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Abstract

Background: Linezolid-resistant enterococci pose great challenges in clinical practice. The aim of this study is to
study the mechanisms underlying the resistance and genetic environment of antimicrobial resistance gene of
linezolid-resistant enterococci.

Results: The linezolid MICs of 16 enterococci were 4 mg/L to 16 mg/L. Four strains belonged to multi-drug resistant
(MDR) bacteria. The sequence types (STs) of 13 enterococci strains performed WGS were diverse: 3 ST476, 1 ST86,
ST116, ST480, ST59, ST416, ST21, ST67, ST16, ST585 and ST18. None of them carried multi-drug resistance gene cfr.
Only one strain had the G2658 T mutation of target 23S rRNA gene. Thirteen (13/16, 81.3%) strains harbored the
novel oxazolidinone resistance gene optrA. WGS analysis showed that the optrA gene was flanked by sequence
IS1216E insertion in 13 strains, and optrA was adjacent to transposons Tn558 in two strains and Tn554 in one strain.
The optrA gene was identified to be co-localized with fexA, the resistance genes mediated florfenicol resistance in
13 strains, and ermA1, the resistance genes mediated erythromycin resistance in 9 strains, indicating that linezolid-
resistant strains may be selected due to non-oxazolidinone antibiotics (i.e. macrolides and florfenicol) usage.

Conclusion: Our findings demonstrate the high diversity of optrA-carrying genetic platforms. The mobile genetic
elements (MGEs) may play an important role in the dissemination of optrA into the enterococci isolates of human
origin. The genetic evidence of transferable feature and co-selection of optrA should be gave more attention in
clinical practice.
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Background
Linezolid, which belongs to oxazolidinone, is the clinic-
ally last resort to treat vancomycin-resistant enterococci
(VRE), methicillin-resistant Staphylococcus aureus (MRSA),
and other multi-drug Gram-positive bacteria [1]. Linezolid
exerts antibacterial effects by inhibiting the binding of
mRNA to the ribosome, thereby affecting the synthesis of
the protein [1]. It is generally considered that linezolid is a
completely synthetic antibiotic, and theoretically, there
should be no natural resistance phenomenon. Unfortu-
nately, clinically resistant strains have emerged shortly
after use of linezolid in clinical practice [2, 3]. The occur-
rence of linezolid-resistant strains show an increasing

trend, especially in animal husbandry [4], which should
attract sufficient attention.
The resistance to linezolid by gram-positive bacteria

can be achieved by target-modified 23S rRNA mutations
[5], acquiring exogenous chloramphenicol-florfenicol re-
sistance (cfr) [6], optrA [7] or poxtA [8]. Targets 23S
rRNA, L3, L4 and L22 mutations usually affect ribosome
function and easily reverse in the absence of selective
pressure. Therefore, chemical modifications (such as
methylation) of rRNA are the more common resistance
mechanisms of linezolid. The cfr gene encodes a methyl-
transferase that modifies the 23S rRNA at position
A2503, which confers resistance to phenicols, lincosa-
mide, oxazolidinones, pleuromutilin, and streptogramin
A (PhLOPSA phenotype) [9]. The cfr gene has been
identified in a variety of genera, including Staphylococcus
[10], Bacillus [11], Enterococcus [12], Macrococcus [13],
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Jeotgalicoccus [13], Streptococcus [14], Proteus [15] and
Escherichia [16]. The cfr gene widely disseminates among
oxazolidinone-resistant isolates from human [17] and animal
[18] origin, which represents a serious threat to public
health. Recently, two cfr variants, cfr(B) and cfr(C), have been
found in Enterococcus faecium [19], Clostridium difficile [20]
and Campylobacter [21]. The cfr gene was often found on a
number of different plasmids [7, 15, 22], and integrated into
transposons, leading to dissemination of this gene among
the same or between different species of bacteria.
The transferable gene, optrA, has been identified,

which confers cross-resistance to phenicols and oxazoli-
dinones, including tedizolid [23]. This gene was identi-
fied in enterococci and staphylococci from clinical [24],
healthy human and animal isolates [25, 26]. The resist-
ance gene optrA can be located either on plasmid or
chromosome [26]. Recently, one florfenicol-resistant
Staphylococcus sciuri isolate, which carried both optrA
and cfr, was identified in pig [27]. In this study, we
investigated the oxazolidinones resistance genes among
linezolid-resistant isolates in Chinese hospitals and
utilized whole-genome sequencing (WGS), and further
analyzed the genetic environment surrounding the
resistance genes.

Materials and methods
Bacterial strains
A total of 15 non-duplicable linezolid-resistant enterococci
strains and one linezolid intermediate-resistant enterococci
strain (13 E. faecalis and 3 E. faecium) (1.5%, 16/1067)
were collected from specimens of 16 patients from 9
hospitals between 2009 and 2013 in 6 provinces of China,
including 5 samples from Beijing, 4 samples from
Guangdong, 3 samples from Zhejiang, 2 samples from
Fujian, 1 sample from Jiangsu and 1 sample from Hubei
(Table 1.). Among the 16 strains, 6 were recovered from
patients with urinary tract infection, 5 from patients with
bacteremia, 4 from patients with wound infection and 1
from patients with biliary tract infection. Among the 16
strains, 7 strains (1203_10W003, 1202_13E004, 1202_
21W014, 19113, 19677, 19506 and SZ21494) were isolated
in our previous study [28], and the 9 remaining strains
were isolated in this study. Bacteria were first identified at
the species level using the VITEK system (bioMerieux,
Crapome, France), followed by a molecular method based
on the 16S rRNA gene, and then by sequencing analysis.

Antimicrobial susceptibility testing
The minimal inhibitory concentrations (MICs) of 8
antimicrobial agents were determined by the agar
dilution method, and tigecycline and daptomycin by broth
microdilution. The antimicrobial agents tested included
linezolid (Sigma Chemical Co., St. Louis, MO, USA),
vancomycin (Sigma), teicoplanin (Sigma), levofloxacin

(Sigma), erythromycin (Sigma), tigecycline (Pfizer, NY,
USA), daptomycin (Cubist Pharmaceuticals, MA, USA),
penicillin (Sigma), ampicillin (Sigma) and gentamycin
(Sigma). E. faecalis ATCC 29212 was used for quality
control in antimicrobial susceptibility testing. The results
of susceptibility testing were interpreted according to
CLSI guideline M100-S27. Isolates resistant to three or
more antibiotics of different families were considered to
be multi-drug resistant (MDR).

Molecular detection of resistance genes and mutations
The resistance genes cfr and optrA were determined by
PCR as described previously. The mutation of domain V
of the 23S rRNA gene was determined by PCR
combined with sequencing as described previously [29].
Nucleotide sequences were compared with the linezolid-
susceptible E. faecalis and E. faecium from Peking
University People’s Hospital during the same period.
The mutation was identified by the E. coli numbering.

Whole-genome sequencing (WGS)
Total genomic DNA of 13 enterococci strains carrying
optrA gene was extracted by the standard phenol/
chloroform method. The whole-genome sequencing was
performed using Illumina technology. The sequences with
read length of 150 bases were assembled into contigs using
SPAdes (v.3.9.0) [30]. Plasmid content associated with optrA
was analyzed using the contigs obtained by plasmidSPAdes.
The assembled contigs were annotated by the Prokka v1.12
[31]. Insertion sequences (IS) were identified using ISFinder
[32]. Multilocus sequence types (MLST) were assigned
using the silico tool hosted by Center for Genomic
Epidemiology (CGE) (www.genomicepidemiology.org). The
resistance genes were identified by ResFinder 3.0 [33].
Maximum likelihood phylogenetic analysis of the core
genome was performed using RAxML (Linux version
v7.2.8) [34]. The sequences of the optrA-containing
regions of 13 enterococci strains have been deposited
at GenBank under the following accession numbers
MH225413 (1202_13E004), MH225414 (1202_21W014),
MH225415 (1203_10W003), MH225416 (1207_26W003),
MH225417 (19506), MH225418 (19677), MH225419
(29462), MH225420 (SZ21494), MH225421 (TZ2),
MH225422 (WHXH), MH225423 (XM2013_42321),
MH225424 (XM2013_71028) and MH225425 (ZJ11066).

Results
Susceptibility profiles of linezolid-resistant enterococci
isolates
The susceptible breakpoint of enterococci to linezolid
is defined as less than or equal to 2 mg/L, and the re-
sistant breakpoint is defined as greater than or equal to
8 mg/L. The linezolid MICs of 16 enterococci were 4
mg/L to 16 mg/L, respectively. There were no significant
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differences in the linezolid MICs between optrA-positive
strains (4–16mg/L) and optrA-negative strains (8–16mg/
L). Most of the optrA-positive strains also exhibited resist-
ance to erythromycin (16/16, 100%), levofloxacin (12/16,
75%) and high-level gentamycin (500mg/L) (13/16, 81.3%).
All strains were susceptible to vancomycin, teicoplanin,
daptomycin and tigecycline. Three E.faecium and one
E. faecalis strains (4/16, 25%) were resistant to peni-
cillin and ampicillin, and all of 16 enterococci strains
didn’t possess beta-lactamase. Four strains (4/16, 25%)
belonged to MDR organism (Table 1).

Distribution of antimicrobial resistance genes
None of 16 linezolid-resistant enterococci strains
contained cfr gene. Only one strain had the G2658 T
mutation in 23S rRNA gene with linezolid MIC of
16 mg/L. Most of the linezolid-resistant enterococci
strains (n = 13) carried optrA gene (Table 1).
In addition to optrA genes, all optrA-positive strains

harbored phenicols resistance gene fexA (13/13, 100%),
erythromycin resistance genes of different erm gene clas-
ses (ermA1, ermB) (13/13, 100%), trimethoprim resistant
dihydrofolate reductase different dfr gene classes (dfrE,
dfrG) (13/13, 100%), ATP-binding cassette (ABC) anti-
biotic efflux pump different gene classes (lsaA, lsaE,
efrA, efrB) (13/13, 100%). Further, majority optrA-posi-
tive strains carried tetracycline resistance genes of differ-
ent tet gene classes (tet[C], tet[L], tetM) (12/13, 92.3%),
multidrug and toxic compound extrusion (MATE) trans-
porter emeA gene (12/13, 92.3%) and aminoglycosides
inactivating enzyme different gene classes (AAC(6′)-Ii,
AAC[6′]-Ie-APH[2″]-Ia, APH[3′]-IIIa, aad [6], ANT[6]-
Ia, ANT[9]-Ia) (10/13, 76.9%). Various additional resist-
ance genes were identified including cat, lnuB, lnuG,
mdtF, SAT-4 and efmA.

Core-genome phylogenetic analysis
The 12 E. faecalis isolates performed WGS were classi-
fied into 10 sequence types (STs): 3 ST476, 1 ST86,
ST116, ST480, ST59, ST416, ST21, ST67, ST16 and
ST585, respectively. One E. faecium isolate belonged
to ST18.
The phylogenetic tree of 12 E. faecalis isolates harbor-

ing optrA gene showed that two of these isolates (29462
and XM2013_42321) were genetically unrelated with the
rest isolates. Importantly, 1207_26W003 (Beijing), TZ2
(Zhejiang) and WHXH (Hubei) were recovered from
different cities, were found very closely related (99.9%),
and all of 3 strains belonged to ST476. In addition, strain
19677 recovered from Guangdong was closely related
(99.4%) to strain 1202_13E004 recovered from Beijing.
Further, strain 1203_10W003 isolated from Beijing and
strain XM2013_71028 isolated from Fujian was closely
related (99.3%) (Fig. 1).

Genetic environment of optrA on plasmids or
chromosome
Thirteen contigs containing the optrA gene were blasted
in the GenBank database, and 10 contigs were mapped
against the plasmids (pE121 [GenBank accession num-
ber KT862776] and pE419 [KT862777]). The size of
these 10 contigs was between 6372 bp and 21568 bp.
According to the gene arrangements, the 10 contigs were
divided into 4 groups: group 1 (29462 [MH225419], 1202_
21W014 [MH225414]), group 2 (1203_10W003 [MH22
5415], SZ21494 [MH225420], ZJ11066 [MH225425]),
group 3 (1207_26W003 [MH225416], 19677 [MH225418],
XM2013_71028 [MH225424]), group 4 (WHXH [MH22
5422], XM2013_42321 [MH225423]). The genetic environ-
ment of optrA in Group 1 was similar to that of plasmid
pE121 (KT862776). Compared to the plasmid pE121,
ermA1 gene was absent and the rest of the sequences were
almost identical. The genetic environment of optrA from
Group 2 to Group 4 resembled that of plasmid pE419
(KT862777). Compared with pE419, the intergenic region
between the left IS1216E and the first hypothetical protein
was truncated in Group 2, two hypothetical proteins
between optrA gene and the right IS1216E were missing in
Group 3, and ermA1 gene and two hypothetical proteins
were missing in Group 4. The common feature of genetic
environment of optrA from Group 1 to Group 4 was
flanked by IS1216E, and all of them carried phenicol resist-
ance gene fexA and erythromycin resistance gene ermA1
(Fig. 2a.).
The contigs containing optrA gene of 1202_13E004

(MH225413) (29141 bp), 19506 (MH225417) (22720 bp)
and TZ2 (MH225421) (75117 bp) were mapped on
chromosomal (CP008816). The strains 1202_13E004 and
19506 contained a transposon Tn558 (AJ715531) with
three transposases and the resistance gene fexA, and the
resistance gene optrA was adjacent to resistance gene
ermA1. The strain TZ2 carried another transposon Tn554
(X03216) with three transposases and the resistance gene
ermA1, and optrA was adjacent to resistance gene fexA
(Fig. 2b.).

Discussion
This study indicates that the transferable resistance gene
optrA is very prevalent among linezolid-resistant entero-
cocci strains isolated from human. Much more optrA gene
is located on plasmid than chromosome. The optrA gene
located on plasmid is flanked by IS1216E, while that
located on chromosome is mediated by transposons.
In this study, none of linezolid-resistant enterococci

strains carried cfr, while most of them harbored optrA.
This suggests that acquiring optrA is the main resistant
mechanism in linezolid-resistant enterococci from
human origin. The presence of optrA was limited to a
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few species of the genus Enterococcus [35] and only
rare species of Staphylococcus [4]. The surveillance
studies indicated that only 3.9–6.2% of staphylococci
strains were positive for optrA [4, 25], which suggests
a low prevalence of this oxazolidinone resistance gene
in the genus Staphylococcus.
In present study, the optrA gene was located on plas-

mids in most of enterococci strains. The optrA gene is
often surrounded by insertion sequences when located on
plasmids from enterococci strains. Our data showed that
all of optrA found on plasmids were flanked by IS1216E,
which was similar to a previous study [26]. Other studies
also found that co-localization of optrA and cfr was close
to IS21–558 and IS257 in S. sciuri [4, 27]. IS1216E belongs
to the IS6 family which among other mediates trans-
mission of the vancomycin resistance gene vanA in
E. faecium, the oxazolidinone resistance gene cfr in
E. faecalis [36], the macrolide-lincosamide-streptogramin
B resistance genes erm(B) and erm(T) in E. hirae [37]
and Streptococcus gallolyticus subsp. pasteurianus [38],
respectively, and the tetracycline resistance gene tet(S)
in Streptococcus infantis [39]. This indicates that optrA
can be transferred between different genus bacteria by
IS-mediated recombination events. Our study found
that the optrA gene was located on chromosome in a
few of enterococci strains. The optrA gene was adjacent
to transposon Tn558 in two strains and to Tn554 in
one strain. Tn558 was also detected upstream of optrA
gene in S. sciuri and E. faecalis. The functionally active

Tn558 and Tn554 could excise from their host DNA and
produce circular forms which precede the integration of the
transposon into a new target sequence [40]. The similar gen-
etic arrangement of Tn554 and optrA was identified in both
of staphylococci and enterococci, which suggest optrA can
be disseminated mediated by transposon between different
genus bacteria. The optrA gene was flanked by insertion se-
quences or transposons, indicating that mobile genetic ele-
ments mediate horizontal transfer of optrA among different
genus bacteria, which should be given more attention to
avoid this novel oxazolidinone resistance gene dissemination
in hospitals.
Our data showed the co-localization of resistance genes

fexA (n= 13) and ermA1 (n= 9) with optrA. The gene fexA
mediates resistance to fluorinated and non-fluorinated phe-
nicols, which are widely used in livestock, but not in humans.
The fexA gene was prevalent in florfenicol-resistant staphyl-
cococci [4] and enterococci [23] from animal origin. The evi-
dence of co-localization of fexA, ermA1 and optrA indicates
that linezolid-resistant strains may be selected due to non-
oxazolidinone antibiotics usage, such as macrolides (often
used in hospital), florfenicol (often used in livestock) and et
al.. The widespread use of florfenicol in livestock has exerted
selective pressure on environmental bacteria and poses a sig-
nificant public health threat to the increased resistance of the
novel antibiotic linezolid.
In summary, optrA was found in most of linezolid-

resistant enterococci. The high diversity of optrA-car-
rying genetic platforms was found even in a limited

Fig. 1 Maximum-likelihood phylogenetic tree of E. faecalis (n = 12)
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number of analyzed isolates. The role of optrA in
enterococci resistance to linezolid requires further in-
vestigation. The optrA gene was often flanked by in-
sertion sequences or transposons, which might
mediate the spread of optrA between different species
or strains. The co-localization of fexA, ermA1 and
optrA suggests that linezolid-resistant enterococci can
be selected by other antibiotics such as macrolides
and so on, which should be given more attention in
clinical practice.

Conclusion
We discovered the high diversity of optrA-carrying
genetic platforms in our limited number of analyzed iso-
lates. MGE mediated the dissemination of optrA be-
tween different species or strains. The optrA gene
was found in most of the linezolid-resistant entero-
cocci. Further studies should be done to clarify the
linezolid resistance mechanism of optrA gene in
Enterococcus species.
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