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associations
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Abstract

Background: Statistical evaluation of the association between microbial abundance and dietary variables can be
done in various ways. Currently, there is no consensus on which methods are to be preferred in which
circumstances. Application of particular methods seems to be based on the tradition of a particular research group,
availability of experience with particular software, or depending on the outcomes of the analysis.

Results: We applied four popular methods including edgeR, limma, metagenomeSeq and shotgunFunctionalizeR,
to evaluate the association between dietary variables and abundance of microbes. We found large difference in
results between the methods. Our simulation studies revealed that no single method was optimal.

Conclusions: We advise researchers to run multiple analyses and focus on the significant findings identified by
multiple methods in order to achieve a better control of false discovery rate, although the false discovery rate can
still be substantial.
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Background
With the help of high-throughput sequencing technolo-
gies, human microbiota have been profiled and studied
extensively [1]. Since diet shapes the composition of hu-
man microbiota and influences human health, linking
abundance of microbes to dietary variables is a common
practice in human microbiome studies [2, 3]. These as-
sociation studies not only can improve our understand-
ing of the relationships between the human microbiome
and nutrient intake, but also may help development of
new therapeutic interventions.
Microbiome data are often generated by targeted se-

quencing of the 16S ribosomal RNA (rRNA) gene,
and represented as a frequency matrix giving the
number of times each microbe is observed in each
sample. In general microbiome data have following
features: 1) library sizes can vary by orders of magni-
tude across samples. 2) microbiome data often have
excess zero counts. These zero counts can be due to
either biological absence of a microbe, or insufficient
sequencing. 3) microbiome data are compositional

data, meaning that the obtained counts do not reflect
the absolute number of microbes that are present. 4)
microbiome data are over-dispersed, characterized as
some taxa (e.g., Bacteroides and Lactobacillus species)
are common among samples, many other taxa are
present at much lower abundances.
Various statistical methods have been developed for

microbiome data analysis, but there are no standard
procedures to perform association analyses [4]. Previ-
ous benchmark works [5, 6] focused on case-control
studies, and revealed that the choice of statistical
methods considerably affected outcomes of differential
relative abundance tests. Unlike case-control studies,
association studies work also on continuous variables. To
our best knowledge, the influence of choosing different
methods on outcomes of association studies has not been
evaluated. To assess the influence, we analyzed the
associations between dietary variables and gut microbiota in
1090 individuals from the HELIUS-cohort study
(Amsterdam, the Netherlands) [7, 8]. Since the focus of the
current work is on robustness of the statistical results rather
than biological or epidemiological associations, biological in-
terpretation of diet-microbe associations is out of the scope
of this work. We used four methods including those based
on Poisson (shotgunFunctionalizeR), negative binomial
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(edgeR), zero-inflated Gaussian (metagenomeSeq) distribu-
tions, as well as a weighted linear regression model (voom +
limma). We compared the results derived from the four
methods and observed large differences. To find out which
method we should choose in which circumstances, we ran
simulation studies and found that no single method was op-
timal for all microbiome data sets. We advise researchers to
run multiple statistical analyses and focus on the significant
findings identified by multiple methods in order to achieve
better control of false discovery rate.

Results
Large difference in results between statistical analyses
To evaluate effect of choosing different methods on
outcomes in association studies, we performed associ-
ation analyses between 67 dietary variables and 2073
OTUs derived from 1090 HELIUS participants with
four methods. Out of 138,891 association tests, we
identified 3535, 20,081, 62,581 and 71,371 associations
with FDR below 0.05 in edgeR, voom + limma, meta-
genomeSeq and shotgunFunctionalizeR, respectively.
There were 1296 associations identified to be signifi-
cant by all the four methods. In addition, there were

14, 3703, 23,666, and 29,327 associations that were
identified as significant only by edgeR, voom +
limma, metagenomeSeq or shotgunFunctionalizeR
(Fig. 1).

16S rRNA microbiome data simulation
After realizing such considerably different results be-
tween the methods, we attempted to find out which
method we should choose. To this end, we simulated
16S rRNA microbiome data with spiked-in associations
between dietary variables and OTUs. We used a pub-
lished FFQs (food frequency questionnaires) data as a
template. To make sure our simulation framework can
generate similar microbiome data as real ones, we com-
pared our simulated data to the real HMP (Human
Metabolome Project) stool 16S data. Our simulated
microbiome data had similar distribution of library sizes
and percentage of zeros per OTU, as well as similar
mean-variance relationship (Fig. 2). Our template FFQs
data contained 214 dietary variables. In each simulation,
we used one dietary variable. Therefore, in total we gen-
erated 214 simulated 16S rRNA data sets. Each data set
contained 1000 subjects and had mean library size

Fig. 1 Venn diagram of significant associations identified by edgeR, voom + limma, metagenomeSeq and shotgunFunctionalizeR based on
HELIUS 16S rRNA microbiome and FFQ data
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50,000, and the same simulated data set was analyzed by
edgeR, voom + limma, metagenomeSeq and shotgun-
FunctionalizeR. In our simulations, we observed large
difference in results between the methods (Fig. 3).

Method comparisons based on simulated data
Overall shotgunFunctionalizeR had both the highest
true positive rate and the highest false positive rate
(Fig. 4). The median true positive rate of shotgun-
FunctionalizeR was (0.900), followed by metagenome-
Seq (0.800), edgeR (0.624) and limma (0.519).
Meanwhile the median false positive rate of shotgun-
FunctionalizeR, metagenomeSeq, limma, and edgeR
were 0.716, 0.388, 0.125 and 0.0898, respectively.
Based on the 214 simulations, we identified that the
median error probability, defined as the probability
that a significant association is false, of shotgunFunc-
tionalizeR, metagenomeSeq, limma and edgeR were
0.439, 0.330, 0.196 and 0.123, respectively (Fig. 5a).
Among the 214 simulations, we observed that edgeR
had the lowest error probability compared to other
methods in 147 simulations, followed by limma (56
simulations) and metagenomeSeq (11 simulations)
(Fig. 5b). Furthermore, the error probabilities in dif-
ferent methods were also influenced by the skewness
of the distribution of the dietary variables (Fig. 6). In
the next step, we identified that 30% simulations in
edgeR, 16% simulations in limma, 0.9% simulations in
metagenomeSeq and 0% simulation in shotgunFunc-
tionalizeR had error probabilities below 0.05 over the
214 simulations (Fig. 7). However, when we focused
on the significant associations that were identified by
all four methods (we call them “overlap”) in each
simulation, we observed that 44% simulations had

error probabilities below 0.05 over the 214 simula-
tions (Fig. 7).

Discussion
We learned from these relatively simple analyses that
a key issue in the analysis of 16S rRNA microbiome
data is the choice of the statistical method. Depend-
ing on the choice of statistical method, significant as-
sociations between dietary variables and microbial
abundances varied dramatically. We observed that
shotgunFunctionalizeR produced the largest number
of unique significant associations, whereas most of
the significant associations identified by edgeR were
also identified by other methods. What really puzzled
us is the relatively small number of significant associ-
ations identified by all methods. We think that such
dramatic difference is related to the distribution as-
sumptions as well as the normalization processes im-
plemented in the statistical methods [9]. In this study,
shotgunFunctionalizeR and edgeR modeled the unnor-
malized counts with either Poisson or negative bino-
mial distribution, and coped with uneven library size
across samples by including the log(total counts) as
the offset. In contrast to shotgunFunctionalizeR and
edgeR, limma and metagenomeSeq were based on the
Gaussian and zero-inflated Gaussian distributions, re-
quiring transforming discrete counts into continuous
quantities. To this end, limma transformed the raw
counts into log-cpm (log counts per million), in
which unequal library sizes were normalized. In meta-
genomeSeq, uneven library size was normalized by
cumulative sum scaling, and the normalized counts
were log2 transformed in order to be incorporated
into the zero-inflated Gaussian model.

Fig. 2 Comparison of simulated and real Human Microbiome Project stool 16S rRNA data. A: library size distributions B. distribution of percentage
of zeros per OTU. C. mean-variance relationship. Every dot represents an OTU
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To find out which method we should choose for as-
sociation studies, we developed a hierarchical model
to simulate 16S rRNA data based on dietary variables
with spiked-in associations. By comparing to the real
HMP 16S microbiome data, we have shown that our
simulation model can simulate realistic 16S rRNA
microbiome data. Although in this work we focused
on diet-microbe association analyses, our simulation
framework can easily be adapted to simulate other
scenarios.
Based on our simulation model, we generated a

large number of 16S microbiome data sets with sam-
ple size 1000 subjects and mean of sequencing depth
50,000. These settings were used to mimic the
HELIUS data set. When we analyzed the simulated
data sets with edgeR, limma, metagenomeSeq and
shotgunFunctionalizeR, we observed again large differ-
ence in number of significant associations between
the methods. In general, we want our statistical
method to detect as many as possible true positives,
and as few as possible false positives. From our

simulation studies, we learned that overall the most
sensitive method (shotgunFunctionalizeR in this case)
was likely to be the one with the most false positives.
This phenomenon was observed in the differential
abundance test scenario as well [5]. Even though we
set FDR as 0.05 in all our diet-microbe association
analyses, our simulation results showed that control
of FDR completely failed in shotgunFunctionalizeR,
and rarely achieved in metagenomeSeq. On the other
hand, edgeR and limma achieved FDR 0.05 in some
cases. In the previous case-control simulations [6],
metagenomeSeq and shotgunFunctionalizeR were
shown to fail controlling false discovery rate at 0.05.
However, edgeR was reported to be able to control
false discovery rate at 0.05 [6]. We think this is due
to the fact that performing association analyses is
more challenging than case-control comparisons because
we cannot control both dependent and independent vari-
ables. Our further analysis showed that the skewness of
the independent variable (e.g. dietary variable) influences
the error probabilities in all methods. When the skewness

Fig. 3 Every dot represents the number of significant associations identified only by the corresponding method. Each line represents a
simulation, in which the same simulated data were analyzed by edgeR, voom + limma, metagenomeSeq and shotgunFunctionalizeR
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of the dietary variable increased, the probability that a sig-
nificant association is false also increased. When we fo-
cused on the significant diet-microbe associations that
were identified by all four methods, we observed that
more simulations had error probability below 0.05.

Conclusions
In summary, the choice of the statistical method is a
key issue in the analysis of 16S rRNA microbiome
data. No single method was optimal for diet-microbe
association analyses. We recommend researchers to
run multiple statistical models and focus on the sig-
nificant associations identified by multiple methods.
In this way, we can improve the controlling of false
discovery rate, although the false discovery rate can
still be substantial.

Methods
Subjects and HELIUS cohort
Subjects were participants in the HEalthy Life in an
Urban Setting (HELIUS) cohort study. This study used a

stratified-random sampling approach to include between
2011 and 2015 25,000 inhabitants (18–70 years) from
the city of Amsterdam, the Netherlands [7]. Stratifica-
tion was done on six subgroups with different ethnic
origins (African Surinamese, South Asian Surinamese,
Ghanaian, Turkish, Moroccan, and Dutch). Subgroups
were about equally large.

Dietary intakes assessment
As described previously [10, 11], a subsample of voluntary
participants of Dutch, Moroccan, Turkish, South-Asian
Surinamese and African Surinamese origin were asked
to participate in the HELIUS-Dietary Patterns study,
with objective to collect detailed information on their
diet. Usual dietary intakes were assessed through the
completion of ethnic-specific semi-quantitative food
frequency questionnaires (FFQs) with a reference
period of 4 weeks. These FFQs were adapted from an
existing Dutch FFQ and comprised about 200 items.
Food items were collapsed into 73 food groups based
on similarity in nutrient profile and culinary use. In

Fig. 4 With each simulated data set, we calculated the performance of every method, in terms of true positive rate and false positive rate. Every
dot represents a simulation
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this study ethnic-specific food groups were not in-
cluded in this analysis and 67 food items were used
for the analyses.

16S processing
We used the 16S ribosomal RNA (rRNA) sequencing
data generated in a previous study based on the HELIUS
cohort [3]. In short, the composition of fecal microbiota
was profiled by sequencing the V4 region of the 16S
rRNA gene on a MiSeq system. The 16S rRNA gene
reads were processed on a mothur pipeline (version
1.39.5) [12]. The OTU clustering was done by using the
vsearch (version 2.6) [13] and a phylogenetic tree was
constructed by running FastTree 2.1 [14]. The details of
the sequencing and bioinformatic pipelines were de-
scribed in [3].

Statistical analyses
Our analysis is based on 1090 subjects who had both fecal
microbiome and FFQ data. Following [1], here we re-
moved OTUs with fewer than 10 reads in total, as well as
OTUs which were present in fewer than 1% of samples.
The final OTU table contains 1090 samples and 2073
OTUs. We used four widely used methods for sequencing

data analysis to quantify the strength of the associations
between dietary variables (x) and OTU counts (y). Because
the large number of associations (67 × 2073), we used
multidplyr R package (https://github.com/hadley/multi-
dplyr) for parallel computation. The selected methods
were as follows:
ShotgunFunctionalizeR is a popular R package used in

microbiome research community, and based on the
Poisson generalized linear model (implemented in glm
function in R) [15]. We used the glm function with log(-
total counts) as offset to quantify associations between
dietary variables and OTU counts.
Negative binomial model, also called gamma-Poisson

model, is popular for statistical modeling of OTU count
data [16, 17]. Phyloseq is a popular R package used by
the microbiome research community [18]. The core of
Phyloseq is based on another popular R package
DESeq2, which is based on negative binomial model
[19]. However, when the sample size is big (above 100),
the computation becomes slow in DESeq2. Therefore,
in this work we used another negative binomial based R
package, edgeR [20]. The observed OTU count was
modeled by a negative binomial distribution with two
parameters, the mean and the dispersion. OTU specific

Fig. 5 A: Every dot represents the probability that a significant association is false. B: Among 214 simulations, edgeR had the lowest error
probability in 147 simulations; limma had the lowest error probability in 56 simulations; metagenomeSeq had the lowest error probability in
11 simulations
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dispersion was estimated by running estimateDisp func-
tion implemented in the edgeR package [20, 21]. The
associations between dietary variables and OTU counts
were quantified by running glmFit function of the
edgeR package [20]. The log(total counts) was used as
offset.
In contrast to above methods modeling the counts with

exact probabilistic distributions, others have advocated
weighted linear regression analysis with precision weights
derived from the mean variance relationship [22]. This ap-
proach has been implemented in the voom function of the
popular R package limma [23]. The weighted linear re-
gression was done to estimate the linear association be-
tween dietary variables and OTU counts with precision
weights estimated by the voom and lmFit functions in the
limma package [22, 23].
The last method, metagenomeSeq is also a popular R

package used by microbiome research community [24].
It is based on the zero-inflated Gaussian model. This ap-
proach has been implemented in the fitZig function of
the popular R package metagenomeSeq [24]. The

cumulative sum scaling method was used to take care li-
brary size difference.
In a typical association study, the primary goal is to

identify some candidate associations for future re-
search. Therefore, regarding multiple testing we calcu-
lated false discovery rate (FDR). If an association had
FDR value below 0.05, we considered it as a significant
association. Since the research question is focused only
on robustness of the statistical results and not on bio-
logical or epidemiological associations, we did not ad-
just for possible confounding or selection factors.

Simulation framework
We use y to represent the simulated microbiome data
with n rows and J columns. Every column of y repre-
sents a microbe and every row of y represents a sub-
ject. Here, we simulated associations of a dietary
variable, denoted as x, with gut microbiota. x is a
vector of length n, and was randomly sampled from
real FFQ data with replacement. The FFQ data was
published in [2] and contained 214 dietary variables

Fig. 6 Skewness of predictor variable influences false positive rate. Every circle represents a simulation
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that were scaled to having mean 0 and standard devi-
ation 1. For each simulated microbiome data set, we
used one dietary variable and in total generated 214
simulated data sets. Our simulation framework in-
cluded the steps below:

η j½ �∼Bernoulli 0:5ð Þ ð1Þ

γ j½ �∼T 7 0; 2:5ð Þ ð2Þ

β j½ � ¼ 1−η j½ �ð Þ � 0þ η j½ � � γ j½ � ð3Þ

θ i; 1 : J½ �∼Dirichlet π 1 : J½ �ð Þ ð4Þ
α i; 1 : J½ � ¼ logit θ i; 1 : J½ �ð Þ ð5Þ
logit μ i; j½ �ð Þ ¼ α i; j½ � þ β j½ � � x i½ � ð6Þ
N i½ �∼Lognormal μL; σLð Þ ð7Þ
y i; 1 : J½ �∼Multinomial N i½ �; μ i; 1 : J½ �ð Þ ð8Þ

Our HELIUS microbiome data set had 1090 subjects
and the median sequencing depth was about 50,000. To
mimic HELIUS data, we simulated the 16S microbiome

Fig. 7 Distribution of probabilities that a significant association is false in edgeR, limma, metagenomeSeq and shotgunFunctionalizeR. The
“overlap” refers to the distribution of error probabilities of significant associations identified by all four methods
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data sets, with each data set having 1000 subjects and
mean of sequencing depth 50,000.

Spiked-in association
To introduce the spiked-in association between a dietary
variable and microbe j, we need two variables η[j] and
γ[j]. The indicator variable, η[j], indicates if a dietary
variable influences the abundance of the microbe j. For
microbe j, we randomly drew η[j] from a Bernoulli dis-
tribution with parameter 0.5 (Eq. 1). γ[j] represents the
effect of the dietary variable on the abundance for OTU
j, and was sampled from a t distribution with 7 degrees
of freedom, location 0 and scale 2.5 [25] (Eq. 2). Then
the true association between the diet and microbe j was
captured by β[j] defined in Eq. 3.

Dirichlet multinomial model
In the current study, we developed a Dirichlet multi-
nomial model to generate 16S rRNA microbiome data.
In Eq. 4, the matrix θ has n rows and J columns. θ[i, j]

corresponds to the baseline abundance level for the mi-
crobe j in subject i. For subject i, we randomly drew a
vector of length J from a Dirichlet distribution. In Eq. 5,
the parameter of the Dirichlet distribution π is a vector
of length J. We used R package DirichletMultinomial
[26] and the Human Microbiome Project 16S rRNA
stool data [27] to estimate the π. In Eq. 6, the true mi-
crobe j proportion in subject i, μ[i, j] was modeled as a
logistic regression of x[i]. Similar to [24], library size of
subject i, N[i], was randomly drawn from a lognormal
distribution with mean μL and standard deviation σL (Eq. 7).
μL is the logarithm of target sequencing depth (50000). We
estimated σL = 0.77 based on the HMP stool 16S
rRNA data set by using the fitdistr function imple-
mented in the MASS package. Finally, for subject i,
the observed microbe counts were randomly gener-
ated from a multinomial distribution (Eq. 8).

Performance evaluation
We evaluated the model performances based on metrics
including true positive rate, false positive rate and error
probability for identifying a significant association be-
tween microbe and dietary variable. They are calculated
per simulation and defined as below:

True positive rate ¼ TP
TPþ FN

ð9Þ

False positive rate ¼ FP
TNþ FP

ð10Þ

Error probability ¼ FP
TPþ FP

ð11Þ

TP, FP, TN and FN refer to true positive, false positive,
true negative and false negative, respectively. The

indicator variable, η[j], is in the definition of our
spike-in associations. When η[j] = 1, the dietary variable
x influences the abundance of the microbe j, otherwise
η[j] = 0. Therefore, a true positive finding is defined as
having a significant association between the dietary vari-
able x and microbe j with FDR < 0.05 in case the true
η[j] = 1. A false positive finding is defined as having a
significant association between the dietary variable x and
microbe j with FDR < 0.05 in case the true η[j] = 0. A
true negative finding is defined as having a association
between the dietary variable x and microbe j with FDR >
0.05 in case the true η[j] = 0. A false negative finding is
defined as having a association between the dietary vari-
able x and microbe j with FDR > 0.05 in case the true
η[j] = 1. The error probability quantified the probability
that a significant association is false. Here we did not
use “false discovery rate” but used the term “error prob-
ability” in order to avoid confusion, because we also cal-
culated the false discovery rate during analyses of
associations between OTUs and dietary variables.
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