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Abstract

Background: While aging is a potent risk factor of dry eye disease, age-related gut dysbiosis is associated with
inflammation and chronic geriatric diseases. Emerging evidence have demonstrated that gut dysbiosis contributes to the
pathophysiology or exacerbation of ocular diseases including dry eye disease. However, the relationship between aging-
related changes in gut microbiota and dry eye disease has not been elucidated. In this pilot study, we investigated the
association between aging-dependent microbiome changes and dry eye severity in C57BL/6 male mice.

Results: Eight-week-old (8 W, n=15), one-year-old (1Y, n=10), and two-year-old (2Y, n =8) C57BL/6 male mice were
used. Dry eye severity was assessed by corneal staining scores and tear secretion. Bacterial genomic 16 s rRNA from feces
was analyzed. Main outcomes were microbiome compositional differences among the groups and their correlation to dry
eye severity. In aged mice (1Y and 2Y), corneal staining increased and tear secretion decreased with statistical significance.
Gut microbiome a-diversity was not different among the groups. However, 3-diversity was significantly different among
the groups. In univariate analysis, phylum Firmicutes, Proteobacteria, and Cyanobacteria, Firmicutes/Bacteroidetes ratio, and
genus Alistipes, Bacteroides, Prevotella, Paraprevotella, and Helicobacter were significantly related to dry eye severity. After
adjustment of age, multivariate analysis revealed phylum Proteobacteria, Firmicutes/Bacteroidetes ratio, and genus
Lactobacillus, Alistipes, Prevotella, Paraprevotella, and Helicobacter to be significantly associated with dry eye severity.

Conclusions: Our pilot study suggests that aging-dependent changes in microbiome composition are related to severity
of dry eye signs in C57BL/6 male mice.
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Background

Dry eye disease is a multifactorial disorder in which the
tear film homeostasis is lost, accompanied by several
ocular symptoms. Tear film instability and ocular surface
inflammation may contribute to the disease [1, 2]. Given
that the prevalence of dry eye disease increases after
middle age, aging is one of the critical risk factors for dry
eye disease [3, 4]. As the elderly population increases,
socio-economic costs are expected to proportionally in-
crease in the near future [5]. Ocular surface is an exposed
mucosa constantly subject to external stimuli. Tear film
instability induces hyperosmolar stress in ocular surface
epithelium, which subsequently acts as an initial precipi-
tating factor for dry eye disease. Hyperosmolar stress
promotes the expression of inflammatory cytokines in the
damaged ocular surface epithelium [1]. The inflammatory
cytokines may recruit innate immune cells, activate den-
dritic cells and stimulate T helper 1 (Th1) and 17 (Th17)
cells that infiltrate the ocular surface and lacrimal glands
[1, 6]. Regulatory T cell (T,¢5) dysfunction is also involved
in the progression to chronic dry eye disease [7].

Gut microbes influence the maturation and develop-
ment of the immune system, interact with the nervous
system, and maintain metabolic homeostasis [8—10].
Emerging evidence have implied that gut dysbiosis
contributes to the pathophysiology or exacerbation of in-
testinal diseases as well as systemic diseases including
systemic lupus erythematosus and rheumatoid arthritis
[11-14]. Moreover, recent studies have demonstrated
that alterations in gut microbiota may lead to several
ocular diseases including autoimmune uveitis, age re-
lated macular degeneration, and dry eye associated with
Sjogren’s syndrome [15-18]. A recent review also indicates
that gut microbiota may interact with the eye [19].

The gut microbiota changes with aging and this aging-
related microbiota alteration is associated with inflam-
maging and chronic geriatric diseases [20]. Given that
the gut dysbiosis is associated with dry eye disease [19],
aging-related microbiome dysbiosis may also contribute
to aging-related dry eye disease. Therefore, in this pilot
study, we aimed to investigate (1) whether aging-related
dysbiosis is present in C57BL/6 (B6) male mice and (2)
which taxa that altered with aging may be associated
with the severity of dry eye. These results will open the
door for microbiota modulation in aging-related dry eye
disease as one of the treatment options.

Results

First, we discovered that dry eye developed according to
age in B6 male mice. The mean (+ standard deviation
(SD)) corneal staining scores (punctate epithelial erosions)
of eight-week-old (8 W; young), one-year-old (1Y; middle
aged), and two-year-old (2Y; elderly) groups were 1.35 +
1.03, 6.25+1.78, and 4.81 + 1.62, respectively (Fig. la-b).
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The scores of the 1Y and 2Y groups were significantly
higher than that of the 8 W group (p<0.001 and p=
0.005, respectively); however, there was no difference be-
tween the 1Y and 2Y groups (p >0.999; Kruskal-Weallis
test followed by Dunn’s post hoc test) (Fig. la-b). The
amount of tear secretion was not different among the
groups; whereas, the correction value according to body
weight (BW), which is also clinically relevant, was signifi-
cantly lower in both 1Y and 2Y groups than in the 8 W
group (Fig. 1¢c; p =0.003 and p = 0.044, respectively; Krus-
kal-Wallis test followed by Dunn’s post hoc test). Supple-
mentary Table 1 shows all measurements of each mouse.
Next, we compared each groups’ gut microbiome.
Mean (+ SD) reads per sample was 44,711 (+ 10,442)
and individual samples ranged from 28,903 to 79,815
reads. The number of operational taxonomic units
(OTUs) of each group were not different (p=0.777;
Kruskal-Wallis test; Fig. 2a). Chao 1 index and Shannon
index did not show any significant differences among
the groups (p =0.207 and p =0.395, respectively; Krus-
kal-Weallis test; Fig. 2b-c). However, B-diversity of each
groups’ gut microbiome analyzed by UniFrac principal
coordinates analysis (PCoA) was significantly different
among the groups (p = 0.001, 8 W versus (vs.) 1Y; p = 0.001,
8 W vs. 2Y; and p =0.009, 1Y vs. 2Y; Permutational multi-
variate analysis of variance (PERMANOVA)) (Fig. 2d).
Thereafter, we analyzed compositional differences of
gut microbiome at the level of phylum, family, and genus
of each group (Fig. 3a). At the phylum level (Fig. 3b), the
2Y group exhibited relatively more Firmicutes than the
1Y group (p=0.037), and decreased Bacteroidetes
compared to both 8 W and 1Y groups (p=0.004 and
p =0.024, respectively; Kruskal-Wallis test followed by
Dunn’s post hoc test). Firmicutes/Bacteroidetes (F/B)
ratio was greater in the 2Y group than the 8 W and 1Y
groups (p=0.004 and p =0.024, respectively; Kruskal—
Wallis test followed by Dunn’s post hoc test). The 1Y
group revealed relatively higher proportion of Proteobac-
teria (1Y vs. 8 W, p=0.049), and lower proportion of
Actinobacteria (1Y vs 8 W, p=0.002; 1Y vs 2Y, p=
0.008; Kruskal-Wallis test followed by Dunn’s post hoc
test). The aged group (1Y and 2Y) showed a significantly
abundant Cyanobacteria compared to the 8 W group
(p =0.002 and p < 0.001, respectively). At the family level
(Fig. 3c), the aged group had high proportion of Bacter-
oidaceae and Rikenellaceae, and low proportion of Muri-
baculaceae compared to the 8 W group (all p<0.05).
Family Prevotellaceae reduced with aging and the 2Y
group showed a significant reduction compared to the 8
W group (p<0.001). At the genus level (Fig. 3d), the
aged group showed higher proportion of Alistipes and
Bacteroides, and lower proportion of Paraprevotella than
the 8 W group (all p <0.05). The 2Y group revealed sig-
nificant reduction in Prevotella compared to both 8 W
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Fig. 1 Corneal staining and tear secretion of the 8 W, 1Y, and 2Y groups. a Representative images of corneal fluorescein staining. b The National
Eye Institute corneal staining score was significantly higher in one-year-old (1Y) and two-year-old (2Y) mice than in eight-week-old (8 W) mice (all
p < 0.01; Kruskal-Wallis test followed by Dunn’s post hoc test; n= 10, 6, and 8 for 8 W, 1Y, and 2Y mice, respectively). ¢ Tear secretion did not
change over time (all p > 0.05; Kruskal-Wallis test). However, when the level was normalized by body weight (BW), the normalized value was
lower in both 1Y and 2Y groups than in the 8 W group (all p < 0.05; Kruskal-Wallis test followed by Dunn’s post hoc test; n= 15, 10, and 8 for 8
W, 1Y, and 2Y mice, respectively). ns, not significant; *p < 0.05, **p < 0.01, and ***p < 0.001. Data are presented as means + standard error

and 1Y groups (all p < 0.05; Kruskal-Wallis test followed
by Dunn’s post hoc test).

The linear discriminant analysis (LDA) of effect size
(LEfSe) analysis was performed to explore the specific
taxa that had significant difference among the 8 W, 1Y,
and 2Y groups (Fig. 4a), or between the aged (1Y and
2Y) and 8 W young (Fig. 4b) groups. The relative abun-
dance of nine microbial taxa, such as Alistipes (genus),
Firmicutes (phylum), Cyanobacteria (phylum), in the 2Y
group was higher compared to both 1Y and 8 W groups.
Six microbial taxa, such as Bacteroidetes (phylum) and
Prevotella (genus), were significantly enriched in 8 W
group. For additional analysis, we combined the data
from 1Y and 2Y groups into the aged group. Ten micro-
bial taxa in the aged group, such as Alistipes (genus) and
Cyanobacteria (phylum), were higher in abundance
compared to the 8 W group, whereas six microbial taxa
in the young 8 W group, such as Paraprevotella (genus),
Bacteroidetes (phylum), and Prevotella (genus), were
higher in abundance compared to the aged group.

Next, we investigated the relationship between aging-
dependent changes of gut microbiome and dry eye
severity signs using Spearman’s rank correlation test. In
phylum level (Fig. 5), corneal staining score was posi-
tively related with Cyanobacteria (r= 0.584, p = 0.003).

Tear secretion had negative relation with Proteobacteria
(r=-0.421, p=0.015). BW adjusted tear secretion was
negatively correlated with Cyanobacteria (r=-0.494,
p =0.004). In genus level (Fig. 6), corneal staining score
was positively related with Alistipes (r= 0.639, p <0.001)
and Bacteroides (r= 0.669, p<0.001), and negatively
related with Paraprevotella (r=-0.623, p=0.001). Tear
secretion had negative relation with Prevotella (r=-
0.439, p =0.011) and Helicobacter (r = - 0.455, p = 0.008).
However, BW adjusted tear secretion was negatively
correlated with Alistipes (r=-0.458, p = 0.007) and Bac-
teroides (r = - 0.436, p = 0.011).

Finally, we performed partial rank correlation ana-
lysis to adjust the confounding age factor. In phylum
level, only Proteobacteria significantly affected corneal
staining score (r= 0.418, p = 0.047), tear secretion (r =
-0.423, p=0.016), and tear secretion with BW adjust-
ment (r=-0.371, p=0.037). In genus level, corneal
staining score was positively related to Helicobacter
(r= 0423, p=0.046). Both tear secretion with and without
adjustment for BW were negatively related to Prevotella
(r=-0444, p=0.011; r=-0472, p=0.006; respectively),
Paraprevotella (r=-0.367, p =0.039; r=-0.368, p = 0.038;
respectively), and Helicobacter (r=-0.455, p=0.009;
r=-0.399, p = 0.024; respectively).
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Fig. 2 Alpha and beta diversity analysis of the 8 W, 1Y, and 2Y groups. a Observed operational taxonomic unit (OTU) count, (b) Chao 1 index, (c) Shannon
diversity index. There were no significant differences among the groups in OTU, Chaol and Shannon index (all p > 0.05; Kruskal-Wallis test). d 3-diversity of
genus and species analyzed by UniFrac principal coordinates analysis revealed to have significant distances between each group (p=0001, 8W vs. 1Y; p=
0001, 8W vs. 2Y; and p = 0.009, 1Y vs. 2Y; Permutational multivariate analysis of variance (PERMANOVA)). Bars indicate maximum and minimum values
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Discussion

This study demonstrates that (1) aging-dependent gut
dysbiosis is present in B6 male mouse model and (2) dry
eye severity is correlated with the gut dysbiosis.

In dry eye disease and Sjogren’s syndrome patients,
Bacteroidetes, Actinobacteria, and Bifidobacterium were
correlated with dry eye severity signs. Sjogren’s
syndrome patients showed significant gut dysbiosis
compared to both healthy and environmental dry eye
subjects [17]. In the autoimmune dry eye mouse model,
mice fed with a specific probiotics formula resulted in
reduced corneal erosion and increased tear volume. A
decrease in the inflammatory cytokine, interleukin (IL)-
1B, and increase in the anti-inflammatory cytokine, IL-
10, were observed in the probiotics intake group [21].
These seem to be caused by the downregulation of
antigen-presenting cells related to gut microbiome
changes [21]. Kawashima et al. also reported that
dietary supplementation with E. faecium WB2000
mixed with fish oil for 8 weeks improved objective and
subjective symptoms with increased tear production in
dry eye disease patients [22]. Taken together, dry eye
severity signs are associated with gut microbiota dys-
biosis, and the consumption of probiotics supplements
can alleviate dry eye disease.

In this study, we observed more significant dry eye
and related ocular surface damages in aged mice (1Y
and 2Y) compared to the young group (8 W) in the B6
male mouse model. Corneal staining score of 1Y group
was comparable to that of 2Y group. This is in line with
previous studies that observed equivalent degree of cor-
neal epithelial defects between 1 and 2 years of age [23],
and similar corneal irregularities of 6 to 9 month-old B6
mice when compared to those of 2year old B6 mice
[24]. Aging-related inflammation increases with age, but
not in a linear incremental manner [24], and the ocular
surface change appears to reach a plateau between 1 and
2 years of age.

We found that the a-diversity of the gut microbiome
did not change with age. However, [B-diversity and
microbiome composition were significantly different ac-
cording to age, and this difference was clearly observed
in the PCoA plot (Fig. 3a). In addition, the distribution
in the PCoA plot was very different between 8 W and 2Y
groups, whereas the 1Y group lied somewhere in between
those groups.

Dysbiosis has been reported in several metabolic disor-
ders such as obesity and hypertension, and appears to in-
crease the relative abundance of F/B ratio [25-27]. High
F/B ratio is associated with lower butyrate production in
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Fig. 3 Taxonomic relative abundance according to phylum, family and genus. a Overall, taxonomic relative abundance in phylum and genus are
shown for all groups. b In phylum, Firmicutes significantly increased (2Y versus (vs.) 1Y, p=0.037) and Bacteroidetes reduced (2Y vs 8 W, p = 0.004; 2Y vs
1Y, p=0.024) in the 2Y group compared to both 8 W and 1Y groups. Proteobacteria was increased (1Y vs. 8 W, p = 0.049) and Actinobacteria was
decreased (1Y vs 8W, p=0.002; 1Y vs 2Y, p=0.008) in the 1Y group. Cyanobacteria was increased in the aged group (1Y and 2Y) compared to the 8 W
group (p=0.002 and p < 0.001, respectively). ¢ In family, Bacteroidaceae and Rikenellaceae were significantly more abundant and Muribaculaceae was
significantly reduced in the aged group (1Y and 2Y) compared to the 8 W group (all p < 0.05). Prevotellaceae was significantly reduced in the 2Y group
than in 8 W group (p < 0.001). d In genus, the aged group (1Y and 2Y) were increased Alistipes and Bacteroides, and decreased Paraprevotella compared
to the 8 W group (all p < 0.01). The 2Y group revealed significantly decreased Prevotella than both 8 W and 1Y groups (all p < 0.05). *p < 0.05, *p <001,

and ***p < 0.001 by Kruskal-Wallis test followed by Dunn'’s post hoc test. Data are presented as means + standard error

the gut [27, 28]. Butyrate, one of short-chain fatty acids
(SCFAs), is a preferred energy source for intestinal epithe-
lial cells and has several beneficial clinical effects such as,
strengthening the immune system, reducing inflammation,
and regulating metabolism [29]. In ocular diseases, high F/
B ratio was observed in experimental autoimmune uveitis
and age-related macular degeneration mouse models [30,
31]. In this study, Bacteroidetes was more dominant in the
8 W group, while Firmicutes was more prevalent in the 2Y
group. In congruence with previous study [32], the F/B
ratio increased with age where the 2Y group showed a sig-
nificantly higher ratio than the 8 W and 1Y groups. These
results suggest that gut dysbiosis increases with aging.
Phylum Proteobacteria is a known microbial signa-
ture for gut dysbiosis [25]. Gut dysbiosis facilitates
anaerobic glycolysis of surface colonocytes, which in-
duces increment of gut epithelial oxygenation, dis-
rupts anaerobiosis in the lumen, and consequently
promotes an expansion of facultative anaerobic Pro-
teobacteria [33]. Immunomodulatory cytokine IL-10

deficient mice showed spontaneous development of
colitis and had relatively higher proportion of Proteo-
bacteria than wild-type mice [34]. Oral administration
of Helicobacter typhlonius (phylum Proteobacteria)
triggered tumor necrosis factor (TNF)-a and pro-
moted colitis in Thx217/"Rag2™'~ ulcerative colitis
mice [35]. Increased prevalence of Proteobacteria was
observed in metabolic or immune disorders including
type II diabetic mellitus, obesity, and systemic lupus
erythematosus [36-38]. Among ocular diseases, Proteo-
bacteria was increased in Behget’s disease and age-related
macular degeneration [31, 39]. In this study, the abun-
dance of phylum Proteobacteria was increased in the 1Y
group. Moreover, correlation analysis revealed that
phylum Proteobacteria was positively related to corneal
staining and negatively related to tear secretion after age
adjustment. Genus Helicobacter also showed a negative
correlation with tear secretion regardless of BW adjust-
ment. This genus has been reported to be associated with
enteritis and systemic infectious diseases [40].
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Fig. 6 Spearman’s rank correlation analysis between dry eye indices and gut microbiome at the genus level. a NEI score showed significant
positive relation with Alistipes (r= 0.639, p < 0.001) and Bacteroides (r = 0.669, p < 0.001), and negative relation with Paraprevotella (r=— 0623, p=
0.001). b Tear secretion showed negative relation with both Prevotella (r=—0.439, p=0.011) and Helicobacter (r = —0.455, p = 0.008). ¢ Tear
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Phylum Cyanobacteria is a bacteria presumably to be
involved in the onset of neurodegenerative disease such
as Parkinson disease. Cyanobacteria produces neurotoxin
b-N-methylamino-L-alanine that may trigger neurodegen-
eration by promoting mitochondrial dysfunction, protein
misfolding, and innate immune responses in genetically
susceptible individuals [41]. This phylum was observed to
relatively increase in aged mice, and the associated gut
dysbiosis was also observed in two different mouse models
of progeria where fecal microbiota transplantation from
wild-type mice enhanced their lifespan and health [42].
BW adjusted tear secretion was negatively correlated with
the Cyanobacteria. Both afferent and efferent neural func-
tions modulating tear production and neurodegeneration
induced by Cyanobacteria may play etiological roles [1].

Of note, genus Paraprevotella decreased with aging as
reported previously in another study [43]. A decrease in
this genus was associated with an increase in corneal
staining score. Reduced genus Paraprevotella has been
reported in patients with autism spectrum disorder com-
pared to healthy subjects, in low-functioning older adults
than in high-functioning older adults, and in sedentary
women than in active women [44-46]. In addition,
genus Paraprevotella showed negative association with
disease staging and motor function of Parkinson disease
[47]. This genus produces succinate and acetate as major
fermentation products, and only two associated species
have been discovered. As described above, the reduction
of genus Paraprevotella is related to several diseases but
the potential impact on human health is still unknown

[46, 48], and it may be connected to the production of
acetate, one of the SCFAs.

We also observed that the relative abundance of genus
Bacteroides, regarded as an opportunistic pathogen, was
significantly increased with age, in agreement with
previous studies [49-51]. This genus has been shown to
produce virulent factors in the form of polysaccharide
that is involved in the destruction of tissues and formation
of abscess [52]. The genus Bacteroides was positively
correlated with corneal staining score, which is possibly
associated with disruptive gut barrier and systemic
inflammation.

A suggested pathophysiology of gut dysbiosis associ-
ated with dry eye disease may involve modulating
effector T cells directly or via either dendritic cell activa-
tion or disturbing gut-derived metabolites [19]. In this
study, we found that microbial taxa associated with dys-
biosis change with age, and that these microbial taxa
were associated with dry eye severity signs. With aging,
phylum Proteobacteria and genus Helicobacter (a genus
included in phylum Proteobacteria) were positively asso-
ciated with corneal staining score and negatively associ-
ated with tear secretion after age adjustment. The
modulation of phylum Proteobacteria may be relevant in
the treatment of age-related dry eye disease.

Our study has several limitations. First, a small num-
ber of animals were used, and the corneal staining score
was not measured in all mice. Therefore, the results may
be insufficient to represent each group. However, this
study can be used as a pilot study for future research.
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Second, this study was conducted with only male mice.
The female sex is one of the potent risk factors for dry
eye disease due to hormonal effects [53]. Therefore, it
may not be possible to extend the results to female.
Third, this was an animal study conducted with mice.
However, B6 mice are frequently used in aging research
because they develop all the hallmarks of dry eye clinical
features including corneal barrier dysfunction, loss of
goblet cells, meibomian gland dysfunction, increased dry
eye related cytokine expressions, dry eye signs with age,
and inflammatory cell infiltrations in lacrimal gland
associated with aging [54—56]. Fourth, we did not co-
house mice or use littermates. We included mice of
different ages; therefore, we could not use the same lit-
termates. Moreover, mice that have passed the weaning
period, especially males, tend to fight until death when
co-housed, and so, we could not co-house them [57].
For these reasons, a co-housing or littermate method
could not be applied in previous studies comparing gut
microbiome of young and old mice [58, 59]. Fifth, rela-
tive abundance may not be as accurate as absolute abun-
dance [60]. The overall abundance of bacteria in the gut
is likely to also change with age, thereby just showing
relative abundance may overlook important key findings.
Lastly, we evaluated the association between gut micro-
biome changes and dry eye severity signs, and we did
not reveal any cause-and-effect relationship. Analysis of
serum inflammatory cytokines, stool SCFA, or histo-
logical changes in the ocular surface with aging will be
needed in future studies to strengthen the association of
age-related microbiome changes to dry eye severity. Pro-
biotics have been observed to improve dry eye disease
severity, suggesting that regulation of gut microbiota
might aid future discovery of effective treatment for dry
eye disease [21, 22].

Conclusions

Several microbial taxa change in aged mice are related
to gut dysbiosis or chronic inflammation, which are
possibly associated with the severity of dry eye. In aged
mice, phylum Proteobacteria, Cyanobacteria, and genus
Bacteroides increased while genus Paraprevotella de-
creased. These microbial taxa were associated with in-
creased corneal staining score or decreased tear volume.
Especially, phylum Proteobacteria was positively associ-
ated with corneal staining score. Modulation of gut dys-
biosis may be a new therapeutic strategy for age-related
dry eye disease.

Method

The experimental protocol was approved on May 29,
2017 by the Institutional Animal Care and Use Committee
of the Seoul National University Biomedical Research In-
stitute (IACUC no. 19-0076-S1A0). Animal experiments
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were performed in accordance with the ARVO Statement
for Use of Animals in Ophthalmic Vision and Research
and ARRIVE guidelines. It is known that B6 mice have
increased corneal erosion at 6—9 months of age, and histo-
logical changes in the lacrimal glands are evident at 12
months of age [24, 61]. Moreover, mice older than 24
months have a have a higher chance of natural death
caused by aging [62]. Therefore, we set 12 and 24 months
of age as the time points of the analysis and compared
them with 8-week-old mice as controls.

Animals

A total of 33 B6 male mice were used in this study.
Fifteen 8 W, ten 1Y, and eight 2Y mice were included.
All mice were purchased from the same company
(KOATECH; Pyeongtaek, Gyeonggi-do, South Korea) at
6-weeks of age, and freely fed a normal diet of laboratory
rodent chow (38,057; Cargill Agri Purina, Inc., Seongnam,
South Korea). Mice cages were in a specific pathogen-free
facility at Seoul National University Hospital Biomedical
Research Institute (Seoul, Korea), maintained at 22—24 °C
with 55 + 5% relative humidity, and given food and water
ad libitum. After the study, the mice continued to be
observed without sacrificing for further study related to
aging-related dry eye disease.

Clinical evaluation

The corneal staining and tear secretion test were per-
formed under anesthesia (using a mixture of xylazine
and zoletil at a ratio of 3:1). The corneal staining was
evaluated first, and the tear secretion was measured
at least 24 h apart. The corneal staining scores were
blindly assigned by a single experienced ophthalmolo-
gist (CH. Y.) according to the National Eye Institute
(NEI) grading scale [63]. A drop of 0.25% fluorescein
dye was applied to the conjunctival sac for 30s, then
the ocular surface was gently washed with 1 mL of
normal saline, and corneal staining was evaluated
using a microscope (Olympus SZ61; Olympus Corpor-
ation, Tokyo, Japan) under cobalt blue illumination.
For the tear secretion test, phenol red-impregnated
cotton threads (FCI Ophthalmics, Pembroke, MA,
USA) were inserted into the lateral canthus of mice for
60s. The amount of tear secretion was determined by
measuring the length of the wet thread in millimeters.
The correction value obtained by dividing the amount of
tear secretion by the BW of the mouse was also calculated
[64]. Corneal staining score was evaluated in ten 8 W, six
1Y, and eight 2Y mice, and tear secretion test was per-
formed in all mice. The average values of corneal staining
scores and tear secretion results from both eyes were used
for the analyses.
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Fecal microbiota analysis

All collected feces were stored at — 80 °C until they were
referred to Chunlab, Inc. (Seoul, Korea) for microbiota
analysis as previously described [17]. Total DNA extrac-
tion was performed using the FastDNA°® SPIN Kit for
Soil (MP Biomedicals, USA), in accordance with the
manufacturer’s instruction. Polymerase chain reaction
(PCR) amplification was performed using extracted
DNA and bacterial PCR primers 341F (5'-TCGTCG
GCAGCGTC-AGATGTGTATAAGAGACAG-CCTA
CGGGNGGCWGCAG-3'; underlining sequence indi-
cates the target region primer) and 805R (5'-GTCTCG
TGGGCTCGG-AGATGTGTATAAGAGACAG-GACT
ACHVGGGTATCTAATCC-3") targeting V3-V4 regions
of 16S rRNA. The reaction conditions for the first PCR
amplification were as follows: 3 min of initial denatur-
ation at 95°C, 25cycles of 30s’ denaturation at 95°C,
30s primer annealing at 55°C, 30s elongation at 72 °C,
and final extension at 72 °C for 5 min. The second PCR
amplification was performed using i5 forward primer
(5'-AATGATACGGCGACCACCGAGATCTACAC-
XXXXXXXX-TCGTCGGCAGCGTC-3’; X indicates the
barcode region) and i7 reverse primer (5'-CAAGCAGA
AGACGGCATACGAGAT-XXXXXXXX-GTCTCG
TGGGCTCGG-3’) for attaching the Illumina NexTera
barcode. The second amplification conditions were the
same as those described for the first reaction except only
eight amplification cycles were performed. Amplification
was confirmed using gel electrophoresis on 1% agarose
gel and visualized under a Gel Doc system (BioRad,
Hercules, CA, USA). The product size and quality were
assessed on a Bioanalyzer 2100 (Agilent, Palo Alto, CA,
USA) using a DNA 7500 chip. Mixed amplicons were
pooled and sequencing was performed using an Illumina
MiSeq Sequencing system (Illumina, Inc., San Diego,
CA, USA) according to the manufacturer’s instruction at
Chunlab, Inc. (Seoul, Korea). The EzBioCloud database
(http://ezbiocloud.net) was used for taxonomic classifica-
tion after chimera check. To detect chimera on reads
that contain lower than 97% best hit similarity rate,
UCHIME and the non-chimeric 16S rRNA database
from EzBioCloud were used [17]. The dataset was nor-
malized to the lowest number of read counts (28903
reads per sample) for further analysis.

Statistical analysis

a-diversity analysis expressed with the observed OTUs,
Chaol, Shannon, and p-diversity analysis expressed with
generalized UniFrac were carried out using EZBioCloud,
a bioinformatics cloud platform of ChunLab Inc. (Seoul,
Korea). PCoA was performed to visualize differences in
the samples at genus and species level. PERMANOVA
was used to evaluate significance in UniFrac PCoA.
Compositional abundance differences from each sample
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were identified by analysis using LEfSe and the Kruskal-
Wallis test [65]. Taxa with more than 1% abundance in
at least one group were included in the analysis. Only
those taxa that showed a p-value <0.05 and log LDA
score > 3 were used as thresholds. For multiple compari-
sons, the Kruskal-Wallis test followed by Dunn’s post
hoc test was used. Spearman’s rank correlation and par-
tial rank correlations were used to analyze the relation-
ship between measures. Spearman’s rank correlation
analysis between dry eye indices and clinically important
microbials with significant differences among groups
was performed. Partial rank correlation analysis was per-
formed to identify independent significant microbials af-
fecting dry eye signs after adjustment of confounding
age factor. Statistical analyses were performed using
GraphPad Prism software (version 8.2.0; GraphPad Soft-
ware, La Jolla, CA, USA) and SPSS Statistics 20.0 (IBM
Corporation, NY, USA). Differences were considered
statistically significant at p < 0.05.
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