRALINE
(http//www.ibivu.nl/programs/pralinewww/) [88]. Percent identity of amino
acid sequence analysis was performed Network Protein Sequence Analysis
(http//npsa-pbilibcp fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_server.
html) [89]. Modification sites (signal cleavage and GPl-anchor) are predicted
to occur between the given locations of the residues in the amino acid
sequence shown in the table. The domain of the GPl-anchor modification is
also given and predicted to occur at one of the two bolded and underlined
residues. The putative soybean MMP gene Glyma02g03301 has two cysteine
switch motifs and two zinc-binding motifs, which is indicated in the table.

Additional file 2: Gene ontology (GO) term enrichment of
biological processes in pod tissue only. GO term enrichment
performed using single enrichment analysis (SEA) tool on AgriGo
(http://bioinfo.cau.edu.cn/agriGO/).

Additional file 3: Summary statistics for each FASTQ file aligned to
the soybean reference genome. The alignment statistics generated
from Bowtie are presented in this table.

Additional file 4: Differentially expressed genes in flower tissue,
including the fold change in elevated [Os], the FDR-adjusted
p-value and a description of the functional category.

Additional file 5: Differentially expressed genes in pod tissue,
including the fold change in elevated [Os], the FDR-adjusted
p-value and a description of the functional category.
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