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Abstract 

Background: Spinal cord injury (SCI) is one of the leading causes of disability and chronic pain. In SCI-induced 
pathology, homeostasis of the nitric oxide (NO) metabolome is lost. Major NO metabolites such as S-nitrosoglu-
tathione (GSNO) and peroxynitrite are reported to play pivotal roles in regulating the activities of key cysteine pro-
teases, calpains. While peroxynitrite (a metabolite of NO and superoxide) up regulates the activities of calpains leading 
to neurodegeneration, GSNO (a metabolite of NO and glutathione) down regulates the activities of calpains leading 
to neuroprotection. In this study, effect of GSNO on locomotor function and pain threshold and their relationship with 
the levels of peroxynitrite and the activity of calpain in the injured spinal cord were investigated using a 2-week rat 
model of contusion SCI.

Results: SCI animals were initially treated with GSNO at 2 h after the injury followed by a once daily dose of GSNO for 
14 days. Locomotor function was evaluated by “Basso Beattie and Bresnahan (BBB) locomotor rating scale” and pain 
by mechanical allodynia. Peroxynitrite level, as expression of 3-nitrotyrosine (3-NT), calpain activity, as the degradation 
products of calpain substrate alpha II spectrin, and nNOS activity, as the expression phospho nNOS, were measured 
by western blot analysis. Treatment with GSNO improved locomotor function and mitigated pain. The treatment also 
reduced the levels of peroxynitrite (3-NT) and decreased activity of calpains. Reduced levels of peroxynitrite resulted 
from the GSNO-mediated inhibition of aberrant activity of neuronal nitric oxide synthase (nNOS).

Conclusions: The data indicates that higher levels of 3-NT and aberrant activities of nNOS and calpains correlated 
with SCI pathology and functional deficits. Treatment with GSNO improved locomotor function and mitigated 
mechanical allodynia acutely post-injury. Because GSNO shows potential to ameliorate experimental SCI, we discuss 
implications for GSNO therapy in clinical SCI research.
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Background
Spinal cord injury (SCI) results in locomotor deficits 
and pain due to the production of noxious metabolites 
which are held responsible for profound neurodegenera-
tion [1, 2]. SCI is a major medical and socio-economic 
problem, and the rate of SCI is increasing every year 
[3]. The incidence of SCI is highest among young adults 
due to motor vehicle accidents, violence and sports acci-
dents [4]. Other than critical care management, no cur-
rent FDA-approved drug therapy exists for traumatic SCI 

[1]. Several pharmacological therapies, including meth-
ylprednisolone, have been evaluated time and again in 
SCI [2] without clinical success. SCI is divided into two 
distinct types of injury: primary and secondary. Primary 
(immediate phase after SCI) injury includes physical 
damage as a direct result of the traumatic event. It cannot 
be reversed. Secondary injury follows the initial physical 
insult, resulting from mechanistic crosstalk between and 
among several deleterious pathways, including redox and 
excitotoxicity [1]. Secondary injury is therefore amena-
ble to reversal and treatment. A critical examination of 
injury mechanisms shows a disturbed nitric oxide (NO) 
metabolome [5, 6]. We hypothesize this metabolome to 
be responsible for the production of neuronal nitric oxide 
synthase (nNOS)-dependent deleterious peroxynitrite. 
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As a consequence, much less NO is available for S-nitro-
soglutathione (GSNO) biosynthesis and thus GSNO-
mediated regulation of enzymatic activities is lost. 
Reduced NO bioavailability and the consequent decrease 
in GSNO levels are associated with chronic neurovas-
cular injuries, and exogenous GSNO supplementation is 
reported to ameliorate CNS injuries [7–11]. Therefore, 
the objective of this study was to investigate the efficacy 
of GSNO for functional recovery and its role in regula-
tion of the nNOS/calpain system in a rat model of contu-
sion SCI.

GSNO is an endogenous molecule of the human body, 
produced mainly in NOS expressing cells by the reaction 
of NO with glutathione (GSH) in the presence of oxygen 
[12]. GSNO’s biosynthesis is also influenced by altered 
redox [13]. It is present in the brain and other organs [14]. 
GSNO reductase (GSNOR) is the major GSNO-degrad-
ing enzyme and thus GSNOR knock out mice store 
GSNO in excess [15]. GSNOR degrades GSNO to ammo-
nia and oxidized glutathione (GSSG) without releasing 
free NO [16], indicating that the NO moiety of GSNO is 
not recycled by the enzymatic activity of GSNOR. GSNO 
is directly involved in cell signaling via S-nitrosylation of 
target proteins, including calpains, NF-κB, STAT3, neu-
ronal NOS (nNOS) [8, 9, 17–21]. Several studies show-
ing the efficacy of GSNO in human diseases have been 
listed by Hornyak et al. [22]. None of the studies reported 
significant side effects in humans associated with the 
use of exogenous GSNO. In animal studies, GSNO pro-
tects against cardiac ischemic injury [23], indicating the 
therapeutic potential of GSNO-mediated S-nitrosyla-
tion mechanism [9, 24]. S-nitrosylation of PTEN (a lipid 
phosphatase) has been shown to inhibit its activity, lead-
ing to the activation of Akt and thus the stimulation of 
neurorepair process in an animal model of stroke [25]. 
The Akt activation has been shown to be associated 
with stabilization of hypoxia-inducible factor-1 alpha 
(HIF-1α), which, in turn, induces the expression vascular 
endothelial growth factor (VEGF) leading to therapeutic 
angiogenesis/neurogenesis and consequent recovery of 
function [26].

In spite of the significant role of GSNO in cellular 
functions, neither GSNO nor its S-nitrosylation mecha-
nism has been investigated for anti-neurodegenerative 
efficacy in SCI. Decreased synthesis of GSNO due to 
reduced levels of either GSH [19] or NO [27] or both in 
SCI, combined with increased degradation of GSNO by 
inflammation-induced enzyme activity of GSNO reduc-
tase (GSNOR) [24], will likely contribute to the reduced 
levels of GSNO in SCI. Deficient S-nitrosylation is con-
sidered to be a general neurodegenerative mechanism 
[28–30]. Via S-nitrosylation, GSNO protects against neu-
rodegeneration by targeting multiple signaling pathways, 

including anti-inflammatory, anti-oxidant and vascular 
effects [9, 31–33]. GSNO also stimulates production of 
neurotrophic factors [11, 34] and induces neuroregenera-
tion [35]. On the other hand, peroxynitrite is formed by 
an instantaneous diffusion limited reaction between NO 
and superoxide under oxidative conditions. This reaction 
not only reduces NO bioavailability but also increases 
peroxynitrite-mediated tissue/cell damage. Peroxyni-
trite causes a sustained activation of calpains [36], lead-
ing to neurodegeneration and functional deficits [10, 21]. 
In SCI, the observed increased 3-nitrotyrosine (3NT) 
levels, a peroxynitrite adduct of tyrosine residue, in the 
injured cord [37, 38] suggest its pathological role in SCI. 
We observed that GSNO treatment of SCI decreased 
the levels of peroxynitrite via inhibition of nNOS activa-
tion, which paralleled with decreased calpain activity and 
improved Basso Beattie and Bresnahan (BBB) locomotor 
rating scale scores as well as the threshold for mechanical 
allodynia out to 2 weeks post-injury.

Methods
Experimental procedure
Reagents
GSNO (Item#: GSNO-100) was purchased from World 
Precision Instruments (Sarasota, FL, USA). All other 
chemicals and reagents used were purchased from 
Sigma-Aldrich (St. Louis, MO), unless stated otherwise.

Animals
Animals were young adult male Sprague–Dawley (SD) 
rats, obtained from Harlan Laboratory (Wilmington, 
MA), weighing 250–300 g at the time of surgery. All ani-
mals received humane care in compliance with the Medi-
cal University of South Carolina’s (MUSC) guidance and 
the National Research Council’s criteria for humane care. 
Animal procedures were approved by the institutional 
animal care and use committee (IACUC) of MUSC.

Experimental groups, drugs and dose
The animals (n = 21) were randomly divided into three 
groups: (1) SCI animals treated with vehicle (SCI; n = 7), 
(2) SCI animals treated with GSNO (GSNO; n = 7), and 
(3) sham-operated treated with vehicle (Sham; n = 7). In 
the SCI + GSNO treatment group, the rats were adminis-
tered freshly prepared GSNO (0.05 mg/kg body weight), 
which was dissolved in sterile saline (~ 25 μl) and admin-
istered iv at 2 h after SCI. The dose of GSNO treatment 
was based on our previously reported dose response 
curve study, using 10  µg to 100  µg/kg body weight in a 
rat model of SCI and TBI [7, 10, 39]. The dose 50 µg/kg 
was found most effective in reducing contusion volume 
measured at 7  days after TBI [39]. Tests on uninjured 
sham rats did not produce alterations in physiologic 
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parameters (blood pressure, heart rate, and body temper-
ature) measured at 1 h following GSNO treatment [39]. 
Details of a GSNO study on physiologic parameters in 
rats have been previously described [10, 19].

Rat model of contusion SCI
Surgical anesthesia was induced by ketamine (90  mg/
kg body weight) and xylazine (10  mg/kg body weight) 
administered intraperitoneally (ip). The animal was then 
placed onto a heated pad, and core body temperature was 
maintained at 37.0 ± 1 °C. The animals were secured in a 
stereotaxic frame. A dab of sterile ophthalmic ointment 
was placed on each eye to compensate for the decrease 
in lacrimation during anesthesia. SCI at the T9-T10 
level was produced on the exposed spinal cord follow-
ing a dorsal median incision and laminectomy. SCI was 
induced using a computer controlled impactor device 
described by Dr. Bilgen [40] and used in our studies [7, 
41, 42] under aseptic conditions. SCI was performed 
with 2  mm tissue deformation and an impact velocity 
of 1.5 m/s and contusion time 85 ms. These parameters 
and conditions produced reproducible moderate spinal 
cord injury as described in our publications [7, 41]. Sham 
animals had the same procedures, with the exception of 
the impact. The impact tip was wiped clean with sterile 
alcohol after each impact and cleaned/disinfected further 
with cidex after surgery. During impact, body tempera-
ture was maintained at 37  °C by a heating pad. Imme-
diately after injury, the incision was closed with nylon 
suture, and 2% lidocaine jelly was applied to the lesion 
site to minimize any possible discomfort. Post-surgical 
care: the bladders of all animals were expressed two to 
three times per day initially and later as needed. The body 
weight and humane endpoints were regularly monitored. 
Analgesic treatment was avoided after surgery because 
pain is also a target of this investigation. Antibiotic treat-
ment was used in the event of persistent infection, which 
occurred rarely. The animals were sacrificed after the 
specified period of time with an overdose of ketamine/
xylazine (90/10  mg/kg body weight) administered ip, as 
approved by the IACUC of MUSC.

Evaluation of locomotor function
All 7 rats were assessed at the indicated time points using 
the “Basso Beattie Bresnahan (BBB) locomotor rating 
scale” [43]. The BBB rating was described with a 21-point 
scale to measure hind limb function at various time 
points after injury. The scale assesses several different 
categories, including limb movement and tail position 
[43]. In our experiments, sham operated animals scored 
21 (normal) on the BBB rating scale, whereas the SCI 
animals at day 0 had complete hind limb paralysis, thus 
scoring 0. Two investigators blinded to the experimental 

groups evaluated rats using the BBB scale as previously 
described from our laboratory [7]. All rats in both SCI 
and GSNO (SCI + GSNO) had significantly lower BBB 
score evaluated on day 1 after SCI.

Evaluation of mechanical allodynia
Before the testing of mechanical allodynia, all rats were 
habituated for at least 2 h on a metal mesh inside a von 
Frey plastic chamber. Nociception was measured by the 
paw pressure threshold using anesthesiometer (AM) 
(Ugo Basile, Italy), which applies a linearly increasing 
mechanical force to the dorsum of the rat’s hind paw. 
The test was performed as previously described from 
our laboratory [44, 45]. The nociceptive threshold was 
defined as the force in grams at which the rat withdrew 
its paw. Continuously increasing pressure was applied to 
the dorsal surface of the hind paws. The time the animal 
withdrew its paw was recorded. Three trials were made 
on each paw with 5 min inter-test intervals. Testing was 
performed once per day until the end of the experiment. 
All rats in both SCI and GSNO (SCI + GSNO) developed 
significant pain when evaluated on day 3 after SCI.

Western blot analysis
At the endpoint, the animals were euthanized by decapi-
tation under deep anesthesia and spinal cord was har-
vested for biochemical experiments. The spinal cords 
were snap frozen and stored at − 70  °C for subsequent 
assays, if needed.

In the traumatic penumbra area (8 mm segment con-
sists of 2  mm epicenter, 3  mm caudal from epicenter, 
3 mm rostral from epicenter) from the injured cord tissue, 
western blot was performed as described earlier [9, 46] 
using following antibodies. nNOS (Abcam Cat# ab1376, 
RRID:AB_300614, 0.2  µg/ml concentration), phospho 
nNOS  Ser1417, equivalent to human  Ser1412 (Abcam 
Cat# ab90443, RRID:AB_2049208, 1.0  µg/ml concentra-
tion), 3-NT (Abcam Cat# ab7048, RRID:AB_305725, 
0.1  µg/ml concentration), alpha II spectrin (Cell Signal-
ing Cat# SC-46696, RRID:AB_671135, 0.2  µg/ml con-
centration) and β-actin (Sigma-Aldrich Cat# A3853, 
RRID:AB_262137, 0.2  µg/ml concentration), followed 
by horseradish peroxidase-conjugated, goat anti-rabbit 
secondary antibody (Jackson ImmunoResearch Lab 
Cat# 111-035-045, RRID:AB_2337938, 1:4000 dilution). 
All non-phospho antibodies were diluted with 1XTBS-
T with 2% non-fat dry milk. The pnNOS antibody was 
diluted using 1X TBS-T with 2% bovine serum albumin. 
Protein concentrations were determined using protein 
assay dye from Bio-Rad Laboratories (Hercules, CA). 
Twenty microgram protein was used for western analysis. 
Densitometry of protein expression was performed using 
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a GS800 calibrated densitometer from Bio-Rad laborato-
ries (Hercules, CA).

Statistical evaluation
Statistical analysis was performed using software Graph 
pad Prism 5.01 as described previously [35]. The results 
are presented as the mean ± SD. Statistical significance 
was analyzed by one-way or two-way (ANOVA) with 
repeated measures with time, and Bonferroni post hoc 
test was used for multiple comparisons. A p value < 0.05 
was considered significant.

Results
Effects of exogenous GSNO treatment on locomotor 
function
Evaluation of locomotor functions using BBB score in 
rats is the standard method [43, 47, 48] to determine the 
efficacy of a preclinical/test drug in SCI. BBB scoring at 
1, 3, 7 and 14 days shows that SCI rats had significantly 
greater impaired motor function compared with sham 
animals (Fig. 1). GSNO treatment significantly improved 
the recovery of locomotor function on day 14 (p < 0.001) 
compared with the SCI group animals (Fig. 1). The data 
showed slow but steady recovery with time, supporting 
the efficacy of GSNO for functional improvement follow-
ing SCI.

Effects of exogenous GSNO treatment on neuropathic pain
Chronic neuropathic pain is associated with SCI, with 
substantial impact on quality of life in humans [49, 
50]. Significant mechanical sensitivity differences were 
observed in both SCI and GSNO-treated SCI (GSNO) 
groups after SCI compared with the sham group. From 
day 7 onward, the GSNO group had a significantly 
improved/increased mechanical withdrawal latency com-
pared with the SCI group (Fig. 2), indicating an improved 
pain threshold.

Effects of exogenous GSNO treatment on the levels 
of peroxynitrite (3‑NT) and the activation of nNOS  (Ser1412 
phosphorylation)
We and others have identified neuronal peroxynitrite 
as a major causative factor in SCI pathology [37, 38, 46, 
51], and decreasing peroxynitrite levels by GSNO is a 
major mechanism in GSNO-mediated neuroprotection 
and functional recovery in TBI [8, 10, 39]. Neuronal per-
oxynitrite is produced by the aberrant activity of nNOS 
after CNS trauma. Peroxynitrite levels, measured by the 
expression of 3-NT, were significantly higher in the SCI 
compared with the sham group (Fig.  3a, b, p < 0.001). 
Treatment with GSNO significantly decreased these ele-
vations (Fig. 3a, b). The levels of 3-NT in SCI correlated 
well with the activation of nNOS (increased phosphoryl-
ation at  Ser1412) compared with the sham group (Fig. 3c, 
d, p < 0.001). GSNO treatment of SCI significantly down 
regulated nNOS activation compared with SCI (Fig.  3c, 
d, p < 0.001). The parallel between the levels of 3-NT 
and the activation of nNOS (pnNOS) indicates that SCI-
induced peroxynitrite may have originated mainly from 

Fig. 1 Effect of GSNO on locomotor function. Studies on locomotor 
function using BBB locomotor rating scale were performed at days 
1, 3, 7 and 14. BBB rating was evaluated by a blinded observer. Score 
of 21 (BBB) was assigned to sham animals displaying coordinated 
gait, consistent toe clearance, lifted tail, steady trunk, and parallel 
paw position throughout their stance. Data are presented as 
mean ± standard deviation (n = 7). +p < 0.05 versus GSNO day 1, 
3, ++p < 0.01 versus GSNO day 1, 3, *p < 0.05 versus SCI day 14. NS 
non-significant

Fig. 2 Effect of GSNO on nociception. Pain threshold was measured 
with aesthesiometer (AM) for 14 days following SCI. GSNO treatment 
significantly improved the hyperalgesia associated with SCI. Data 
are presented as mean ± standard deviation (n = 7). +++p < 0.001; 
++p < 0.01; +p < 0.05 versus Sham, **p < 0.01; *p < 0.05 versus SCI
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nNOS, and the activity of nNOS is regulated/inhibited by 
GSNO, likely via S-nitrosylation.

Effects of exogenous GSNO treatment on the activity 
of calpains measured as α‑II‑spectrin breakdown products
Neuronal alpha-II-spectrin (280 kDa) is one of the major 
substrates of calpains [52]. The calpain-specific alpha II 
spectrin breakdown product (SBDP)145  kDa fragment 
is used as a marker of calpain activity [53]. The band at 
150  kDa is also a cleavage product of calpain activity; 
however, it is not specific to calpain activity [54]. The 
intensity of the 150 kDa band was significantly less than 
the 145  kDa band. Calpain activity, measured via α-II-
spectrin breakdown product (SBDP) 145  kDa, was sig-
nificantly higher (p < 0.001) in the SCI group compared 
with the sham (Fig. 4a, b). GSNO treatment of SCI signif-
icantly (p < 0.001) decreased the levels of SBDP 145 kDa, 
indicating that GSNO decreased the activity of calpains 
(Fig. 4a, b). The activity of calpains (Fig. 4) correlated well 
with levels of 3-NT and the activation of nNOS, as shown 
in Fig. 3.

Discussion
This is a preliminary mechanism-based study showing 
that SCI-induced functional deficits (Fig.  1), and neu-
ropathic pain (Fig.  2) paralleled aberrant activation of 
nNOS, increased levels of peroxynitrite (Fig. 3) and high 
activity of calpains (Fig. 4) in a 2-week rat model of con-
tusion SCI. The study further shows the therapeutic effi-
cacy of GSNO. It improved functional deficits (Fig.  1) 
and increased the pain threshold (Fig. 2) by inhibiting the 
activities of both nNOS (Fig. 3) and calpains (Fig. 4) and 
reducing the levels of injurious peroxynitrite (Fig. 3).

Locomotor function deficits and pain are two major 
consequences intrinsic to SCI [49]. Deleterious metab-
olites, formed by the aberrant activities of otherwise 
regulatory enzymes such as nNOS, are primarily respon-
sible for producing potent oxidizing/neurodegenerat-
ing agents, such as peroxynitrite, in neurons. Excessive 
accumulation of neuronal peroxynitrite is implicated 
in neuronal cell death and subsequent neurodegen-
eration [55]. In fact, scavenging peroxynitrite using 

Fig. 3 Immunoblots of 3-NT, nNOS, and phosphorylated nNOS 
 (Ser1412) in the traumatic penumbra (immediately after epicenter) 
at 14 days after SCI. SCI increased the expression levels of 3-NT 
(a), its densitometry (b), phosphorylated nNOS  (Ser1412) (c), and 
its densitometry (d). GSNO treatment of SCI decreased expression 
levels (a–d). Expression of nNOS remained unchanged in all three 
groups (c). Data are presented as mean ± standard deviation (n = 7). 
+++p < 0.001 versus Sham and ***p < 0.001 versus SCI

Fig. 4 Immunoblots of α-II-spectrin in the traumatic penumbra at 
14 days after SCI. SCI increased α-II-spectrin breakdown products 
(SBDP 145 kDa, indicated by red arrow) (a) and its densitometry 
(b). GSNO treatment of SCI decreased SBDP 145 kDa (a, b). Data are 
presented as mean ± standard deviation (n = 7). +++p < 0.001 versus 
Sham, ***p < 0.001 versus SCI
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peroxynitrite decomposition catalysts such as FeTPPS 
has been reported to ameliorate SCI [56], supporting 
this direct deleterious role of peroxynitrite. Inhibition of 
nNOS activity following SCI [57] has also been shown 
to provide neuroprotection, and nNOS KO mice show 
improved recovery after SCI [58], indicating a deleterious 
role of nNOS activity in SCI. An nNOS-based therapy for 
SCI therefore offers a logical approach. Reversible down 
regulation of nNOS activity, such as via-S-nitrosylation, 
is preferred because it maintains the required physiologi-
cal activity of nNOS. The roles of other NOS enzymes 
(inducible and endothelial) in the chronic phase pathol-
ogy, such as in neurodegeneration and pain, is not clear 
[59]. Peroxynitrite produced in neurons is a product of an 
instantaneous reaction between nNOS-derived NO and 
superoxide. Because NO is used for the formation of per-
oxynitrite (3-NT), the biosynthesis of GSNO, a product 
of a slow reaction between NO and GSH, and GSNO-
mediated regulatory mechanisms are derailed. Because 
deleterious nNOS activity is down regulated by a GSNO-
mediated S-nitrosylation mechanism [60], reduced NO/
GSNO levels contribute to nNOS-dependent neurode-
generation and pain SCI pathology. Such a derailed NO/
GSNO metabolism in SCI may also be responsible for 
functional deficits. Therefore, we tested the hypothesis 
that GSNO reduces the levels of peroxynitrite, inhibits 
the activity of nNOS, and improves behavioral function 
and cellular plasticity in young adult male rats.

Pain is one of the major issues in SCI for obvious rea-
sons but also because it impairs recovery after SCI [61]. 
Both inflammatory and neuropathic pain (caused by a 
lesion or disease of somatosensory function) are pre-
sent in the majority of SCI patients [50, 62]. Due to the 
lack of mechanistic understanding of pain, satisfactory 
pain-management therapy of SCI is not yet available. 
We observed that the GSNO treatment significantly 
increased the pain threshold and reduced calpain activ-
ity after 2 weeks of SCI (Fig. 2), indicating that GSNO 
possesses an analgesic property in addition to improv-
ing functional deficits (Fig. 1). Furthermore, significant 
increases in tissue peroxynitrite levels (Fig.  3) corre-
lated well with calpain-mediated cytoskeleton degra-
dation (Fig.  4), indicating peroxynitrite’s contribution 
to neurodegeneration. Recently, we have shown that 
the activity of calpains is upregulated by peroxynitrite 
whereas GSNO, via S-nitrosylation, inhibits the activity 
of calpains in TBI [8], indicating a similar role of per-
oxynitrite versus GSNO in this SCI study. Peroxynitrite 
originating from nNOS [63] and NMDA receptor activ-
ity [64] is also recognized among the prominent causes 
of neuropathic pain following nerve injury. GSNO, 
likely via S-nitrosylation, down regulates the activity 

of nNOS, thus reducing the levels of peroxynitrite and 
its associated pain. Decreased levels of peroxynitrite in 
brains and improved neurological functions have also 
been shown after GSNO treatment in rat models of 
stroke and TBI [34, 51], indicating that the mechanism 
of S-nitrosylation invokes anti-neurodegeneration and 
anti-pain activities in CNS trauma. These observations 
establish the therapeutic potential of GSNO-mediated 
mechanisms in simultaneously treating neurodegenera-
tion and neuropathic pain following SCI.

Inflammation is another significant component of 
SCI, contributing to neurodegeneration and pain. Inter-
estingly, GSNO-mediated mechanisms are also shown 
to down regulate the expression of pro-inflammatory 
cytokines and NF-κB [18, 39], as well as the activation 
of STAT3 [20]. These actions contribute to the reduc-
tion of inflammation-mediated neurodegeneration and 
pain. As an alternative mechanism to alleviate pain in 
SCI, IL-10 has been shown to be a potent anti-neuro-
pathic pain molecule [65–67], and GSNO-mediated 
mechanisms are reported to upregulate the levels of 
IL-10 [68] as well as to reduce pain in a rat model of 
cauda equine compression [44]. We add one caveat 
that excessive accumulation of GSNO, as observed in 
GSNOR knock out mice, creates altered redox pathol-
ogy, leading to sensitization to pain [15] and thus ren-
dering GSNOR knock out mice ‘not suitable’ for pain 
related studies. A critical balance of NO/GSNO versus 
peroxynitrite is requisite to maintain the homeosta-
sis of the NO metabolome, ameliorating SCI pathol-
ogy. Low dose exogenous supplementation of GSNO 
seems to be an ideal approach to improve pain thresh-
old and to provide neuroprotection. One advantage of 
using GSNO supplementation is that GSNO-mediated 
regulatory mechanisms are reversible, and thus the 
physiological levels of activity of targeted enzymes can 
be maintained. The improved BBB score (Fig.  1) and 
increased pain threshold (Fig.  2) reported here sup-
port the efficacy of GSNO in ameliorating SCI and pro-
vide a rationale to further investigate GSNO therapy 
in SCI. Limitations the most affected population from 
SCI is young adult males. Therefore, we used young 
adult male animals in this preliminary study; however, 
the exclusion of female rats demands further testing 
in these populations. We are also aware that a 2-week 
SCI study is relatively short to sufficiently characterize 
the injury course. Moreover, biochemical studies of the 
early acute phase are needed. Therefore, in follow-up 
study, the efficacy of GSNO therapy and the cause-and-
effect relationship between GSNO and peroxynitrite/
calpain system will be investigated for both acute and 
longer chronic periods of time, using both male and 
female young adult animals.
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Conclusions
Under SCI pathology, superoxide reacts with NO and 
this reaction produces a large amount of injurious perox-
ynitrite. Increased levels of peroxynitrite cause an upreg-
ulation of calpain activity and thus neuronal cytoskeleton 
degradation. Peroxynitrite is also recognized as a media-
tor of pain. Under such pathological conditions, S-nitros-
ylation-mediated biological regulation (inhibition) of the 
activity of nNOS and calpain is lost due to its reduced 
bioavailability, and thus levels of NO/GSNO. Replen-
ishment of exogenous GSNO was found to inhibit the 
activation of nNOS, thus blocking the production of per-
oxynitrite and reducing the activity of calpains, leading to 
improved locomotor function and decreased mechanical 
allodynia acutely post-injury in SCI animals. Further-
more GSNO’s administration to humans is not associated 
with adverse effects [22]. Therefore, testing the efficacy of 
exogenous GSNO in humans may lead to an SCI therapy 
of clinical relevance.
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