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Abstract 

Background: The amino acid taurine (2‑Aminoethanesulfonic acid) modulates inhibitory neurotransmitter receptors. 
This study aimed to determine if the dual action of taurine on  GABAC‑ρ1R relates to its structure. To address this, we 
tested the ability of the structurally related compounds homotaurine, hypotaurine, and isethionic acid to modulate 
 GABAC‑ρ1R.

Results: In Xenopus laevis oocytes, hypotaurine and homotaurine partially activate heterologously expressed 
 GABAC‑ρ1R, showing an increment in its deactivation time with no changes in channel permeability, whereas 
isethionic acid showed no effect. Competitive assays suggest that hypotaurine and homotaurine compete for the 
GABA‑binding site. In addition, their effects were blocked by the ion‑channel blockers picrotixin and Methyl(1,2,5,6‑
tetrahydropyridine‑4‑yl) phosphinic acid. In contrast to taurine, co‑application of GABA with hypotaurine or homot‑
aurine revealed that the dual effect is present separately for each compound: hypotaurine modulates positively the 
GABA current, while homotaurine shows a negative modulation, both in a dose‑dependent manner. Interestingly, 
homotaurine diminished hypotaurine‑induced currents. Thus, these results strongly suggest a competitive interac‑
tion between GABA and homotaurine or hypotaurine for the same binding site. “In silico” modeling confirms these 
observations, but it also shows a second binding site for homotaurine, which could explain the negative effect of this 
compound on the current generated by GABA or hypotaurine, during co‑application protocols.

Conclusions: The sulfur‑containing compounds structurally related to taurine are partial agonists of  GABAC‑ρ1R that 
occupy the agonist binding site. The dual effect is unique to taurine, whereas in the case of hypotaurine and homot‑
aurine it presents separately; hypotaurine increases and homotaurine decreases the GABA current.
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Background
Incorporation of sulfur into amino acids, proteins, 
enzymes, vitamins, and other biomolecules makes sulfur 
essential for biological systems [1]. In mammals, methio-
nine is an essential amino acid, whereas cysteine, homo-
cysteine, and taurine are semi-essential amino acids 
because they can be synthetized from methionine, sulfur, 
and serine via trans-sulfuration [1, 2].

Taurine (2-ethanosulfonic acid) is a ubiquitous, non-
protein β-amino acid that abounds in different mam-
malian tissues. In the central nervous system (CNS) and 
retina, taurine is the second most abundant amino acid 
after glutamic acid, with a concentration in different spe-
cies that ranges from 10 to 90  mM [3]. Taurine plays a 
role in different cell functions, as well as in neuronal 
migration and CNS development. In general, extensive 
experimental evidence reported relates taurine with cell 
volume and osmolality regulation [4–6]. In addition, 
taurine is involved in other physiological processes of 
the CNS and retina, such as modulation of  Ca2+ chan-
nels and neurotransmission [7–11]. Other physiological 
functions of taurine not described in retina are antioxi-
dant defense, phase II detoxification reactions and a role 
as a neurotrophic factor. GABA (γ-aminobutyric acid) 
plays a key role in neurotransmission. For example, in 
the retina, GABA modulates transmission of information 
flowing from photoreceptors to the brain. GABA per-
forms its inhibitory action via two types of receptors: (1) 
ionotropic, designated  GABAA and  GABAC (also known 
as  GABAA-ρ); and, (2) metabotropic, named  GABAB, 
all of them with different molecular and pharmacologi-
cal properties [12–15].  GABAC receptor is particularly 
interesting because it is insensitive to barbiturates, ben-
zodiazepines, bicuculline, and baclofen (modulators and 
inhibitors of  GABAA and  GABAB receptors, respectively) 
[16–20] but sensitive to picrotoxin and Methyl(1,2,5,6-
tetrahydropyridine-4-yl) phosphinic acid (TPMPA) [21].

GABAA receptors are heteropentamers, constituted by 
α, β, γ, and δ subunits; the combinations of these subu-
nits determine the pharmacological and physiological 
properties of the receptor, and the α1/β2/γ2 is the most 
common combination found in the CNS and retina [22, 
23].  GABAC receptors are composed of the ρ1, ρ2, and 
ρ3 subunits, each of them capable of forming homomeric 
functional receptors when expressed heterologously. 
However, the native composition of these receptors in 
neurons is unknown. In the CNS, evidence of the expres-
sion of  GABAC receptors has been demonstrated in cer-
ebellar Purkinje neurons and in the amygdala [24–26]. 
Experiments “in vivo” using specific antagonists of 
 GABAC receptors directly applied into the amygdala, 
suggest that  GABAC-mediated activity participates in the 
modulation of fear and anxiety [26]. Although the role of 

 GABAC receptors in the retina is still poorly understood, 
its function is tightly modulated by intracellular cascades 
triggered by neuroactive molecules and their receptors, 
and they are thought to play a major role in visual signal-
ing [19, 20, 27, 28]. While  GABAA receptors (α1/β2/γ2) 
are distributed in all neuronal types of the retinal circuit, 
 GABAC conformed by ρ1 and ρ2 subunits are located in 
bipolar neurons, where they downregulate NMDA recep-
tors and, consequently, modulate transient glutamate 
release in response to light. In addition, amacrine and 
ganglion cells express  GABAC receptors [29–31].

Taurine exerts its inhibitory effect via activation of 
 GABAA and glycine receptors, but has less affinity com-
pared to the specific agonists of each receptor [10, 11]. 
However, the mechanisms by which taurine regulates 
ionotropic GABA receptors remain to be determined. A 
negative and positive modulation of the GABA-induced 
current in oocytes heterologously expressing human 
 GABAC-ρ1  receptor, exposed at lower and higher tau-
rine concentrations was reported [32]. These results sug-
gest that taurine acts in a dual  way and may compete 
with GABA for the same binding site. Our study aimed 
to determine if the dual  effect of taurine observed on 
 GABAC-ρ1R was associated with the molecular structure 
of taurine. To confirm this hypothesis, we used homot-
aurine (Homo), hypotaurine (Hypo), and isethionic acid 
(IA), all sulfur-containing compounds structurally related 
to taurine (SCC-tau), but with some differences in their 
chemical structure. For instance, unlike taurine, Homo 
has one additional carbon and the sulfonic group  (SO3H) 
is in Cis position with respect to the amino  (NH2) group; 
Hypo has a sulfinic group  (SO2H) in Trans position with 
respect to the  NH2 group, and IA has a hydroxyl group 
instead of  NH2. Some of these compounds have been 
widely used to better understand the physiological func-
tions of taurine and, likewise, to evaluate compounds 
that may be therapeutically applied in some diseases such 
as diabetes, alcoholism, ischemia, and others [33–35]. 
Although a variety of taurine analogues have been devel-
oped, their effects are still unknown in terms of struc-
ture–function in various systems [36].

Results
GABAC-ρ1 receptor  (GABAC-ρ1R) heterologously 
expressed in oocytes generated typical non-desensi-
tizing GABA currents (Fig.  1a) when SCC-tau was per-
fused onto the same oocyte; Homo- and Hypo- elicited 
a response in a concentration dependent manner. Both 
compounds gate the ion-channel at micromolar con-
centrations (Fig. 1b, c). In contrast, IA did not show any 
affect at the concentrations tested (Fig. 1d). Similar to the 
currents induced by GABA, Homo- and Hypo-induced 
well-maintained currents and did not desensitize, even 
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after long exposure. Despite the lack of differences 
between the magnitude of the current elicited by Homo- 
and Hypo-, these SCC-tau show a clear difference in the 
 EC50 of 70 ± 1.1 µM for Homo and 3 ± 1.5 mM for Hypo 
(Fig. 2a). The response induced by Homo and Hypo did 
not correlate with changes in the activation time of the 
currents (τact). Nevertheless, Homo showed an increase 
in deactivation time (τdeac). The τact and τdeac for GABA 
alone were 1 ± 0.2 min and 1.7 ± 0.5 min, respectively. In 
the presence of Hypo, τact was 1.5 ± 0.1 min and  tdeact was 
3.4 ± 1.1  min, whereas for Homo τact was 1.8 ± 0.2  min 
and τdeac was 6.7 ± 2.2 min (Fig. 2b). However, we did not 
observe any permeability changes of the channel acti-
vated, as suggested by their inversion potential, which 
was − 21 ± 1.0 mV for 3.5 µM GABA and − 25 ± 2.1 mV 
and − 26 ± 1.0  mV for 70  µM Homo and 3  mM Hypo, 
respectively (Fig.  2c). In all cases, the current–volt-
age (I–V) relationship was linear within the range 
explored (− 120 to + 40  mV), indicating that activation 
of  GABAC-ρ1R by SCC-tau was voltage-independent and 
did not change the ion selectivity of the channel.

We also analyzed if the currents activated by Homo 
and Hypo were sensitive to TPMPA, a highly specific and 
selective antagonist of  GABAC-ρ1R [21]. Figure 3 shows 
an  IC50 of 1.2 ± 0.1  µM, 1.4 ± 0.1  µM or 2.0 ± 0.2  µM 
TPMPA when the receptor was activated by 3 µM GABA, 
70 µM Homo or 3 mM Hypo, respectively (Fig. 3a). Hill 
coefficients were 1.3 ± 0.2  µM (GABA), 1.0 ± 0.1  µM 
(Homo), and 1.1 ± 0.8 µM (Hypo). It is well known that 
TPMPA competes with GABA for the same binding-
site, so since the  IC50 of TPMPA values are similar; it is 
probable that SCC-tau, Homo and Hypo, share the same 
binding site as GABA in the  GABAC-ρ1R. As expected, 
picrotoxin, an allosteric antagonist of ionotropic GABA 
receptors [37, 38], irreversibly inhibits the currents acti-
vated by 3 µM GABA, 70 µM Homo or 3 mM Hypo in 
a dose-dependent manner, with an  IC50 of 100 ± 0.1 µM, 
105 ± 0.3 µM, and 100 ± 0.8 µM, respectively (Fig. 3b).

Figure  4 shows that during GABA-induced activation 
of the receptor, Homo reduced the currents when co-
applied at different concentrations (3 µM to 30 mM). The 
effect of Homo on the GABA-induced current changes 
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Fig. 1 Activation by GABA and SCC‑tau of GABA‑ρ1R heterologously expressed in oocytes. a Control: oocyte exposed to GABA at several 
concentrations (3–1000 µM); b–d Oocytes perfused with SCC‑tau at the concentrations indicated. In each experiment the oocyte was first exposed 
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represent at right of each representative trace
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Fig. 3 Pharmacological modulation of GABA‑ and SCC‑tau‑induced currents by TPMPA (a) and picrotoxin (b). Currents were normalized to the 
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depended on GABA concentrations. Figure  4a shows 
that at a concentration of 1.5  µM and 3  µM of GABA, 
Homo decreased GABA-activated currents. However, 
at a higher concentration of GABA (6 µM), the effect of 
Homo diminished; the  IC50 for Homo were 40 ± 1.0 µM, 
90 ± 1.5 µM, and 410 ± 2.9 µM at 1.5 µM, 3 µM and 6 µM 
GABA, respectively (Fig.  4b). In all cases, the GABA-
induced currents without SCC-tau, increased in a dose-
concentration fashion.

We also analyzed whether the stimulatory effect of 
Hypo changed by the extracellular GABA concentra-
tion and we found that unlike Homo, Hypo potenti-
ated GABA currents. As observed in Fig.  5a, at 1.5  µM 
GABA, Hypo induced a current increase, that was even 
greater than the current activated by GABA alone. At 
3 µM GABA, the effect of Hypo was still present almost 
with the same characteristics as 1.5  µM GABA; how-
ever, at 6  µM GABA, the increase induced by Hypo on 
GABA currents diminished. GABA-induced current 
increased in a dose-concentration fashion. The  EC50 val-
ues obtained for Hypo were 87 ± 1.5  µM, 170 ± 1.7  µM, 
and 480 ± 2.1  µM for 1.5  µM, 3  µM, and 6  µM GABA, 
respectively (Fig. 5b). These results suggest a competitive 
action of SCC-tau with GABA for the same binding site 

(Additional file 1: Figure S1). In the case of IA, we did not 
observe any effect (data not shown). 

Molecular modeling
To prove theoretical studies on the interactions of the 
different ligands with the human  GABAC-ρ1receptor, we 
performed homology modeling. We selected as target the 
structure of the  GABAC-ρ1 R-beta3 homopentamer, since 
it has coverage of around 70% and an identity of 48%. The 
original sequence of this gene (GenBank: AAA52509.1) 
has an initial segment of 44 amino acids with a disor-
dered/unstructured identity. We constructed this seg-
ment using an “ab inition” modeling, which shows good 
structural correlation. With this segment and the crys-
tallographic structure, the  GABAA-ρ1R model was con-
structed and validated (Additional file 2: Figure S2). This 
model presents an initial segment corresponding to the 
transmembrane section, which may have an effective rec-
ognition function. Subsequently, using this constructed 
model, we performed docking studies with different 
ligands (GABA, Homo, Hypo), IA, and one  GABAA 
receptor antagonist (picrotoxin). For docking probes, we 
included taurine to compare the binding sites with SCC-
tau and GABA. Figure 6 shows the results obtained after 
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Fig. 4 Effect of Homo on GABA‑induced currents in oocytes heterologously expressing  GABAC‑ρ1R. a Representative traces of currents induced 
by 1.5, 3, and 6 µM GABA and co‑applied with Homo at the indicated concentrations. b Homo dose‑response relation of currents elicited by 1.5, 3, 
and 6 µM GABA. The currents were normalized to the maximum amplitude elicited by the agonist in absence of modulators. Data points are the 
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performing 1000 runs for each compound, observing 
three different binding sites. In the first one we located 
(BS1) GABA, taurine, Homo, Hypo, and IA; the second 
binding site (BS2) apparently is exclusive for Homo, addi-
tional to the site it shares with GABA and SCC-tau, and 
the third one (BS3) corresponds to picrotoxin, located 
inside the receptor. The binding parameters  (Ki) obtained 
by AutoDock4 are in the mM range, except for picrotoxin 
that is of a lesser order of magnitude. The order of affin-
ity predicted is as follows: picrotoxin (0.012  mM) < IA 
(3.25 mM) < Homo (3.56 mM) < GABA (8.48 mM) < Hypo 
(10.50  mM) < taurine (10.86  mM). There are different 
binding sites at the  GABAC-ρ1R that function as modula-
tors of the activity of this receptor. Therefore, we comple-
mented the experimental results with theoretical studies, 
observing some correlation, such as: (1) the structural 
relationship between Homo and Hypo to activate 
 GABAC-ρ1R, demonstrates that Homo is a more potent 
agonist than Hypo; also, it has a lower  Ki than Hypo; (2) 
competition experiments between TPMPA and GABA 
by  GABAC-ρ1R indicate that Homo and Hypo (even 
taurine), interact at the same site (BS1), supporting the 

data obtained by docking; (3) Homo has a second binding 
site (BS2), that is not used by GABA or SCC-tau; and (4) 
picrotoxin, an allosteric antagonist of ionotropic GABA 
receptors, its binding was predicted in the anion channel 
of the receptor (BS3), a unique site not used by the SCC-
tau compounds with a strong affinity according to litera-
ture reports for this blocker [37, 38]. 

Discussion
The use of SCC-tau, that possesses only some of the 
properties of taurine, has increased our understanding 
about the role of this β-amino acid in the cell physiol-
ogy. Previous reports show that SCC-tau modulates the 
inhibitory action triggered by GABA [39–41]. However, 
the structural characteristics that determine these effects 
are unclear. In this work, we report that even though 
Homo, Hypo, and IA share similar core structures, Homo 
was a potent partial agonist of  GABAC-ρ1R compared 
to Hypo. This observation could indicate that the pres-
ence of an additional carbon and the  SO3H group in Cis 
position with respect to the  NH2 group in Homo´s struc-
ture allows it to form a moiety that enhances the affinity 
and binding of Homo for  GABAC-ρ1R. In contrast, it is 
probable that the absence of an  NH2 group and the short 

Hypo (µM) 0.3 3 30 300 3000 30000

30
0 

nA

4 min

GABA(1.5µM)

10-6 10-5 10-4 10-3 10-2

0

20

40

60

80

100

C
ur

re
nt

(%
 o

f c
on

tro
l)

[Hypotaurine] (M)

3 µM GABA 
EC50 = 170µM 
nH= 1.4

1.5 µM GABA 
EC50 = 87µM 
nH= 1.1

6 µM GABA 
EC50 = 480µM 
nH= 2.2

0.3 3 300 300 3000 30000Hypo (µM)
GABA(3µM)

30
0 

nA

4 min

0.3 3 30 300 3000 30000Hypo (µM)
GABA(6µM)

30
0 

nA

4 min

a b

Fig. 5 Effect of Hypo on GABA‑induced currents in oocytes heterologously expressing  GABAC‑ρ1R. a Representative traces of currents induced 
by 1.5, 3, and 6 µM GABA and co‑applied with Homo at the indicated concentrations. b Hypo dose‑response relation of currents elicited by 1.5, 3, 
and 6 µM GABA. The currents were normalized to the maximum amplitude elicited by the agonist in absence of a modulator. Data points are the 
mean ± S.E. from at least 9 oocytes (n = 9) from 4 frogs (N = 4)



Page 7 of 11Ochoa‑de la Paz et al. BMC Neurosci  (2018) 19:47 

carbon skeleton are responsible for the non-response 
effect with IA.

Oocytes that heterologously express the  GABAC-ρ1R 
can generate currents when exposed to GABA, Homo, 
or Hypo. When SCC-tau and GABA were co-applied, we 
observed a concentration-dependent decrease (Homo) 
or increase (Hypo) of GABA induced-currents. Interest-
ingly, in both cases, we did not observe a dual action of 
Homo and/or Hypo in the modulation of GABA-induced 
currents, as in the case of taurine [32]. In this sense, 
unlike the human glycine receptor (Gly-α1R), where tau-
rine and other β-amino acids act like agonists or antag-
onists [42], in  GABAA-ρ1R only taurine follows this 
pattern. One interpretation for this lack of dual effect of 
Homo and Hypo is that probably its action it is not asso-
ciated to a change in the molecular structure of the com-
pounds [42], and the positive and negative modulation on 

the GABA-induced current could be a result of the occu-
pation of the agonist binding sites in the binding pocket 
by each of these compounds. A second possibility is and 
effect of either negative or positive cooperativity between 
GABA-Homo or GABA-Hypo.

In the case of taurine, it was previously reported that 
it generates a dual effect on GABA-induced currents, 
suggesting that this β-amino acid (at low concentrations) 
can compete with GABA for the same binding site [32]. 
This hypothesis is reinforced with our molecular model, 
where Hypo, Homo, IA, taurine and GABA share the 
same binding site. The fact that taurine inhibits GABA 
response at high concentrations [32], just like Homo in 
this work, could be due to an interaction of taurine and 
Homo with a second binding site.

These data suggest a competitive behavior of SCC-
tau and, thus, reflects an antagonistic binding within 
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Fig. 6 Structural models of  GABAA side view (a) and top view (b) of the receptor and results of docking with different ligands, represented by 
colored spheres GABA (red circle), Tau‑SCC (black circle), Hypo (orange circle), IA (violet circle), Homo (green circle), and Picro (brown circle). The 
structures were drawn using the PyMOL and LIGPLOT v.4.5.3 programs



Page 8 of 11Ochoa‑de la Paz et al. BMC Neurosci  (2018) 19:47 

a common ligand-binding pocket. The Hill coefficient 
obtained in both the negative and positive modulations 
generated by Homo and Hypo, respectively, indicates a 
contribution of GABA displacement despite its affinity 
to the binding site. This structural phenomenon would 
allow the interaction of SCC-tau in different binding con-
formations, inducing agonist or antagonist effects.

GABA induced-currents were modulated when SCC-
tau and GABA were co-applied, while Homo reduced, 
Hypo increased the currents. This effect is explained with 
the data obtained from the docking, where Homo pre-
sents a second site with a greater binding probability, dif-
ferent from the binding site it shares with GABA; these 
two sites are located at different places of the receptor. 
Therefore, considering that GABA shares the same bind-
ing site as Hypo and Homo, this would confirm the fact 
that they compete for the same binding site as reflected 
in the experimental protocol. However, in the case of 
Homo, it does not share the second binding site with 
GABA, so there is no competition between them. There-
fore, it is likely that this second Homo binding site may 
act as a negative regulatory site of the  GABAC-ρ1R, when 
GABA activates the receptor.

Homo acts like an antagonist of GABA- and Hypo-
induced currents; however, is a partial agonist at high 
concentrations without GABA or Hypo. This could be 
explained by negative cooperativity between Homo and 
GABA or Hypo, and this interaction is possibly due to 
a dependence of the second Homo binding site on the 
action of the agonist, that is available only when the first 
site (BS1) is previously occupied by GABA or Hypo. 
Therefore, it is likely that the affinity of Homo depends 
on the previous binding of a first agonist, which changes 
the conformational structure of the receptor.

Conclusions
Interest in receptors for γ-aminobutyric acid, the major 
inhibitory transmitter in the central nervous system, has 
been development over the last four decades. Given their 
widespread distribution, lower abundance and relative 
simplicity compared to  GABAA and  GABAB receptors, 
 GABAC receptors are attractive drug targets.  GABAC 
receptors pharmacology is different from  GABAA and 
 GABAB receptors, therefore, the development or char-
acterization of novel compounds for  GABAC receptor is 
imperative. This will allow to determine with certainty 
the function of this receptor in the central nervous sys-
tem. In this sense, small molecules such as SCC-tau are 
compounds with great potential for this purpose. Here, 
we observed that SCC-tau are partial agonists of the 
 GABAC-ρ1R that occupy the agonist binding site. The 
dual effect observed with SCC-tau was present in a sep-
arate way: while Hypo increases, Homo decreases the 

GABA-currents. These observations suggest that tau-
rine could induce the dualistic effect by a change in the 
molecular structure in response to taurine concentration. 
However, the fact that Hypo and Homo act differently 
on GABA-currents could potentially be used to design 
pharmacological tools for the modulation of GABAergic 
receptors.

Methods
Expression of homomeric human  GABAC‑ρ1 receptors 
in Xenopus laevis oocytes
All the animals were handled in accordance with guide-
lines of the National Institutes of Health Guide for Care 
and Use of Laboratory Animals and with the approval 
of the Institutional Animal Care and Use Committee 
of the National University of Mexico. We used Ethyl 
3-aminobenzoate methanesulfonate  (MS-222) at 0.17% 
for 30 min, to anesthetize the Xenopus laevis frogs. The 
oocytes were manually removed and enzymatically defol-
liculated at room temperature using collagenase type I 
(0.3 μg/μl) for 45 min. Later, oocytes were kept in Barth’s 
medium (in mM): 88, NaCl; 1, KCl; 0.33,  Ca2 (NO)3; 0.41, 
 CaCl2; 0.82,  MgSO4; 2.4,  NaHCO3; 5, HEPES; pH 7.4 and 
0.1  mg/ml gentamicin sulfate. After 24  h, 0.5  μg/μl of 
human  GABAC-ρ1R mRNA was injected in vegetal hemi-
sphere of the oocyte, and electrophysiological recordings 
were obtained 2–3 days after injection.

Voltage‑clamp recordings
Membrane currents elicited by GABA and SCC-tau were 
recorded using the two-microelectrode voltage-clamp 
technique. Oocytes were placed in a chamber, with a 
volume of 500 μl, and impaled with two microelectrodes 
previously filled with 3 M KCl (0.5–2.5 MΩ) and clamped 
at − 60  mV. To determine the equilibrium membrane 
potential of the agonist action, I–V relationships were 
constructed by stepping the oocyte’s membrane poten-
tial from − 60 to − 120  mV for 1  s and then from − 60 
to + 40 mV (in 20 mV steps) in the absence or presence 
of GABA or SCC-tau (Homo, Hypo, IA). All recordings 
were done at 20–23  °C in a chamber continuously per-
fused at 5–10  ml/min of Ringer solution (in mM): 115, 
NaCl; 2, KCl; 1.8,  CaCl2; 5, HEPES, pH 7.4. All drugs were 
purchased from SIGMA-ALDRICH (San Louis Mis-
souri, USA). The stock solution of GABA (1  M), Homo 
(0.5 mM), Hypo (0.5 mM) or IA (0.5 mM) was kept fro-
zen until thawed for the experiments. The pH of all solu-
tions was adjusted to 7.4.

Data analysis
Results are reported as mean ± S.E. of the values obtained 
from several cells, each value being the average of meas-
urements in different cells. Data from each experiment 
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were collected from at least seven oocytes. Agonist con-
centration–response curves were constructed by meas-
uring the maximum response evoked by each agonist 
concentration. The half-maximal concentration  (EC50) 
and Hill coefficient  (nH) of GABA, Hypo, and Homo 
were estimated for each curve by fitting the data to the 
logistic type equation (Origin 6.0, Northampton, MA): 
A = Amax/(1+ 10[logEC50

−[agonist] nH
) . The half-inhibitory 

concentration  (IC50) of Homo was estimated by fitting the 
following equation: A = Amax/(1+ 10[[agonist]−logEC50) . 
Differences among groups were statistically analyzed by 
ANOVA and Tukey–Kramer post-test, and were con-
sidered significant when P < 0.05. Control responses to 
GABA were obtained before and after each drug appli-
cation to account for possible shifts in the amplitude of 
the control current. To determine the time constants for 
the activation (τact) and deactivation (τdeac) of GABA-, 
Homo- and Hypo-currents responses, a decay function 
of the form: I(τ) = exp(− t/τ d) + C, where I is the cur-
rent and t is time, was fit to the experimental data (Origin 
6.0 software; Northampton, MA). Differences between 
groups were statistically analyzed by ANOVA and a 
Tukey–Kramer post-test, and were considered significant 
at the level P < 0.05.

Homology modeling of Type A gamma‑aminobutyric acid 
 (GABAA) receptors (Homo sapiens)
This homology modeling started with the retrieval 
of the amino acid sequence of  GABAA (GenBank: 
AAA52509.1). The mature protein, predicted from this 
cDNA sequence in 458 amino acids, displays between 30 
and 38% amino acid similarity to the previously identified 
 GABAA subunits [29]. Using the program Basic Local 
Alignment Search Tool (BLAST; https ://blast .ncbi.nlm.
nih.gov/Blast .cgi) [43], and the database of the Protein 
Data Bank, the structural model was built based on the 
structure of a human gamma-aminobutyric acid recep-
tor, the Gaba(a) r-beta3 homopentamer (4COF.pdb) 
[44], which revealed a coverage of 70% and the high-
est sequence identity (48%) with the target. A multiple 
alignment was performed using the constraint-based 
multiple alignment tool (COBALT; https ://www.ncbi.
nlm.nih.gov/tools /cobal t/re_cobal t.cgi) server, where 
an initial segment of 44 amino acids with no structural 
identity appears. An ab initio model of this fragment was 
made using the Rosetta 3.4 program [45]; 1000 models of 
this segment were made. Subsequently, using MODEL-
LER 9.17 r10881 with the multiple models protocol, 500 
 GABAA models were constructed, using the most stable 
model of the peptide and the 4COF.pdb file as a tem-
plate. Later, a simple structural refinement of full atom 
was performed using “relax” application of Rosetta. The 
final model was validated using the Verify-3D (structure 

evaluation software) and Whatcheck (protein verification 
tools software) computer programs [46, 47].

Docking protocol
Docking was made with the previously constructed 
three-dimensional structure (Type A gamma-aminobu-
tyric acid receptors—GABAA), and the ligands were built 
with HyperChem 8 software. The ligands were minimized 
employ Gaussian 09, revision A.02 (Gaussian Inc., Wall-
ingford, CT) at DTF B3LYP/3-21G level of theory. Auto-
DockTools 1.5.4 (http://mglto ols.scrip ps.edu/), it was 
used to prepare the structures before carrying out the 
docking. The preparation of the structures consisted in 
adding all hydrogen atoms as well as the Kollman united-
atom partial charges to the receptor, while Gasteiger–
Marsili charges and rotatable groups were assigned 
automatically to the ligands. AutoGrid4 was occupying to 
generate the electrostatic grid maps for each atom type. 
The initial grid box size was 60  Å × 60  Å × 60  Å in the 
x, y, and z dimensions. Docking was produced out with 
AutoDock4 version 4.2 (http://autod ock.scrip ps.edu/) 
[48, 49] using default parameters; for the Lamarckian 
genetic algorithm with local search, number of individ-
uals in population (150), maximum number of energy 
evaluations (2.5 million), maximum number of genera-
tions (27,000), rate of gene mutation (0.02), rate of cross-
over (0.8), and 1000 runs for docking. Finally, the docking 
was analyzed with AutoDockTools using cluster analysis 
and PyMOL software [50].

Additional files

Additional file 1: Figure S1. Effect of Homo on Hypo‑induced currents in 
oocytes heterologously expressing  GABAC‑ρ1R. (A) Representative traces 
of currents induced by 30 µM, 3 mM and 30 mM Hypo and co‑applied 
with Homo at the indicated concentrations. (B) Homo dose‑response rela‑
tion of currents elicited by 30 µM, 3 mM and 30 mM Hypo. The currents 
were normalized to the maximum amplitude elicited by the agonist in 
absence of modulators. Data points are the means ± S.E. from at least 9 
oocytes (n = 9) from 4 frogs (N = 4).

Additional file 2: Figure S2. Three‑dimensional models of  GABAA and 
template. In slate blue cartoon (GABAA), splitpea green cartoon (template) 
(Protein Data Bank [PDB] code: 4COF). The structures were drawn using 
the PyMOL program.
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