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Abstract

Background: Urinary tract infections (UTIs) affect 15 million women each year in the United States, with > 20%
experiencing frequent recurrent UTIs. A recent placebo-controlled clinical trial found a 39% reduction in UTI symptoms
among recurrent UTI sufferers who consumed a daily cranberry beverage for 24 weeks. Using metagenomic
sequencing of stool from a subset of these trial participants, we assessed the impact of cranberry consumption on the
gut microbiota, a reservoir for UTI-causing pathogens such as Escherichia coli, which causes > 80% of UTIs.

Results: The overall taxonomic composition, community diversity, carriage of functional pathways and gene families,
and relative abundances of the vast majority of observed bacterial taxa, including E. coli, were not changed significantly
by cranberry consumption. However, one unnamed Flavonifractor species (OTU41), which represented ≤1% of the
overall metagenome, was significantly less abundant in cranberry consumers compared to placebo at trial completion.
Given Flavonifractor’s association with negative human health effects, we sought to determine OTU41 characteristic
genes that may explain its differential abundance and/or relationship to key host functions. Using comparative
genomic and metagenomic techniques, we identified genes in OTU41 related to transport and metabolism of various
compounds, including tryptophan and cobalamin, which have been shown to play roles in host-microbe interactions.

Conclusion: While our results indicated that cranberry juice consumption had little impact on global measures of the
microbiome, we found one unnamed Flavonifractor species differed significantly between study arms. This suggests
further studies are needed to assess the role of cranberry consumption and Flavonifractor in health and wellbeing in
the context of recurrent UTI.

Trial registration: Clinical trial registration number: ClinicalTrials.gov NCT01776021.
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Background
Urinary tract infections (UTIs) are among the most
common bacterial infections, affecting 15 million women
each year in the United States [1] and 150 million world-
wide [2]. The economic burden of UTIs is over $3.5 bil-
lion per year in the United States alone [3]. UTIs are
also often recurrent, with 20–30% of women experien-
cing recurrent UTIs (rUTIs), even after appropriate anti-
biotic treatment [4, 5]. Since UTI treatment accounts for
over 15% of all antibiotics prescribed in the U.S., UTIs
contribute significantly to the total burden of drug re-
sistance [6]. Uropathogenic E. coli (UPEC) is responsible
for more than 80% of UTIs and has been the focus of
many research studies [7, 8]. A better understanding of
how to control rUTIs and curb UPEC colonization and
infection without repeated use of antibiotics could im-
prove patients’ lives and help slow the propagation of
antibiotic resistance [9–11].
One proposed approach to combating rUTI is prophy-

lactic consumption of cranberry products; however, the
efficacy of cranberry products in preventing UTI is not
clear [12–24]. No specific in vivo mechanism has been
determined to explain cranberry’s potential preventative
effects, and possible mechanisms have only been de-
scribed in vitro [25–30]. Several studies have proposed
that components of cranberry may influence the micro-
environment in the bladder directly [23, 24, 31, 32].
Other studies have suggested that cranberry may affect
the microbial inhabitants in the gut, in addition to modu-
lating levels of gastrointestinal inflammation [33–37].
Thus, in vivo evidence is needed to address this gap in
knowledge.
To better understand the impacts of daily cranberry

consumption on the gut microbiota, we examined the
gut microbiome of women with a history of recent rUTI
who consumed either cranberry or placebo beverage
daily for 24 weeks. We generated 16S rRNA gene (16S)
and whole metagenome sequence (WMS) data using
stool samples collected from a cohort of 70 women from
a randomized, double-blind, placebo-controlled, multi-
center clinical trial [18]. Our work provides a novel view
of the influence of long-term cranberry consumption on
the gut and the possible role of Flavonifractor in recur-
rent UTI disease.

Results
Large-scale patterns in bacterial populations unchanged
with cranberry consumption
As part of a larger clinical study [18], 70 female patients
with an average age of 44 (s.d. = 14) years old suffering
from frequent rUTI (defined as two or more clinically
diagnosed UTIs in the past year, of which at least one
UTI had occurred within the past 6 months) were ran-
domly assigned to consume a cranberry beverage (n =

35) or placebo (n = 35) daily for 24 weeks and provided
stool samples at the start (week 0) and end (week 24) of
the study window. Fifty-four of these subjects (26 from
the cranberry arm and 28 from the placebo arm) pro-
vided samples at both time points (Fig. 1a). Total DNA
was extracted from stool samples and used to perform
16S rRNA gene (targeting the V4 region) and whole
metagenome shotgun (WMS) sequencing (see Materials
and Methods).
Using UPARSE to cluster and UTAX [38] to taxonom-

ically classify the 16S data into operational taxonomic
units (OTUs), we identified a total of 943 OTUs across
all subjects belonging to 172 unique bacterial genera and
10 bacterial phyla. Individual subject samples had a me-
dian of 169 OTUs (minimum of 64, maximum of 298).
There was no significant difference in the number of
OTUs when comparing individuals across the different
study arms (Wilcoxon rank sum test, p = 0.67) or be-
tween their week 0 and week 24 samples (Wilcoxon rank
sum test, p = 0.51). Similar to other human gut micro-
biome studies [39], the majority of bacteria across all
samples belonged to the phyla Firmicutes and Bacteroi-
detes. Neither the phylum-level composition (Fig. 1b)
nor the OTU-level composition [40] (p > 0.1 for both
study arms; see Materials & Methods) of the microbiota
changed significantly with time or in response to
cranberry or placebo consumption. Diversity metrics
were also not significantly different between study
arms (Fig. 1c, Fig. S1a) [41, 42].
As seen for other diet-based microbiome studies [43–48],

we observed that same-subject samples tended to be more
similar to one another than to samples from different sub-
jects (p = 1.6 × 10− 20), regardless of which beverage they
consumed daily (Fig. S1b), with no apparent clustering of
communities based on cranberry beverage or placebo con-
sumption (Fig. 1d). Further, the trajectories of community
profiles from cranberry beverage or placebo consumers
(shown by arrows in Fig. 1d) from week 0 to week 24 were
scattered in their directionality, indicating no common shift
in microbial composition after 24 weeks due to either bev-
erage. Similarly, there was no significant difference in the
magnitude of changes observed after 24 weeks when com-
paring the placebo arm to the cranberry arm (Fig. 1d; Fig.
S1c), indicating that cranberry consumption did not result
in a stronger change of the gut microbiota over time com-
pared to placebo.
Using MetaPhlAn2 [49], a tool that estimates bacterial

community structure composition from WMS data, we
confirmed results from the 16S-based analysis that cran-
berry consumption does not change the overall gut com-
position (Additional file 1; Fig. S2). We also analyzed the
WMS data using HUMAnN2 [50], a tool that predicts
functional pathway and gene family predictions from
WMS data. We searched for pathways as well as gene
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families that differed significantly in abundance in the
overall metagenome between study arms following 24
weeks consumption of a cranberry vs. placebo beverage
(see Materials and Methods), but found no pathways or
gene families that were significantly different between
cranberry and placebo after 24 weeks after multiple
hypothesis correction (Additional file 2).

OTU41, a Flavonifractor species, decreased in abundance
in the cranberry-consuming group, with an opposing
increase in the placebo group
Significant changes in individual species have been ob-
served during dietary interventions, even if these changes
do not significantly affect the overall composition and/or
structure of the gut microbiome communities [44, 46, 51].
To determine whether individual OTUs were affected by
cranberry consumption, we examined the change in rela-
tive abundance of each of the 219 OTUs present in at least
25% of subject samples in the study (see Materials and
Methods), focusing on the more common and consistently
present OTUs. Overall, across the vast majority of OTUs

tested, we observed no significant difference in the relative
changes of OTU abundances across study arms, even be-
fore multiple hypothesis testing correction (Fig. 2a). This
included OTUs representing bacterial species previously
shown to be affected by cranberry in in vitro or mouse
models, including Bifidobacterium longum [37] and Akker-
mansia muciniphila [33, 34] (Fig. S3). E. coli was found at
low abundance (mean of 0.05% relative abundance, range
0–0.8%) and its relative abundance was also not signifi-
cantly affected by cranberry vs. placebo consumption (Fig.
S3). WMS data analyzed with MetaPhlAn2 (Additional file
1) and HUMAnN2 (Additional file 2) confirmed that these
species, as well as their associated gene functions and path-
ways, were not significantly different, further supporting the
limited effects on both taxonomic and functional compos-
ition of the gut microbiome by cranberry consumption.
Only one OTU, identified here as OTU41, showed a

statistically significant difference between the cranberry
and placebo study arms after multiple hypothesis correc-
tion. OTU41, detected in 75% of placebo and 67% of
cranberry individuals who supplied both week 0 and

Fig. 1 Cranberry beverage consumption does not change the overall composition of the gut microbiome. a The cohort consisted of 70 women
with a history of recurrent UTIs, who either consumed cranberry beverage or placebo daily for 6 months. The stool samples, collected before and
after the 6-month study period, were subjected to 16S rRNA and whole metagenomic shotgun sequencing to infer gut microbial profiles and
functions. b 16S rRNA-based taxonomic profiles displaying the phylum-level composition of the microbial population indicate that the
composition did not change over time or due to cranberry consumption (Wilcoxon rank sum test, p > 0.3). The sample order was sorted by the
relative abundance of Firmicutes. c The species richness, based on 16S OTUs, did not change significantly with cranberry beverage consumption
(Wilcoxon rank sum test, p > 0.6). d A comparison of all samples at the 16S OTU level, using principal coordinate analysis (PCoA) based on Bray-
Curtis dissimilarities, indicated that the samples from the cranberry cohort did not cluster into a specific group, and the trajectories from week 0
to week 24 (shown by arrows) were scattered, indicating no common shift in microbial composition through time. The magnitude of the change
between timepoints, when comparing the two cohorts, was also not significant (p = 0.51). The first two principal components (PCo1 and PCo2)
accounted for 13.4 and 8.9% of the variability, respectively
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week 24 samples, was significantly decreased after 24
weeks of daily cranberry consumption relative to the pla-
cebo (padj = 0.02; Fig. 2b). This difference was driven
both by an increase in abundance in the placebo arm
(median log2 fold change = 0.6) and a decrease in the
cranberry arm (median log2 fold change = − 0.2) after 24
weeks. We validated this result using an orthogonal stat-
istical approach (padj = 0.02; see Materials and Methods)

[52, 53]. Matching WMS data also showed a similar pat-
tern of abundance of exact sequences matching the
OTU41 V4 region of the 16S rRNA gene between the
cohorts (p = 0.03; Fig. S4; see Materials and Methods).
The observed difference in abundance was specific to
this OTU, and not a feature of the overall genus; not-
ably, analyses of WMS data using MetaPhlAn2 indicated
no significant abundance differences in the overall

Fig. 2 OTU41 is the only significantly different OTU between the cranberry and control cohorts. a Distribution of OTU relative abundance
differences between cranberry and control cohorts. The X axis represents the difference of the log2 median fold-change of cranberry to placebo
cohorts for each OTU. The Y axis is the -log10 unadjusted p-value of the Wilcoxon rank sum test for each OTU. The size of the point represents
the magnitude of the median change in the OTU relative abundance in the cranberry cohort, while the color indicates the direction of said
change (blue = decrease, gray = no change, red = increase). Only OTU41 (shown in the top left) was significant after correction (adjusted p = 0.02).
b The relative abundance of OTU41 decreased significantly in the cranberry beverage cohort. c A phylogenetic tree, based on 16S V4 regions, of
OTU41 together with the other OTUs from this study assigned to the Flavonifractor genus, as well as additional sequenced strains closely related
to Flavonifractor, including Flavonifractor sp. 54, Flavonifractor plautii, Lachnospiraceae bacterium, Flintibacter butyricus, Pseudoflavonifractor sp., and
Pseudoflavonifractor capillosus indicated a very close relationship between OTU41 and Flavonifractor sp. 54. Relevant bootstrap values are shown.
d Alignment of the 16S V4 sequence for OTU41 and Flavonifractor sp. 54, showing only one base pair difference
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Flavonifractor genus (Additional file 1), and HUMAnN2
results indicated no difference in gene families and path-
ways (Additional file 2) associated with the overall
genus, or any Flavonifractor species included in their
database. OTU41 represents an unnamed species of
Flavonifractor.
OTU41 was classified by UTAX [38] as a member of

the Ruminococcaceae family (93% confidence) and the
Flavonifractor genus (69% confidence). In order to place
OTU41 into evolutionary context with other Flavoni-
fractor species, we performed a phylogenetic analysis of
the 16S V4 regions of all OTUs from our study assigned
to the Flavonifractor genus, together with sequences of
close relatives determined by searching NCBI’s 16S ribo-
somal database using the OTU41 sequence as a query
(Table S1; see Materials and Methods). The resulting
phylogeny revealed that the Flavonifractor genus was
not monophyletic and contained members from the
Flintibacter and Pseudoflavonifractor genera intercalated
between various Flavonifractor species (Fig. 2c). Notably,
OTU41 was quite distant, differing by 13 SNPs (95%
similarity) within the V4 region from the type strain of
Flavonifractor plautii, the most well-characterized spe-
cies of the genus. While it appeared that study partici-
pants harbored F. plautii (OTU66 in this study), its
relative abundance did not differ significantly between
the study arms (Fig. S5).
OTU41’s closest relative with a whole genome

sequence available was a representative strain of an
unnamed Flavonifractor species, Flavonifractor sp. 54,
which was isolated from human stool [54] (Fig. 2c). The
OTU41 16S V4 region differed from Flavonifractor sp.
54 by only one SNP (183G > A; Fig. 2d). Oligotyping of
our 16S data (see Materials and Methods) showed that
OTU41 contained two major alleles at position 183 (Fig.
S6a), one of which was an exact match to Flavonifractor
sp. 54 and both of which increased in abundance in the
placebo arm and decreased in the cranberry arm over
the course of the trial (Fig. S6b).
To assess the degree of similarity between the genome

sequence of Flavonifractor sp. 54 and that of OTU41
members present in our cohort samples, we individually
aligned the WMS data from each sample in our study to
the reference assembly of Flavonifractor sp. 54 and iden-
tified individual positions that differed between Flavoni-
fractor sp. 54 and similar sequence found within each
sample. Between 7 and 85% of the Flavonifractor sp. 54
genome was covered by WMS reads, depending on the
sequencing depth of each sample and its predicted
OTU41 relative abundance. Using samples for which at
least 50% of the Flavonifractor sp. 54 genomic positions
were confidently covered by WMS data, we determined
that OTU41 had a median average nucleotide identity
(ANI) of 99.3% (range 97.3 to 99.7%) compared to the

Flavonifractor sp. 54 genome. The current genomic-
based definition of a bacterial species places the cutoff
for inclusion within a species at 95% ANI [55] (Kim et al.,
2014), which suggests that OTU41 representatives from
this study and Flavonifractor sp. 54 are all members of
the same species.
Due to OTU41 being only a minor component of the

metagenome of these subjects, and our inability to ac-
cess primary stool specimens for culturing, we could not
generate a high-quality assembly of the OTU41genome
from any of these subjects. Thus, we used the previously
sequenced Flavonifractor sp. 54 genome as a proxy for
the OTU41 genome. First, to further understand the
evolutionary relationship between OTU41 and other
whole genome sequenced organisms, we constructed a
high-resolution phylogeny based on whole genome
alignment of the Flavonifractor sp. 54 genome to close
relatives that had whole-genome sequences available at
NCBI, including (i) four additional Flavonifractor iso-
lates [54], (ii) four related species’ type strains, and (iii)
Clostridium viride as an outgroup (Fig. 3, Fig. S7; Table
S2; see Materials and Methods). Consistent with the 16S
V4-based phylogeny, the whole genome-based phylogeny
showed that Flavonifractor sp. 54 was distantly related
to F. plautii (74% ANI). Although Flavonifractor sp. 54
was most closely related in our whole genome phylogeny
to other Flavonifractor-related organisms previously iso-
lated from human stool [54], ANI calculations indicated
they were from different species (81% ANI comparing
Flavonifractor sp. 54 and Flavonifractor sp. 63, the clos-
est isolate genome sequenced).

Predicting characteristic functional capabilities of OTU41
We next sought to understand why OTU41 responded
to daily consumption of the beverages, and to connect
changes in abundance of OTU41 with observed differ-
ences in clinical presentation of UTI. The tool
HUMAnN2 relies on previously generated genomic and
gene family databases [49, 50]; given that the closest ref-
erence species to OTU41 was F. plautii, with only 74%
ANI to Flavonifractor sp. 54, HUMAnN2 was unable to
identify gene families and pathways, including those
taxonomically assigned to Flavonifractor, that were sig-
nificantly different between the cranberry and placebo
arms after 24 weeks. Thus, we took a more targeted ap-
proach, using a combination of comparative genomics
and comparative metagenomics, to identify potential
special functional capabilities of OTU41. We defined
these special functions or “OTU41-characteristic genes”
as those found in the Flavonifractor sp. 54 genome and
in metagenomic samples containing abundant OTU41,
but not found in other Flavonifractor or related genomes
or in metagenomic samples that did not contain detect-
able OTU41.
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To identify “OTU41-characteristic genes”, we first
used gene orthology estimates (see Materials and
Methods) to compare the gene content of Flavonifractor
sp. 54 to the whole genome sequences included in our
comparative analysis (shown in Fig. 3). Of the 4006 total
annotated genes in Flavonifractor sp. 54, 1579 (39%)
were uniquely found in Flavonifractor sp. 54 (i.e., no
genes from other genomes were contained within the
same ortholog cluster), with 66% of these genes assigned
some function (Additional file 3; Material and Methods).
Second, we hypothesized that the key functions under-
lying OTU41’s relationship with cranberry/placebo bev-
erage consumption and UTI symptoms would be
conserved across all OTU41 organisms across all sub-
jects. Thus, we sought to define the “core” gene set for
OTU41 (i.e., genes shared across all members of the spe-
cies) by aligning our WMS sequencing data to the panel
of reference genomes used in the comparative analysis
(see Materials and Methods). In cross-referencing these
results to the set of unique genes from Flavonifractor sp.
54 based on our comparative genomic analysis, we iden-
tified 117 “OTU41-characteristic genes” or genes univer-
sally and exclusively found in OTU41-abundant samples
(i.e., present by WMS alignments in 100% of samples
with ≥0.9% relative abundance of OTU41 based on 16S
data and absent in all OTU41-negative samples; Add-
itional file 3).
Of these 117 OTU41-characteristic genes, 30 (25%)

were annotated as transporters, which was a significant
enrichment compared to the prevalence of transporters
in the genome as a whole (9.8%; Fisher’s Exact Test, p =
3 × 10− 5). These OTU41-characteristic transporter
genes included: (i) six members of the Tripartite ATP-
independent periplasmic (TRAP) transporter family,
which are involved in the uptake of organic acids [56],
including dehydroascorbate (an oxidized form of ascor-
bic acid, i.e., vitamin C), (ii) three ABC transporters, in-
cluding one that likely acts on cobalamin (i.e., vitamin
B12) (FS27_003216), (iii) two multi antimicrobial

extrusion protein (MATE) family efflux transporters and
two resistance-nodulation-division (RND) transporters,
both of which can mediate resistance to multiple antimi-
crobials [57, 58], and (iv) two members of the SNF so-
dium-neurotransmitter symporter family, which are
involved in importing various neurotransmitters (e.g.,
GABA, choline, and monoamine neurotransmitters, such
as epinephrine and serotonin) into the cell [59], includ-
ing one that putatively acts on tryptophan.
Another 23 OTU41-characteristic genes were associ-

ated with metabolism, also representing a significant
enrichment compared to the number of genes in-
volved in metabolism across the genome as a whole
(35% of OTU41-characteristic genes vs.17% of the en-
tire genome, Fisher’s Exact test p < 10− 5), in line
with other bacterial comparative genomics studies
showing metabolism as a driver of species diversifica-
tion [60–62]. OTU41-characteristic metabolic genes
included those affecting amino acids (n = 8), nucleo-
tides (n = 3), carbohydrates (n = 6), coenzymes (n =
4), and lipids (n = 1) (Additional file 3). Among these
genes, several were predicted to function in the bio-
synthesis or transport of cobalamin, a vitamin that,
among other effects on microbes, has been shown to
increase growth and virulence in E. coli [63–66].
These included cbiK (sirohydrochlorin cobaltochela-
tase, FS27_003212), cbiE (precorrin-6y C5,15-methyl-
transferase, FS27_003540) and btuC (permease, FS27_
003216), within the BtuCDF Vitamin B12 ABC trans-
porter complex [67]. Providing further evidence that
OTU41 can synthesize cobalamin, the Flavonifractor
sp. 54 proxy genome contained two operons for co-
balamin synthesis from the de novo anaerobic and
salvage pathways [68] (Additional file 3, operons 659
and 1521). Although these complete operons did not
meet our strict criteria for OTU41-characteristic
genes, further inspection of WMS data by alignment
suggested these genes were generally present in
OTU41-abundant samples (Fig. S8).

Fig. 3 Whole-genome comparative analysis of Flavonifractor genomes related to Flavonifractor sp. 54. Genome sequences were selected based
on phylogenetic proximity to Flavonifractor sp. 54 and used to construct a whole-genome phylogeny using TBA. All bootstrap support values are
100%. Average Nucleotide Identity calculations indicated that Flavonifractor sp. 54 is in its own separate species from other references (< 95% ANI
is considered a separate species)
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Discussion
We investigated the effects of cranberry beverage con-
sumption on the human gut microbiome in a 24-week
long clinical trial involving women with a history of re-
current UTI. In this trial, women who drank a cranberry
beverage daily had a 41% reduction in UTI symptoms as
compared to women drinking a placebo beverage [18].
Previous works have proposed that cranberry: i) has an
inhibitory effect on E. coli [25–30, 69], the leading cause
of UTI; ii) can potentially reduce inflammation [35, 36];
and iii) may have anti-E. coli or anti-inflammatory/anti-
oxidant effects in the bladder [23, 24, 31, 32]. Other
studies have reported that cranberries boost “beneficial”
gut bacteria such as Bifidobacterium longum, believed to
inhibit the growth of pathogenic organisms [37], and
Akkermansia muciniphila, which have been associated
with reduced intestinal inflammation [33, 34].
Our analysis of 16S and WMS profiles generated from

the stool microbiota of 70 women who participated in
this trial showed no significant differences in the overall
diversity or composition (taxonomic or gene-based) of
the gut microbiome of women who drank cranberry ver-
sus a placebo beverage daily for 24 weeks. Similarly,
there was no significant difference in the relative abun-
dances of gut Bifidobacterium longum, Akkermansia
muciniphila, or E. coli. The latter result was consistent
with results from the larger trial which found that, al-
though symptoms of UTI decreased significantly in cran-
berry consumers, there was no significant difference in
the number of microbiologically positive UTIs or the
presence of E. coli in the urine [18]. It is also possible
that our study did not have the power to detect subtle
differences in microbiome composition due to its rela-
tively small sample size. We confirmed this with a post-
hoc power analysis [70], which estimated we only had
between 5 and 12% power to detect changes in various
OTUs. Further, the effects of multiple hypothesis correc-
tion used in analysis of the number of OTUs detected
also contributed to our limited statistical power.
The only significant difference that we could detect

between study arms was in the relative abundance of an
OTU assigned to the Flavonifractor genus, OTU41.
OTU41 was significantly decreased in relative abundance
in cranberry vs. placebo consumers. This difference was
driven both by an increase in abundance in the placebo
arm and a decrease in the cranberry arm. Intriguingly,
the Flavonifractor genus got its name from its ability to
degrade flavonoids [71, 72], including the proanthocya-
nidins (PACs) contained in cranberry, which are thought
to have an inhibitory effect on uropathogenic Escherichia
coli (UPEC) [8]. If this Flavonifractor species were able
to thrive by degrading and/or utilizing PACs present in
the cranberry, we would expect it to increase in abun-
dance in the cranberry cohort; however, this was not

consistent with our observations, as the relative abun-
dance of OTU41 increased in the placebo over the
course of the study. It is not clear why OTU41 levels dif-
fered in the cranberry versus placebo arms of the study.
However, OTU41 was quite different from the well-
characterized Flavonifractor, with 74% ANI relative to
Flavonifractor plautii, indicating that it is a separate spe-
cies, and undoubtedly encodes distinct functions. While
it appeared that study participants harbored F. plautii
(OTU66 in this study), its relative abundance did not
differ significantly between the study arms (Fig. S5).
Recent research exploring the interactions between the

gut microbiota and the host nervous system, called the
“gut-brain axis”, suggests that the microbial inhabitants
of the gut and their metabolites can shape and pro-
foundly alter these critical host systems [73–76]. Mem-
bers of the Flavonifractor genus have been repeatedly
reported as associated with a range of human health dis-
orders, including various mental health disorders [77–
79], autoimmune disease [80], and poor diet and obesity
[81–84]. Collectively, these reports suggest that mem-
bers of the Flavonifractor genus may have a role in
modulating the gut-brain axis and may be significantly
affected by dietary interventions. Though we observed a
broad range of OTUs belonging to the Flavonifractor
genus in our study, none shared the same patterns of
change across placebo and cranberry consumers ob-
served for OTU41. When we examined the phylogeny of
these OTUs, together with sequences of close relatives
from databases, we observed that Flavonifractor, Flinti-
bacter, and Pseudoflavonifractor strains were often
mixed within the same phylogenetic clades, indicating
that the taxonomy within this portion of the bacterial
tree needs attention and that corresponding species
names in existing databases may be unreliable. We were
unable to ascertain whether the specific Flavonifractor
species with recently reported health associations corre-
sponded to OTU41.
Though we present no direct evidence that changes in

the relative abundance of OTU41 are linked to rUTI
symptomatology, we did find that some OTU41-charac-
teristic functions could suggest a relationship between
OTU41 abundances and the regulation of a variety of
key host functions, including the transport of tryptophan
and cobalamin metabolism. Tryptophan, as well as prod-
ucts of the tryptophan catabolic pathway, are involved in
modulating a variety of host functions, including the
nervous and immune systems [85–94], and have been
implicated in the gut-brain axis [71, 95]. Tryptophan
metabolites are also involved in UPEC pathogenesis
[96–99] and have also been previously shown to be ele-
vated in the urine of a pediatric cohort of symptomatic
UTI patients [100], suggesting tryptophan metabolism
may be important in the context of recurrent UTI. The
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OTU41-characteristic genes also included several genes
predicted to function in the biosynthesis or transport of
cobalamin, which has been suggested to be a key regula-
tor of the gut microbiome [101] and critical in regulating
host-microbial interactions [102]. Importantly, UPEC is
only able to use the ubiquitous, host-derived metabolite
ethanolamine (EA) in the presence of cobalamin. EA
consumption is an important pathway for E. coli viru-
lence and pathogenesis through both acting as a nitro-
gen source to outcompete other microbes and by
increasing expression of virulence genes [63–66]. Fur-
ther characterization of OTU41 would provide insight
into its potential modulation of these molecules and
their associated pathways.
One noteworthy limitation of our study was that we

could not determine gene expression levels for OTU41,
or other taxa, across individuals or study arms. Gut mi-
crobial gene expression patterns have uncovered import-
ant roles of the microbiota in the context of diseases,
like IBD [103]. Also, transcriptional studies of E. coli in
mouse models of UTI have shown that E. coli expression
profiles, prior to entering the urinary tract, are key to
colonization and infection [104]. Thus, it is possible that
cranberry-derived compounds present in the gut, and
possibly the bladder, could disrupt critical steps in UPEC
pathogenesis by altering gene expression and/or other
mechanisms [1, 105, 106], but these alterations would
not be detected in our analysis focused solely on metage-
nomic, and not metatranscriptomic data.
Other limitations included that our OTU-level analysis

would miss more complex and collective interactions of
the gut microbial community that have been recently de-
scribed [107]. These microbe-microbe interactions may
illuminate important processes occurring in the gut
community that individual changes in OTUs or bacterial
species would not. Also, as we did not have an assem-
bled genome of OTU41, we were limited in our reliance
upon the Flavonifractor sp. 54 genome to provide us
with a proxy for comparison to OTU41 in subject sam-
ples. Our metagenomic alignments to this reference re-
vealed that OTU41 shared, at most, 85% of genes in the
Flavonifractor sp. 54 assembly, indicating that, like most
bacterial species, this unnamed Flavonifractor species is
genomically variable, which makes reference-based infer-
ences of gene content across members suboptimal.
Though reconstructing OTU41 genomes from metagen-
omes was an option, the low (< 1%, on average) relative
abundances of OTU41 in these samples made this im-
practical. Finally, by using stringent thresholds to define
OTU41-characteristic genes, including requiring them to
be core to OTU41, we may have ignored important gen-
etic factors in OTU41 that could be critical for under-
standing how this species interacts with its host and the
observations in the larger study.

Conclusion
Our work suggests that long-term daily cranberry con-
sumption elicits no large-scale taxonomic or functional
changes to the gut microbiome, yet was associated with
a decreased level of Flavonifractor OTU41 in the gut
compared to long-term consumption of a placebo. We
observed that OTU41 harbored various characteristic
functions involved in transport and metabolism of vari-
ous compounds, including tryptophan and cobalamin,
important molecules in biochemical pathways that may
play a role in UPEC pathogenesis and/or rUTI disease.
In the larger study from which these samples were de-
rived, cranberry consumption was associated with a de-
creased incidence of UTI symptoms, but whether
OTU41 played a role in this is unclear. This work adds
to a growing body of data associating negative human
health effects with increased abundance of Flavonifractor
in the gut [73–75, 80–84]. Particularly, as rUTIs are in-
creasingly difficult to treat due to rising rates of anti-
microbial drug resistance [10, 11, 108], further
characterization of cranberry products and their role in
modulating the gut microbiome, including their effects
on OTU41 and possible resident E. coli, will help to re-
veal their effects on rUTI presentation and outcome,
and may also provide insight into desperately-needed al-
ternative, non-antibiotic treatments for rUTI.

Materials and methods
Cohort study
We used results from a previously published cohort
study [18]. This study was registered at clinicaltrials.gov
as NCT01776021. This 24-week, double-blind, random-
ized, placebo-controlled trial on (otherwise) healthy
women with a history of rUTI was designed to assess
the effect of cranberry beverage consumption on the hu-
man gut microbiome. The study was conducted at seven
clinical research sites between February 2013 and March
2015. The protocol was approved by an institutional re-
view board in the United States (Quorum Review IRB,
Seattle, Washington) and by the National Security
Agency for Medicines and Health Products and an
Ethical Research Committee (Committee for Personal
Protection) in France. Procedures were followed in ac-
cordance with the Declaration of Helsinki of 1975 as re-
vised in 1983. Written informed consent was obtained
from all subjects. The eligible subjects were 20–70 year-
old women with a recent history of UTI and BMI < 40
kg/m2. Women were not enrolled if they were using
prophylactic antibiotics for a UTI. Detailed subject in-
clusion criteria have been previously published [18].
Fecal samples were collected at week 0 and week 24, as
well as at the time of any additional UTIs during the
study. Metadata for each provided stool sample can be
found in Additional file 4.
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16S rRNA sequencing and analysis
In order to infer the microbial composition at the spe-
cies level, we sequenced the 16S rRNA V4 region for all
131 samples using the Illumina MiSeq platform. Our
DNA extraction protocol included steps involving bead
beating and heating in order to expand the range of mi-
crobial species which could be observed [109]. Our 16S
rRNA sequencing targeted amplification of a ~ 250 bp
region of the microbial 16S rRNA gene with tailed
primers (515F & 806R) to generate 175 bp paired-end
reads [110]. The mean read depth per sample was 152,
300 paired reads. Reads are publicly available on NCBI
BioProject PRJNA528960.
16S rRNA sequencing reads from 131 samples were

analyzed using UPARSE [38] with version 14 of the RDP
database [111], using a 97% identity threshold. We used
UPARSE to perform quality filtering of reads, discarding
singleton reads and then clustering the remaining reads
into operational taxonomic units (OTUs). Representative
sequences for OTUs in FASTA format can be found in
Additional file 5. UPARSE generated an OTU matrix
containing 1073 OTUs from 131 samples (Additional file
6). The 7 samples that were collected at time of UTI
were excluded from downstream analysis, leaving 1070
OTUs from 124 samples. Rarefaction analysis was per-
formed with the q2-diversity plugin in QIIME2 [52].
Read depths from 1000 to 20,000 reads per sample were
tested, and average Chao1 vs. the number of samples
retained was plotted. A value of 5000 reads per sample
was chosen for downstream analysis, as it resulted in
high Chao1 values (~ 75% of highest depth tested) while
retaining most samples (~ 80% of samples). Then, to
normalize for uneven sequencing depth across samples,
we rarefied the OTU read counts of each sample to
5000 reads, resulting in an OTU matrix with 1023 OTUs
from 97 samples. We additionally filtered out OTUs
with fewer than 10 reads total in order to remove rare
and ultra-low abundant OTUs, which we would not have
enough power to detect differences in [112], resulting in
943 final OTUs across 97 samples for analysis (Add-
itional file 7). Taxonomic assignment of each OTU was
performed using the UTAX algorithm, a k-mer based
method that looks for common k-mers between query
and reference sequences with known taxonomy and as-
signs confidence estimates based on data training, using
the RDP v16 database training set provided by the
UPARSE author. To assign species level to OTUs of
interest (Fig. S3), representative sequences were queried
against the NCBI 16S ribosomal RNA database using
blastn (megablast, default parameters).
In order to test for OTU-level compositional differ-

ences before vs. after treatment across both study arms,
we used a generalized Hotelling’s test (GHT) imple-
mented in R [40]. In brief, the GHT tests for whether

the average microbiome compositions of paired samples
(i.e., before and after the study) are the same or different.
We ran the GHT for each study arm independently.
The OTU matrix was used to calculate the α-diversity

(species richness) using the Chao1 index [41] and the
Shannon diversity index [42], as well as the β-diversity
(species dynamics) using the Bray-Curtis dissimilarity
[113]. All of these metrics were implemented in v1.8 of
QIIME [114].

Statistical analysis to identify significantly different OTUs
In order to determine if OTUs were significantly differ-
ent between cranberry and placebo, we performed
Wilcoxon rank sum tests on the log2 fold-changes of
each subject, comparing week 24 to week 0 read counts,
calculating whether the cranberry group significantly dif-
fered from the placebo group on a per-OTU basis. This
method accounts for differences between individuals’
microbiomes prior to starting the treatment, calculating
independently how each individual changed over time.
Prior to calculating fold-change, the rarefied OTU Table
(5000 reads per sample) was filtered to exclude subjects
that did not have samples from both week 0 and week
24, as well as to exclude OTUs that were present (one
or more 16S reads) in fewer than 25% of subject samples
(from both arms from both week 0 and 24), which re-
duced the number of OTUs analyzed from 943 to 219
and the number of subjects considered to 16 from pla-
cebo (32 paired samples) and 18 from cranberry (36
paired samples). Fold-change values were calculated as
follows: log2((readswk24 + 1) / (readswk0 + 1)), accounting
for patients that had no evidence of the OTU in either
time point such that they had a fold-change of 0. P-
values from the Wilcoxon rank sum tests were adjusted
for multiple hypothesis correction using Benjamini-
Hochberg [115]. We also assessed different thresholds
for OTU inclusion in the analysis, including being
present in 5, 10, and 50% of subject samples, but for all
thresholds tested, OTU41 was consistently the only sig-
nificant result after p-value correction (data not shown).
To validate OTU-level differences using an orthogonal

approach, we ran the pairwise-differences test from the
q2-longitudinal plugin implemented in QIIME2 [52, 53]
for each filtered OTU independently. In brief, the
rarefied OTU count table was imported into QIIME2
and transformed into relative frequencies. For each
OTU, we ran the pairwise-differences script and re-
ported the p-value for the pairwise differences test. We
corrected reported p-values with Benjamini-Hochberg.

Oligotyping analysis of OTU41 16S rRNA sequence data
Oligotyping was performed on 16S rRNA sequencing
data using the Python oligotyping pipeline (http://
merenlab.org/software/oligotyping/) [116, 117]. Briefly,
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we selected the subset of reads assigned to OTU41 by
the UPARSE algorithm (i.e., reads within 97% identity
OTU41 consensus sequence), aligned them to the
OTU41 consensus sequence, and performed oligotyping
analysis, which identifies nucleotide positions that repre-
sent information-rich variation among these sequences
and then assigns oligotypes based on those varying sites.
This method distinguishes real biological variation from
sequencing errors through calculating entropy of each
position in the alignment [117]; sequencing errors
should be generally randomly distributed along the
length of the alignment, appearing as “white noise” in
the entropy profile. The authors of the tool set a recom-
mended entropy cutoff of 0.2. The highest site of vari-
ation within our 16S data was at position 183, the same
position that differed from the Flavonifractor sp. 54 ref-
erence sequence, which had an entropy of approximately
1. We opted to include only this site in oligotyping, as
other sites had comparatively little variation (entropy be-
tween 0 and 0.4; Fig. S9). Oligotyping revealed three al-
leles at position 183: 183G, 183A, and 183 T, which
represented 65, 34 and < 1% of all sequences,
respectively.

16S rRNA phylogenetic analysis
16S rRNA sequences included in our analysis are listed
in Table S1. We included the centroid sequences from
the UPARSE pipeline to represent each of the OTUs
assigned to the Flavonifractor genus using the UTAX
algorithm with at least 40% confidence (see above). We
also used blastn to search NCBI’s 16S ribosomal RNA
database using OTU41 as a query. Sequences from the
top hits were included. Sequences of two strains of Lach-
nospiraceae bacterium were included as an outgroup.
The online 16S aligner from SILVA, SINA (v1.2.11)

[118], was used to align these 16S rRNA sequences. The
alignment was filtered with Mothur (v.1.36.1) [119] to
retain only the V4 region. A phylogenetic tree was con-
structed using RAxML (v7.7.8) [120] using the GTRCAT
model with 100 rapid bootstraps (9 out of 39 branches
had ≥50% bootstrap support values). The resulting tree
was rooted with the Lachnospiraceae outgroup strains.
To generate the 16S phylogeny containing both OTUs

from this study and the reference genomes, the anno-
tated 16S rRNA genes were extracted and aligned as
above, and the V4 region was retained. These alignments
were used to generate a phylogenetic tree, as above,
rooting the tree using Clostridium viride as an outgroup.

Whole-metagenomic shotgun sequencing and analysis
Using the same 131 extracted DNA samples that we
used for 16S rRNA sequencing, we constructed metage-
nomic libraries using the Nextera XT library prep kits
(Illumina, San Diego, CA) and sequenced the total

genomic DNA content of each sample on the Illumina
HiSeq 2500 platform with paired-end 100 bp reads. We
obtained a median read depth of 870,144 and a mean of
909,759 paired reads (range 46,508-1,696,354).
Taxonomic profiling was performed using MetaPh-

lAn2 [48], which unambiguously classifies metagenomic
reads to taxonomies based on a database of clade-spe-
cific marker genes derived from 17,000 microbial ge-
nomes (corresponding to > 7500 bacterial, viral, archaeal
and eukaryotic species). The resulting taxonomic profil-
ing matrix was used to calculate the α-diversity (species
richness) using the Chao1 index [41] and the β-diversity
(species dynamics) using Bray-Curtis dissimilarity [113].
Reference genomes from the species identified by

MetaPhlAn2 were used to perform functional profiling
using HUMAnN2 (version 0.9.6) [49, 50]. Briefly, whole-
metagenomic shotgun reads were mapped using Bowtie2
[121] to sample-specific reference genomes, including all
gene families in any microorganism present. For the
reads that were not mapped by Bowtie2, a further trans-
lated search using DIAMOND [122] was then performed
against UniRef50 [123]. Hits were counted per gene fam-
ily and normalized for length and alignment quality.
Gene family abundances from both the nucleotide and
the translated searches were then combined into struc-
tured pathways from MetaCyc [124] with MinPath [125]
with the gap filling options to generate a functional pro-
filing matrix, which was normalized per sample to rela-
tive abundance values
Analysis was performed on HUMAnN2 data for each

pathway and each gene family, similar to the 16S
methods. Data were filtered to remove less abundant
pathways and genes, retaining pathways and gene fam-
ilies that were represented in at least 50% of patients
from each study arm, retaining 1651 (out of 9290) path-
ways and 415,257 (out of 2,392,193) gene families. No
read count or relative abundance filtering was performed
on pathways or gene families. Wilcoxon rank sum tests
were performed per pathway/gene family on the fold-
change values from each subject (i.e., log2(week 24 /
week 0)), adding a small number to both numerator and
denominator to prevent log of zero and divide by zero
errors (0.001 for pathways and 0.0001 for gene families),
comparing cranberry subjects to placebo subjects. P-
values were adjusted using Benjamini-Hochberg [115].
To obtain relative abundance of the OTU41 V4 region

sequence in WMS data, paired reads were aligned with
bwa mem (v0.7.12-r1039; https://github.com/lh3/bwa)
[126] and reads with identical sequence to the OTU41
sequence were counted per sample. Read counts were
normalized based on sequencing depth per sample to
relative abundance. A Wilcoxon rank sum test was
performed on the fold-changes of relative abundance,
comparing week 24 to baseline, to determine whether
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changes in OTU41 in this datatype were significantly dif-
ferent between cranberry and placebo (p = 0.03).

Alignments of metagenomic samples to Flavonifractor sp.
54 assembly to estimate whole-genome ANI between
Flavonifractor sp. 54 and OTU41
In order to determine the Average Nucleotide Identity
(ANI) between sp. 54 and OTU41-like sequence present
within each sample, WMS reads were aligned to the Fla-
vonifractor sp. 54 genome using bwa mem (v0.7.12-
r1039; https://github.com/lh3/bwa) [126], retained only
paired reads aligned as proper pairs, with minimum
mapping quality of 5, and no more than five nucleotides
soft-clipped at the end of the read. We then used the
Bcftools (version 1.6; http://samtools.github.io/bcftools/)
[127] commands “mpileup”, “call”, and “filter” to deter-
mine the number of high quality reference and SNP calls
across all 131 WMS samples. For each sample, Bcftools
“mpileup” was first used to generate allele information
for each position in the Flavonifractor sp. 54 reference
genome; Bcftools “call” (with ploidy set to 1) was then
used to call variants, which were further filtered with
Bcftools” filter” to filter out calls with a sum base quality
of less than 50. Further, positions were excluded if the
depth of high quality calls (i.e., sum of the DP4 field)
was 3 standard deviations above the mean depth of pass-
ing calls for the sample. This filter was performed to re-
duce erroneous SNP calls (which would decrease the
estimated ANI) from homologous sequences contained
in other, more abundant organisms found within each
sample.
After applying these filters, the remaining high-confi-

dence, passing SNP calls were then tallied per sample.
An estimate of average nucleotide identity (ANI) be-
tween the Flavonifractor sp. 54 reference genome and
the OTU41-like sequence within each sample was calcu-
lated by examining the fraction of passing calls that dif-
ference from the reference allele, divided by the total
number of passing calls present within that sample.
After applying these filters, the remaining high-

confidence, passing SNP calls were then tallied per
sample. An estimate of average nucleotide identity (ANI)
between the Flavonifractor sp. 54 reference genome and
the OTU41-like sequence within each sample was calcu-
lated by examining the fraction of passing calls that
difference from the reference allele, divided by the total
number of passing calls present within that sample.

Alignments of metagenomic samples to Flavonifractor sp.
54 assembly to compare gene content
In order to compare gene content across the reference
genomes in our data set and identify “OTU41-character-
istic genes”, reads from each sample were aligned using
bwa mem (v0.7.12-r1039; https://github.com/lh3/bwa)

[126] to the set of reference genomes used for compara-
tive genomics (Table S2), including Flavonifractor sp. 54.
Alignments were then filtered for good mapping quality
(MQ ≥ 5), properly paired reads, and soft clipping of
fewer than 5 bases. To assess gene coverage, the result-
ing alignments were analyzed using the BEDTools
(v2.26.0; https://github.com/arq5x/bedtools2/releases)
[128] “coverage” command with our in-house annotation
of the Flavonifractor sp. 54 reference genome (see
below). We considered a gene to be present in a given
sample if at least 75% of the length of the gene sequence
had at least one read aligned to it. We chose this thresh-
old as it struck a balance by being both fairly sensitive
(minimum of one read aligned) and specific (75% of
gene covered).
To determine which genes and regions of the Flavoni-

fractor sp. 54 reference genome were present in OTU41
(and not likely to be found in related organisms), we
used 16S sequencing results to select 19 samples that
had ≥0.9% OTU41 relative abundance (i.e. OTU41+)
and 44 samples that had < 0.01% OTU41 relative abun-
dance (i.e. OTU41–). We then delineated genes into sev-
eral categories of increasing specificity/confidence: 1)
enriched in OTU41+ samples (Fisher’s exact test, ad-
justed p < 0.05); 2) Highly enriched in OTU41+ samples
(covered in ≥18 OTU41+ and ≤ 1 OTU41– samples); 3)
Highly enriched genes found in orthogroups exclusive to
Flavonifractor sp. 54 genome; 4) OTU41 + -specific
(covered in all 19 OTU41+ and 0 OTU41– samples); 5)
OTU41 + -specific plus only found in orthogroups
within Flavonifractor sp. 54 genome. Additional file 3
contains results from this analysis.

Whole-genome comparative analysis
Browne et al. contained multiple sequenced genomes
from the Flavonifractor genus, including Flavonifractor
sp. 54 [54]. We included all genomes from this study in
the analysis. Then, by using the OTU41 sequence as a
query to search against the RDP database, we collected
additional related type strain references: two F. plautii
genomes; Pseudoflavonifractor capillosus; and Intestini-
monas butyriciproducens. We also included Clostridium
viride as an outgroup for phylogenetic analysis (See
Table S2 for a list of genomes included in our whole-
genome comparative analysis). Genomes were re-anno-
tated using the Broad Institute’s Prokaryotic Annotation
Pipeline [129].
To obtain phylogenies, whole genome alignments were

generated using the Threaded Blockset Aligner (TBA
v12) [130]. TBA requires an input tree, which was gener-
ated using a reconstructed phylogeny generated by Fas-
tTree (version 2.1.7) [131] on an alignment of
concatenated AMPHORA2 (version 2.0) markers genes
[132]. Then, pairwise alignments of all genomes were
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generated and projected onto the Flavonifractor sp. 54
genome, concatenated, and used as input to reconstruct
a whole-genome phylogeny using FastTree.
To calculate Average Nucleotide Identities (ANI) be-

tween reference genomes, orthogroup clustering was per-
formed using SynerClust (version Nov 13, 2017, https://
github.com/SynerClust) [133]. Then, each orthogroup was
aligned using MUSCLE (v3.8.31) [134]. Pairwise ANI
values were then calculated as the mean of the identical
nucleotide positions in the alignment of each common
orthogroup between two genomes [135].

Analysis of 16S rRNA sequence in Flavonifractor sp. 54
assembly
The raw sequencing reads used to generate the Flavoni-
fractor sp. 54 genome assembly were downloaded from
the NCBI SRA database (accession number ERR1022445).
These reads were aligned back to the reference genome
using bwa mem. The coverage of the annotated 16S rRNA
gene relative to median coverage of the reference genome
was determined and used to estimate the number of cop-
ies of this locus in the strain, approximately four copies.
Further, Pilon (version 1.22) [136] was used to confirm
there is no variation among the four copies of the gene.

Re-annotation of Flavonifractor sp. 54 assembly
To obtain as much functional information related to the
gene content of the Flavonifractor sp. 54 reference as-
sembly, we re-annotated the genome sequence using the
Broad Institute’s Prokaryotic Genome Annotation Pipe-
line [129], as well as RASTtk (http://rast.nmpdr.org/)
[137–139] and DFAST (https://dfast.nig.ac.jp/) [140].
The Broad pipeline also provides KEGG [141], GO [142,
143], TIGRfam [144], and Pfam domain [145, 146] anno-
tations per gene. We additionally ran Operon Mapper to
predict genes found within operons (http://biocomputo.
ibt.unam.mx/operon_mapper/) [147], which also pro-
vided COG [148, 149] and Uniprot [150] information for
each gene. Finally, we used BLAST+ blastp [151] with
evalue ≤1e-4 to assign eggNOG [152] families to each
gene, filtering to retain at least 70% overlap between
NOG and alignment length. Gene names were deter-
mined using the following priorities: 1) Broad annota-
tion; 2) RAST; 3) DFAST; 4) Uniprot; 5) COG; where
the highest priority, non-hypothetical protein annotation
was used.
To determine if a gene was a transporter, we searched

the gene annotation, COG, GO, and Pfam domain infor-
mation for the following terms: transport, symport, per-
mease, efflux, pump, and antiport. If a gene and any of
its annotations contained at least one of these keywords,
it was considered to be a transporter of some kind. We
then used Fisher’s Exact test to determine if the 30

putative transporters of the 117 of the OTU41-specific,
core genes were significantly enriched compared to the
392 putative transporters of 4006 total genes.
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Additional file 1. Merged MetaPhlAn2 table from all 131 WMS samples,
where each row is a separate taxonomic level. These data have not been
normalized.

Additional file 2. HUMAnN2 pathway and gene family results. Pathway
results are in the first tab, while gene family results are in the second tab.
Only gene families with unadjusted p < 0.05 are included for brevity.
Column B: the average abundance (in counts per million [cpm]) for the
cranberry group at week 0; Column C: the average abundance (in cpm)
for the cranberry group at week 24; Column D: the average abundance
for the placebo group at week 0; Column E: the average abundance for
the placebo group at week 24; Column F: the log2 ratio of the fold-
change over 24 weeks in the cranberry group to the fold-change over 24
weeks in the placebo group, where a positive value indicates a pathway/
gene family increased after 24 weeks in the cranberry group relative to
the placebo group; Column G: the p-value of the Wilcoxon rank sum test
comparing the fold-changes after 24 weeks between cranberry and pla-
cebo group individuals; Column H: the Benjamini-Hochberg adjusted p-
value (see Materials and Methods).

Additional file 3. Flavonifractor sp. 54 gene annotations, including those
that were defined as OTU41-characteristic genes. Definitions for columns
are found in the first tab.

Additional file 4. De-identified sample metadata, which includes sam-
ple ID, study arm, anonymous patient ID, and visit information.

Additional file 5. FASTA format file containing representative sequences
for OTUs in this study, including OTU41.

Additional file 6. The unfiltered raw count OTU table generated by
UPARSE for all sequenced samples.

Additional file 7. The OTU table with sample and OTU filtering, rarefied
to 5000 reads/sample, which was used in downstream analysis.

Additional file 8: Figure S1. Additional analysis of diversity using 16S
data. a) Shannon diversity index, a measure of ɑ-diversity, is not
significantly different between cranberry and placebo cohort (p > 0.5) b)
β-diversity of longitudinal samples from the same subject is significantly
lower than that between samples from different subjects (p = 1.6 × 10−
20); c) β-diversity of samples from the placebo cohort versus those from
the cranberry cohort do not differ significantly; p = 0.51).

Additional file 9: Figure S2. Analysis of WMS data confirms that
cranberry beverage consumption does not change overall gut
microbiome composition. a) WMS-based taxonomic profiles displaying
the phylum-level composition of the microbial population indicate that
the composition did not change over time or due to cranberry consump-
tion. The sample order was sorted by the relative abundance of Firmi-
cutes. b) The species richness, based on WMS data, did not change
significantly with cranberry beverage consumption. c) A comparison of all
samples at the 16S OTU level, using principal coordinate analysis (PCoA)
based on Bray-Curtis dissimilarities, indicated that the samples from the
cranberry cohort did not cluster into a specific group, and the trajectories
from week 0 to week 24 (shown by arrows) were scattered, indicating no
common shift in microbial composition after 24 weeks of cranberry or
placebo treatment. The first two principal components (PCo1 and PCo2)
accounted for 14.8 and 10.8% of the variability, respectively.

Additional file 10: Figure S3. Log2 fold changes of OTUs of Escherichia
coli (OTU117), Bifidobacterium sp. (OTU25, likely B. adolescentis [OTU
consensus sequence is 0 SNPs from B. adolescentis reference sequence]
or B. longum [OTU consensus sequence is 1 SNP from B. longum
reference sequence]), and Akkermansia muciniphila (OTU19). None were
significantly different between cranberry and placebo study arms.
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Additional file 11: Figure S4. Additional analyses further confirm the
difference in abundance of the Flavonifractor species represented by
OTU41 between the cranberry and placebo cohorts, validating our 16S-
based OTU-level analysis. WMS read mapping to the OTU41 16S V4 re-
gions confirms that OTU41 differs significantly between the cranberry
and placebo cohorts (p = 0.03).

Additional file 12: Figure S5. The relative abundance of OTU66, the
OTU most closely related to Flavonifractor plautii, did not change
significantly after cranberry beverage consumption (p = 0.43).

Additional file 13: Figure S6. OTU41 consists of two major oligotypes,
183G and 183A. a) 183G was found in approximately two-thirds of the se-
quence assigned to OTU41, while 183A was found in approximately one-
third, with very minor amounts of 183 T. Both 183G and 183A alleles were
represented in women from both study arms at weeks 0 and 24. b) Both
major oligotypes of OTU41 behave consistently with the overall behavior
of OTU41, trending upwards in placebo and downwards in cranberry
consumption.

Additional file 14: Figure S7. 16S rRNA V4 region phylogeny
containing OTUs from our study, along with sequences extracted from
the reference genomes used in the comparative genomics analysis
(shown in green). OTU41 and Flavonifractor sp. 54 are indicated in bold.
Taxonomic assignments for OTUs are shown in brackets, with their
confidence value in parentheses. These reference genomes also showed
close relationships to OTUs found across our study, indicating the species
they represent are also present in study participants, though their relative
abundances were unchanged by cranberry or placebo consumption.

Additional file 15: Figure S8. WMS alignment results of genes from
two cobalamin synthesis operons in the Flavonifractor sp. 54 assembly. a)
Genomic ANI to Flavonifractor sp. 54 vs. gene alignment coverage of
each gene. b) Genomic breadth of coverage (in % of genome) vs. gene
alignment coverage. c) Average genomic depth of sequencing vs. gene
alignment coverage. These results suggest that our choice of a 75% gene
coverage threshold for gene presence was conservative as OTU41-
containing samples with low OTU41 abundance and/or sequencing
depth tended to not meet this threshold despite modest evidence for
these genes being present.

Additional file 16: Figure S9. Oligotyping entropy profile for OTU41. X
axis is the position in the alignment to OTU41 consensus sequence. Y
axis is the Shannon Entropy of each position in the sequences that were
clustered into OTU41. Position 183 was the only position in the OTU41
alignment that was above an entropy of 0.4. The background highlights
the major oligotypes based on the top 6 most entropic positions, which
represent the G and A alleles at position 183.

Additional file 17: Table S1. 16S rRNA sequences included in
phylogenetic analysis. Table S2. Whole genomes included in
comparative analysis.
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