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Abstract

Background: An issue associated with efficient bioethanol production is the fact that the desired product is toxic
to the biocatalyst. Among other effects, ethanol has previously been found to influence the membrane of E. coli in
a dose-dependent manner and induce changes in the lipid composition of the plasma membrane. We describe
here the characterization of a collection of ethanol-tolerant strains derived from the ethanologenic Escherichia coli
strain FBR5.

Results: Membrane permeability assays indicate that many of the strains in the collection have alterations in
membrane permeability and/or responsiveness of the membrane to environmental changes such as temperature
shifts or ethanol exposure. However, analysis of the strains by gas chromatography and mass spectrometry revealed no
qualitative changes in the acyl chain composition of membrane lipids in response to ethanol or temperature.
To determine whether these strains contain any mutations that might contribute to ethanol tolerance or changes in
membrane permeability, we sequenced the entire genome of each strain. Unexpectedly, none of the strains displayed
mutations in genes known to control membrane lipid synthesis, and a few strains carried no mutations at all.
Interestingly, we found that four independently-isolated strains acquired an identical C→ A (V244 V) silent mutation in
the ferric citrate transporter gene fecA. Further, we demonstrated that either a deletion of fecA or over-expression of
fecA can confer increased ethanol survival, suggesting that any misregulation of fecA expression affects the cellular
response to ethanol.

Conclusions: The fact that no mutations were observed in several ethanol-tolerant strains suggested that epigenetic
mechanisms play a role in E. coli ethanol tolerance and membrane permeability. Our data also represent the first direct
phenotypic evidence that the fecA gene plays a role in ethanol tolerance. We propose that the recurring silent mutation
may exert an effect on phenotype by altering RNA-mediated regulation of fecA expression.
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Background
Interest in alternative and renewable fuels is high as cli-
mate change and national energy security have brought
about the search for a sustainable, non-fossil fuel energy
source that would be both cost effective and environ-
mentally friendly. The conversion of plant biomass into
various liquid fuels such as ethanol is an area of interest
in this regard. The majority of biofuels are currently
made with sugar, starch, or fats derived from plants that

are also used for food and feed. There is significant and
warranted concern that the use of food crops for fuel
may not be sustainable [1]. A long-term solution to this
problem is to produce fuels from non-edible lignocellu-
lose [1]. The use of corn stover and wheat straw in bio-
fuel production through fermentative pathways of
Escherichia coli (or other organisms) has numerous
potential benefits, including low production cost, use
of a non-consumable agriculture byproduct, space ef-
ficiency and sustainability [2].
One such E. coli strain pursued for fermentation, E.

coli KO11, suffered from a genetic instability resulting in
a decrease in ethanol yield over time and the inability to
be used for repeated fermentation runs [3]. Due to its
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ability to metabolize xylose, E. coli mutant FMJ39x was
later used as the parent strain for artificial selections
designed to produce a reusable fermenter strain [4]. The
enzymes lactate dehydrogenase (ldhA) and pyruvate for-
mate lyase (pfl) were deactivated via deletion caused by
chemical mutagenesis, thus artificially removing the abil-
ity of FMJ39x to perform anaerobic fermentation of
pyruvate. The ability of FMJ39x to ferment pyruvate to
ethanol was restored by transforming FMJ39x with the
plasmid pLOI297, created using genes from Zymomonas
mobilis [4]. The resulting strain, FBR3, showed promise
as a biocatalyst due to its higher yield and stability, along
with its ability to maintain pLOI297 with 97% efficiency
when grown anaerobically. However, although E. coli
FBR3 had a 90–91% conversion rate to ethanol, it was
determined to ferment 30% slower than E. coli KO11
[5]. The inefficiency of FBR3 led to the creation of two
new strains in the FBR series by transformation of E. coli
strains DC1368 and NZN111 with pLOI297 resulting in
FBR4 and FBR5, respectively [4]. The efficiency of FBR4
and FBR5 to produce ethanol was compared and it was
determined that FBR5 completed fermentation 20 h earl-
ier and produced 90% of the theoretical yield of ethanol
versus 78% for FBR4.
An additional issue associated with efficient bioethanol

production is the fact that the desired product is toxic to
the biocatalyst (cf. [6–9]). Research has also shown a
correlation between ethanol toxicity and decreased fer-
mentation yields [10, 11]. Ethanol has previously been
found to influence the membrane of E. coli in a dose
dependent manner and to affect the lipid composition of
the plasma membrane [12–14]. At low concentrations
ethanol disrupts packing and increases lipid motion in
the membrane while at moderate concentrations ethanol
begins selectively extracting lipids [15]. It has also been
proposed that increased ethanol tolerance is correlated
to increased membrane fluidity.
In the work presented here, we document that FBR5

has a markedly lower tolerance for ethanol than its K-12
ancestor and that FBR5 has a number of mutational
changes in genes that have been previously been impli-
cated in ethanol tolerance and stress response. We
describe the isolation of twenty independent mutant de-
rivatives with varying abilities to grow in the presence of
ethanol. The data indicate that a subset of the strains in
the collection have membrane permeability alterations,
but no changes were observed in their membrane lipid
constituency. Genomic analysis was carried out on all
twenty of the derivative strains, and some data is sug-
gestive that epigenetic mechanisms may be contributing
to the phenotypes of these strains. Particularly note-
worthy is the observation that four of the strains ac-
quired an identical silent mutation in the ferric citrate
transporter gene fecA. We demonstrate that E. coli

strains that carry a fecA deletion or that over-express
fecA exhibit increased ethanol tolerance, and we suggest
a possible role for the recurring silent mutation in our
mutant strains.

Methods
Bacterial strains and growth
Escherichia coli strains used in this study are presented
in Table 1. All cultures were grown in Luria Bertani (LB)
medium prepared as follows: tryptone 25 g/L, yeast 5 g/
L, NaCl 5 g/L; for solid medium, 1.6% w/v agar was
used. Plasmids were maintained by supplementing the
LB medium with antibiotics as follows: pLOI297,
100 mg/L ampicillin; pBluescript (Stratagene) 50 mg/L
ampicillin; pCA24N and pCA24N + JW4251, 25 mg/L
chloramphenicol.

Mutant isolation via alcohol pressured isolation
challenges
Isolation protocol was similar to that described previ-
ously [16] with the following modifications. Twenty in-
dependent FBR5 cultures were grown in 5 mL of LB
broth supplemented with both 40 g/L xylose and
100 mg/L ampicillin for 24 h at 30 °C. Following the
24 h, 10 ml of LB broth with 35 g/L ethanol was added
to each culture and allowed to grow for another 24 h at
30 °C. For ten of these lineages, serial dilutions were
plated onto the surface of LB agar plates containing
10 g/L (1.27% v/v) isopropanol, 100 mg/L ampicillin and
20 g/L xylose while the other ten lineages were grown in
poured media (LB broth 1 L, agar 0.35%, xylose 20 g/L,
isopropanol 10 g/L (1.27% v/v), ampicillin 100 mg/L) to
simulate anaerobic growing conditions. The plates were
incubated at 30 °C until noticeable growth was observed;
the three largest colonies of each initial culture were
then selected for further enrichment. The above proce-
dures were repeated two more times for each culture
lineage at 35 g/L ethanol and then repeated three more
times per concentration at 45, 55, and 60 g/L ethanol.
At the end of the entire procedure, only one mutant was
saved from each of the original twenty lineages. Nomen-
clature for resulting strains was determined by the grow-
ing condition. The ten cultures of FBR5 used in the pour
plate growth procedures were named ANA-ANJ. The
ten cultures of FBR5 used in the aerobic spread plate
procedures were named ARK-ART.
Plasmid-free derivatives of the parent and mutant

strains were made by curing the strains of the pLOI297
plasmid via successive passages in the absence of ampi-
cillin. These derivative strains were also subsequently
transformed with pBluescript, a plasmid that carries a
gene encoding for β-galactosidase production. The
derivatives carrying pBluescript were used in minimal
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inhibitory concentration (MIC) and membrane perme-
ability experiments.

Survival assays
Cultures were grown overnight (12–15 h) in LB broth at
37 °C. Samples were diluted 1:200 in LB broth and
grown in shaker flasks to OD600 = 0.6 at which point (t
= 0) a sample was removed and a viable cell count was
determined by plating samples from serial dilutions onto
LB plates. Immediately following the removal of the ini-
tial sample, ethanol was added to the shaker flasks. Sub-
sequent samples were removed from the flasks at
specific times and viable cell counts determined as
described above. Survival assays were performed in
strains not containing a plasmid to prevent ethanol pro-
duction from pLOI297, thus removing ambiguity in the
experiment regarding the concentration of ethanol
present in the culture flask over time.

Minimal inhibitory concentration (MIC) assay
MIC assays were done to compare bacterial growth at
varying concentrations of ethanol and performed as pre-
viously described with minor modifications [17]. Over-
night cultures of mutants transformed with pBluescript
were grown in LB broth containing 50 μg/ml of ampicil-
lin at 30 °C for 10–18 h. Cultures were diluted 1:500 in
fresh media and grown up to OD600 ~ 0.4. Cultures were
then diluted to 1:1 × 106 CFU/ml. 90 μl of dilute cultures
were then added to 10 μl of 8 different concentrations of
ethanol (100, 50, 25, 12.5, 6.25, 3.125, 1.56, and 0% by
volume diluted with water) in a 96 well microtiter plate
resulting in exposure concentrations ranging from 0 to
10% ethanol by volume. Culture and ethanol mixtures
were grown up in static conditions overnight in 30 °C
incubator for 18 h and then absorbance in each well was
measured at 600 nm using a Thermo Scientific
Multiskan (Thermo Fisher Scientific, Waltham, MA,

USA) plate reader. An OD600 above 0.1 after incubation
was used as the threshold to indicate growth. Reported
values are the average of 3–5 separate, independent
experiments.

Membrane permeability assay using β-galactosidase
Assays using β-Galactosidase and ONPG to measure the
inner membrane permeability of the 20 mutant strains
were performed as previously described with minor
modifications [18]. Overnight cultures of strains carrying
pBluescript were grown in LB broth containing 50 μg/ml
of ampicillin at 30 °C or 37 °C for 10–18 h. Overnight cul-
tures were diluted 1:100 in fresh media and grown to an
OD600 of 0.2–0.3. 5 ml of each diluted culture was then
centrifuged at 7500 rpm for 10 min in a DuPont
(Wilmington, DE) Sorvall RC 5C Plus centrifuge with
a DuPont Sorvall model SLA-1500 rotor. Supernatant
was removed and pellets were resuspended in 5 ml of
phosphate buffer solution (PBS) (10 mM phosphate,
200 mM NaCl, pH = 7.0). In a 96 well microtiter
plate, 50 μl of distilled water, 10 μl of 22 mM O-
nitrophenylgalactopyranoside (ONPG), and 40 μl of
resuspended culture. A positive control contained
50 μl of 10 mM cetyl trimethylammonium bromide
(CTAB), 10 μl of ONPG, and 40 μl of culture. In the
presence of β-galactosidase, ONPG, which is typically
a colorless substrate, is hydrolyzed, resulting in galact-
ose and o-nitrophenol (ONP), which appears yellow
[19]. Absorbance was measured at 420 nm with a
Multiskan plate reader. Readings were taken every
5 min for 90 min with intermittent shaking between
readings. The ONPG conversion rate (ONPG/min)
was quantified based on concentration of ONP using
Beer’s Law. Since the permeability of ONPG through
the inner membrane is normally low, this assay
allowed membrane permeability to be inferred from
the calculated ONPG conversion rates [18] and therefore

Table 1 E. coli strains and plasmids used in this study

Strain or plasmid Genotype or relevant characteristicsa Source or reference

E. coli K-12

BW25113 MG1655 derivative; F−, Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ− rph-1 Δ(rhaD-rhaB)568
hsdR514

[15]

BW25113 Δ
JW4251

BW25113 ΔfecA758::kan [66]

FBR5 Δpfl::Cm ldhA::kan, pLOI297 [4]

MG1655 F−, λ− ilvG− rfb-50 rph-1 K-12 reference strain;
ATCC47076

Plasmids

pCA24N Cmr vector, IPTG-inducible promoter [67]

pCA24N + JW4251 pCA24N derivative carrying fecA gene adjacent to IPTG-inducible promoter [67]

pLOI297 Apr Tcr pdc+ adhB+ [68]
aAbbreviations: Ap ampicillin, Cm chloramphenicol, Kan kanamycin, Tc tetracycline
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facilitated the categorization of the 20 mutant strains by
relative inner membrane permeability when cultures were
grown both in the presence and absence of ethanol. Rela-
tive ONPG hydrolysis was determined by calculating the
slope of the first 30 min of absorbance readings into a
conversion rate. Reported values are the average of 3–5
individual experiments.
ONPG permeability assays involving bacteria exposed

to ethanol were completed using the same protocol as
above with one modification. For ease of experimental
manipulation, ethanol was added to a 4% (v/v) final con-
centration when overnights were diluted 1:100 in fresh
media.
ONPG conversion rates were compared between

strains grown under different temperature or ethanol-
exposure conditions. Simple ratios were taken of the
average conversion rate for a given strain under different
conditions to obtain relative changes in permeability
behavior as a result of the differing environmental con-
ditions. These ratios were calculated for each strain to
investigate the results of shifting temperature on
permeability:

ONPGpmol
min

� �
0%EtOH@37°C

ONPGpmol
min

� �
0%EtOH@37°C

ð1Þ

or the result of exposure to 4% ethanol:

ONPGpmol
min

� �
4%EtOH@30°C

ONPGpmol
min

� �
0%EtOH@30°C

ð2Þ

or any combination of ethanol exposure and
temperature.

Lipid extraction and gas chromatography mass
spectrometry (GC-MS) analysis
Bacterial cultures were grown as above at 30 °C or 37 °C
except that in some cases cultures received ethanol to a
final concentration of 4% (v/v) and allowed to grow for
3 h before harvesting. Lipids were extracted as described
previously [20, 21]. To summarize, cultures were centri-
fuged and the bacterial pellet was resuspended in 2 mL
H2O prior to flash freezing with liquid nitrogen. The fro-
zen cells were lyophilized overnight and then resus-
pended in 1 mL deionized water and transferred to a
beaker. Equal parts methanol and chloroform were then
added to another beaker, followed by the resuspended
bacteria sample and another part methanol. After allow-
ing stirring for fifteen minutes, another part of chloro-
form was added, and then after two more minutes the
2 M NaCl solution was added to allow mixing for eight
to ten minutes. The solution was then transferred to a

50 mL centrifuge tube and centrifuged for ten minutes
at 2800 rpm. This resulted in the formation of two clear
layers with a fragile white layer separating the two. The
bottom layer was extracted, put into a 10 mL glass test
tube, and placed under a stream of N2 gas to evaporate
all the contents except the lipid. After evaporation
200 μL of a H2SO4, methanol, and H2O (30%:28%:42%)
solution was added. The tube was vortexed briefly and
then placed in a 100 °C heat block for ten minutes. Then
400 ml of 6 M NH4OH was added followed by 400 ml
of hexane and vortexing. The sample was put into a
microfuge tube and centrifuged at 11000 rpm for 5 min.
The top layer in the tube was removed and placed in a
GC-MS vial.
Samples were analyzed on an Agilent Technologies

6890 Network GC System with a 5973 Network Mass
Selective Detector. The column was coated in a nonpo-
lar polymer of dimethylpolysiloxane and had dimensions
of 30 m × 0.320 mm ID × 0.250 μm thick. The GCMS
method started at room temperature before ramping
and holding the samples at around 220 °C. Most peaks
eluted between 19 and 30 min. Peak identification was
performed using the provided Agilent software database.

Whole genome sequencing
DNA was isolated from overnight cultures using the
Gentra Puregene Yeast/Bacteria kit (Qiagen). Twenty-
one multiplex libraries were made using the IntegenX
Apollo 324™ System. The libraries were sequenced on a
single lane of an Illumina HiSeq, to a read length of 140
bases, resulting in an average fold-coverage of 400 for
each strain. The reads were mapped to the E. coli K-12
MG1655 reference genome (GenBank: U00096.2) [22]
using BWA for Illumina [23]. The resulting SAM files
were converted to BAM files using SAMtools [24]. The
BAM files were visualized using Integrated Genome
Viewer (IGV) [25], manually searching the genomes for
SNPs, deletions, insertions, and amplifications. An inser-
tion is predicted at a genomic location with a marked
decrease in read depth, which occurs when individual
sequencing reads fail to span that location. An amplifica-
tion is predicted at genomic intervals containing a con-
sistent read depth of more than 1.5-times the
background read depth. All mutations are described in
Additional file 1: Table S1. To reduce the possibility of
overlooking some genomic mutations, the sequence data
were also analyzed with FreeBayes, a powerful variant-
detector package [26]. No additional mutations were
identified using this second method.

Results
Comparison of FBR5 to the ancestral K-12 strain
Ethanol inhibition is a major limitation to the fermenta-
tive ethanol yield (cf. [6, 7, 9]). Previously described E.
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coli biocatalysts, such as the KO11 strain, have been
reported as having an ethanol minimal inhibitory con-
centration (MIC) of roughly 4.3% v/v [16]. We have ob-
served MIC values for the K-12 strains MG1655 and
BW25113 at or above 5% v/v (data not shown). Because
K-12 is ancestral to FBR5, this suggested that FBR5 may
have comparable ethanol tolerance. However, this was
not the case. In the presence of 16% (v/v) ethanol, FBR5
lost viability more rapidly than MG1655, exhibiting on
average approximately 100-fold decreased viability at the
end of a two-hour exposure (Fig. 1). In addition, MIC
experiments demonstrated that FBR5 has an ethanol
MIC below 4.5% v/v (Fig. 2), lower than the MIC of
K-12 strains.
To understand the genetic changes that may underpin

this difference in ethanol tolerance, we performed
whole-genome Illumina sequencing of FBR5 and com-
pared the genome sequence to that of the MG1655 ref-
erence genome [22]. All sequence differences are
presented in Table 2. As expected from the history of
the construction of FBR5 [27], we found that the strain
carries an insertion in ldhA, as well as a 2.5 kb deletion
that extends from pflB to the adjacent focA and ycaO
genes. It is worth noting that ldhA has been identified
previously as a gene that is upregulated in response to
ethanol stress [28]. There are also point mutations in
FBR5 at gatY and rpoS, two genes which have been im-
plicated previously in alcohol tolerance and stress re-
sponse [28–30]. FBR5 also carries an insertion in gcvB,
encoding a small non-coding RNA that regulates genes
involved in amino acid and oligopeptide transport

[31–33]. One of these genes, oppA, encodes a peri-
plasmic protein that is important for acquiring nutri-
ent peptides and recycling peptide components of the
cell wall [34, 35] and has been observed to be down
regulated during the ethanol stress response [28]. A
second gcvB-regulated gene, dppA, encodes a periplas-
mic dipeptide transport protein [36]. Although dppA
has not been previously implicated in the ethanol
stress response, a substantial number of other dpp
genes have been observed to be downregulated in re-
sponse to ethanol [28]. It is plausible that mutations
in the genes highlighted above contribute to the dif-
ferences in ethanol tolerance between MG1655 and
FBR5.

Isolation of ethanol-tolerant FBR5 mutants
Fermentation of corn fiber by FBR5 has a maximum
yield of roughly 4% v/v [3], a value that is similar to the
ethanol MIC that we have observed for FBR5 (Fig. 2).
Thus, the development of ethanol-tolerant derivatives of
FBR5 may have the potential to improve ethanol yield
from corn fiber feedstock. To obtain such strains, suc-
cessive alcohol isolation challenges were carried out on
twenty independent cultures of FBR5 as described in the
Methods. The alcohol concentrations used in our en-
richment strategy were sub-lethal, and therefore the mu-
tation rate for the appearance of ethanol tolerance could
not be calculated. The 20 mutant strains resulting from
this procedure were divided into two groups: ANA-ANJ
for those isolated anaerobically (i.e., within pour plates)
and ARK-ART for those isolated aerobically (i.e., on the
surface of solid medium).
MIC experiments were used to assay differences in

ethanol tolerance between the mutants and FBR5
(Fig. 2). Growth for all strains was inhibited by 9%
(v/v) ethanol. At 4.5% (v/v) ethanol, growth was
inhibited in many but not all mutants. Mutant strains
were considered to exhibit a high MIC phenotype if,
after 18 h of static incubation in 4.5% ethanol, the
culture achieved an OD600 of 0.1 or more. Strains un-
able to meet this threshold were considered to have a
low MIC. Nearly all of the strains in the AR group
displayed a high MIC phenotype while most AN
strains did not (Fig. 2). All strains surpassed an
OD600 of 0.1 in ethanol concentrations lower than 2.
25% (v/v) (data not shown).

Inner membrane permeability assays
Previous studies have shown that ethanol exposure re-
sults in significant membrane permeability issues for mi-
croorganisms [37–39]. For E. coli K-12 and MG1655, it
has been reported that the ratios of unsaturated and sat-
urated lipids in the membrane do not experience large
shifts in the presence of ethanol, and so the membrane

Fig. 1 Survival curve data demonstrating that E. coli FBR5 has lower
ethanol tolerance than its MG1655 ancestor. E. coli strains MG1655
and FBR5 were grown for 120 min in LB containing 16.5% (v/v)
ethanol, and viable cell counts were conducted at specific time
points during that incubation period. Each of the data points are the
average of three to five independent trials. The error bars represent
the Standard Error of the Mean (SEM)
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fluidity increases as a result of ethanol exposure [13].
Therefore, changes in membrane fluidity and/or lipid
constituents may in principle confer increased ethanol
tolerance. We examined the effects of ethanol on both
membrane permeability and membrane lipid compos-
ition in our mutant strains to determine the extent to
which changes in membrane biology play a role in their
phenotypes.
To determine whether the ethanol-tolerant strains

have altered permeability phenotypes, we tested the abil-
ity of the substrate ONPG to diffuse across the cell mem-
brane and be catalyzed by intracellular β-Galactosidase
into a colored product (ONP) [19]. The rate of ONP pro-
duction was assumed to be correlated with membrane
permeability, as demonstrated previously [17]. As ex-
pected, ONP production is low in FBR5 at 30 °C (Fig. 3),
indicating that membrane permeability is low under nor-
mal conditions. Some strains displayed increased ONP
production at 30 °C as compared to FBR5, suggesting an
increase in permeability. The 30 °C permeability data was
used to sort the mutant collection as presented in Table 3.
The mutants categorized as “High Permeability” exhibit
greater permeability than FBR5, and strains with perme-
ability similar to that of FBR5 were denoted as “Low Per-
meability” strains. Table 3 also shows that High
Permeability strains consist only of mutants from the AR
group, and no High Permeability strains exhibited a low
MIC. Although most of the Low Permeability strains

displayed a low MIC phenotype, there were several that
showed a high MIC phenotype.
To assess how each strain adapts to environmental

stressors that are known to modulate membrane perme-
ability, we measured ONP production by the cells fol-
lowing temperature shifts (30 °C to 37 °C) and the
addition of 4% ethanol. FBR5 and the mutant derivatives
exhibited varying changes in membrane permeability
after exposure to high temperature or to ethanol. Either
increasing the temperature or adding ethanol elicited an
increase in permeability of roughly similar magnitude
(Fig. 3). Control experiments showed no significant dif-
ference in β-galactosidase activity at 37 °C indicating the
observed changes in ONPG conversion rates are gov-
erned primarily by membrane permeability (results not
shown). To illustrate the relative phenotypic effect of the
temperature and ethanol variables on each strain in our
collection, ratios were calculated from the ONPG con-
version rates shown in Fig. 3, and the ratios for each
strain were then compared to one another in the plots
shown in Fig. 4. For example, to determine whether the
addition of ethanol at 30 °C resulted in greater relative
effects as a 30 °C to 37 °C temperature shift, the ratio of
ONPG conversion for each strain at 30 °C with and
without ethanol were calculated as shown in Eq. 1 (see
Methods) and plotted on the x axis, and the ratio for
each strain at 37 °C and 30 °C were calculated as shown
in Eq. 2 (see Methods) and plotted on the y axis.

Fig. 2 MIC experiments were conducted using serial dilutions to demonstrate acquired ethanol tolerance. Mutants were considered to have a high
MIC if they were capable of showing growth above an OD of 0.1 at 600 nm at 4.5% EtOH. Strains unable to grown to above an OD of 0.1 at 600 nm
at 4.5% EtOH were determined to have a low MIC. All strains, FBR5 and the 20 isolated mutants, grew to an OD under 0.1 in 9% EtOH and to an OD of
≥0.1 in 2.25% EtOH (results not shown). Data shown represents the results from at least three independent trials. The error bars represent one standard
deviation above and below the mean of the data. Mutant strains are presented in the order of their MIC phenotypes and 30 °C ONPG permeability
(see also Fig. 3 and Table 3). Blue columns represent data from strains categorized as “High MIC” strains and red columns represent data from strains
categorized as “Low MIC” strains
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Table 2 Observed mutational differences between E. coli strains FBR5 and MG1655a

Function Gene Mutation Description Notes

Ethanol pathway ldhA insertion ca. T152 D-lactate dehydrogenase b,c

pflB 5′ del up to S397 Pyruvate formate lyase b

Cellular respiration dcuS T198I Histidine protein kinase; regulates anaerobic fumarate metabolism in
response to extracellular fumarate concentrations

Cell wall mltA S268G Transglycosylation of the muramic acid residue

Membrane transport focA del Membrane protein; formate export b

gcvB insertion ~ nt
2,940,787

sRNA that represses oppA, dppA, gltI and livJ d

Metabolic functions gatY insertion ca. E149 Encodes tagatose-bisphosphate aldolase c

Protein synthesis ycaO 3′ del starting at
A565

Ribosomal protein S12 methylthiotransferase accessory factor

Transcription rpoA L300F RNA polymerase alpha subunit

rpoS Q33stop RNA polymerase sigma subunit e,f

Pseudogenes intQ F261 L

Unknown function ylbE E39E Domain of unknown function 1116 family member; induced by NO

yphD possible insertion ~
V236

ABC transporter of unknown function

Insertion sequences, transposons,
and repetitive elements

RIP321 CG insertion at nt
4,294,403

Repetitive element

Mutations outside of known genes possible insertion ~
nt 2,985,196

between yqeG (putative hydroxy/aromatic amino acid permease) and yqeH
(predicted LuxR family transcriptional regulator)

C→ T at nt
3,957,957

between ppiC (peptidylprolyl-cis-trans isomerase; protein folding) and yifO
(hypothetical conserved protein)

aGenes previously implicated in ethanol tolerance are in boldface type. Abbreviations: del deletion, fs frameshift, nt nucleotide
bFBR5 carries disruptions of these genes as a consequence of its derivation from E. coli strain NZN111 [27]
cPreviously implicated in ethanol stress response in [28]
dOppA and several dpp genes (although not dppA) have been previously implicated in ethanol stress response in [28]
ePreviously implicated in ethanol tolerance in [29]
fPreviously implicated in alcohol tolerance in [30]

Fig. 3 Average pmol/min conversion of ONPG was measured to determine membrane permeability of the parental FBR5 and 20 isolated mutant
strains in the absence and presence of 4% ethanol at 30 °C and 37 °C. Data shown represents the results from at least three independent trials.
The error bars represent one standard deviation above and below the mean of the data. Mutant strains are presented in the order of their MIC
phenotypes (see Fig. 2) and 30 °C ONPG permeability; the brackets underneath the x axis correspond to the phenotype categories presented in
Table 3. For each of the mutant strains, t-tests were performed to compare the results with those of FBR5 grown under the same
conditions. Mutant results that are significantly different from FBR5 are indicated as a red dot (P < 0.05) or red asterisk (P < 0.01)
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In the resulting plot, shown in Fig. 4a, most of the
strains cluster close to the midpoint line, indicating that
the permeability shifts in response to ethanol are com-
parable to those associated with a shift in temperature.
The majority of the mutants are situated on the plot
closer to the origin than FBR5, indicating that those
strains experience less pronounced changes in mem-
brane permeability in response to environmental stimuli
than the original FBR5 parent. Of particular note are the
High Permeability mutants in that they have a constitu-
tive increase in membrane permeability relative to FBR5
but are less responsive to environmental stimuli than
FBR5.
As one might expect, the membrane permeability re-

sponses of the Low Permeability/Low MIC strains over-
lap with those of FBR5 (Fig. 4a). However, the data from
this group of mutants are not clustered as tightly as the
High Permeability strains. Thus, even though these
strains do not show robust differences from FBR5 in the
MIC assay, a number of them do exhibit differences in
the membrane permeability assays. Finally, we note that
although data from several of the Low Permeability/High
MIC strains are similar, the strain ARR was found to be
an extreme outlier with much greater permeability plas-
ticity than any other strain in the collection.
To test whether the effects on membrane perme-

ability induced by temperature or the addition of
ethanol are additive, the relative effects of changing
both variables were plotted against the addition of
ethanol only (Fig. 4b) and against shifting the temperature
only (Fig. 4c). Both of these comparisons resulted in
graphs remarkably similar to each other and to Fig. 4a,
suggesting that the variables of temperature and ethanol
do not exert additive effects on membrane permeability.
Consistent with this conclusion is the observation that
adding ethanol to a 37 °C culture results in very little
change in permeability, as does shifting a culture in etha-
nol from 30 °C to 37 °C. This is shown in Fig 4d and e, re-
spectively, by the clustering of all strains near the y axis.

Lipid profiling by GC-MS
In an effort to identify the underlying cause of differen-
tial permeability profiles, the lipid acyl chain compos-
ition of the strains was analyzed. As described in the
Methods, lipids were extracted from cultures of E.coli
grown under different temperature and ethanol condi-
tions. These lipids were modified to form fatty acid me-
thyl esters and subsequently analyzed by GC-MS. This
analysis was non-quantitative, but simply used as a sur-
vey to identify any gross changes in the appearance or
disappearance of membrane lipid constituents. The
results of these assays for FBR5, ARR, and ARS strains
are outlined in Table 4. In general, there were no major
changes in the patterns of lipid acyl chains identified be-
tween strains. The major lipid acyl chains that were pre-
viously identified as present in the E.coli lipid membrane
(both inner and outer membranes) [40–43] were found
in all three strains, with some variation caused by
growth temperature (30 °C vs. 37 °C) and the presence
or absence of 4% EtOH in the growth media. Additional
mutants from the collection, including strains from the
High Permeability class and strains from the AN group,
were analyzed and all of them yielded similar results
(data not shown). These results suggest that the altered
permeability exhibited by the mutant strains is mediated
by a mechanism that does not involve changes in acyl
chain constituents.

Genomic sequence analysis of the mutant collection
To identify the genetic causes of altered membrane per-
meability and ethanol tolerance, the genomic sequences
of all twenty mutants were obtained and compared to
the genome of the parental FBR5 strain (Table 5). Each
of the mutant strains contained only a small number of
sequence changes (average of 1.7 mutations per strain)
compared to FBR5. The maximum number of changes
observed in a single strain was four (ANE, ANF, ANJ,
ARN) and several strains (ANB, ANH, ARR) had no ob-
served nucleotide changes (even when testing by two

Table 3 Categorization of mutants based on 30 °C permeability and ethanol MIC

Parent Strain
(Control)

High Permeability with High
MIC Phenotype

Low Permeability with High
MIC Phenotype

Low Permeability with High MIC
Phenotype (Outlier)a

Low Permeability with Low
MIC Phenotype

FBR5 ARL ANG ARR ANA

ARM ANJ ANB

ARN ARK ANC

ARO ARS AND

ARP ANE

ART ANF

ANH

ANI

ARQ
aSee text and Fig. 4

Lupino et al. BMC Microbiology  (2018) 18:36 Page 8 of 17



methods, as described in Methods). Of the latter group,
three strains were categorized into the Low Permeabil-
ity/Low MIC phenotype group, a group of strains with
phenotypes very similar to FBR5. ARR, also in the latter
group, was also devoid of mutations, even though ARR

exhibits a high MIC phenotype and the greatest plasti-
city in membrane permeability. It is possible that ARR
contains epigenetic changes that result in these extreme
phenotypes. The observation that strains ANG, ANI,
and ARO apparently have the same genomic sequence

Fig. 4 Comparisons of membrane permeability responses to environmental challenges. Symbols correspond to groups in Table 3. Ratios were
calculated by comparing the average rate of uptake seen in Fig. 3 for an individual strain at the conditions indicated on the axis. Error bars are
omitted for clarity. Solid black line indicates a slope of 1.0, thus representing no relative difference between the two environmental alterations
indicated on the two axes. a Membrane permeability increase induced by ethanol exposure compared to the permeability induced by shifting
culture temperature, b Permeability increase induced by temperature compared to the increase that results from the addition of ethanol and a
temperature shift, c Permeability increase induced by ethanol exposure at 30 °C compared to the increase that results from the addition of
ethanol and a temperature shift, d Effect of ethanol addition after a temperature shift and e Effect of temperature shift after ethanol exposure
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but belong to different phenotype categories is also sug-
gestive that epigenetic mechanisms may be at work in at
least some of the mutants in the collection. Another
possibility is that undetected extrachromosomal
sequences participate in these phenotypes. The genomic
sequences of two strains, ANE and ANF, appear identi-
cal, suggesting that those two strains were not isolated
independently. Supporting this idea, the two strains
show similar MIC (Fig. 2) and permeability (Fig. 3)
phenotypes.
In accordance with the GC-MS data, there were no

changes in genes that directly control the synthesis or
degradation of fatty acyl chains of inner membrane
lipids. However, there were some gene changes in the
strain collection that might affect cell permeability in
other ways. For example, the High Permeability strain
ARP contains a mutation in ybbP, an uncharacterized
gene that encodes a member of the ABC transporter
family [44]. Strain ARN carries a mutation in a putative
magnesium transporter, yhiD [45] The ANC and AND
strains carry a mutation in rybB, an sRNA gene that reg-
ulates the expression of outer membrane porin genes
(reviewed in ref. [46, 47]). That said, a substantial num-
ber of strains in the collection do not carry any muta-
tions in genes that are known to affect membrane
permeability even though their permeability phenotypes
differ significantly from those of FBR5 (Fig. 3). Examples
include strains ARL, ARM, ARO, and ART at 30 °C
without ethanol; strains ARS and ARR at 30 °C in the
presence of ethanol; and strains ANA and ARK at 37 °C
without ethanol.
Most striking was the observation that four strains

(ANG, ANI, ARN, and ARO) carry the same C→A mu-
tation in fecA, a gene that encodes a ferric citrate im-
porter. Given that each of the 19 independent strains
had an average number of 1.53 mutations, the probabil-
ity of four strains randomly acquiring the same nucleo-
tide change is 5.7 × 10− 25. For three of these strains, this

was the sole mutation observed, further suggesting that
this non-random mutation is linked to the altered etha-
nol and membrane phenotypes. Surprisingly, this DNA
change results in a V244 V silent mutation, showing that
there is no change in protein sequence. It is possible that
this mutation affects translation or degradation of the
transcript and thus protein levels.

Importance of the fecA locus for survival in ethanol
To demonstrate that the fecA locus plays a causal role in
ethanol tolerance, survival assays were carried out on
BW25113 and its ΔfecA derivative BW25113 ΔJW4251.
As shown in Fig. 5a, the fecA deletion strain exhibited
approximately 10-fold greater survival during a 60 min
challenge with 16% (v/v) ethanol. This result indicates
that a loss of FecA activity increases the ethanol toler-
ance of Escherichia coli.
The effect of fecA over-expression was also examined

using the plasmid pCA24N + JW4251, a construct bear-
ing an isopropyl β-D-1-thiogalactopyranoside (IPTG)-in-
ducible promoter fused to the fecA open reading frame.
The pCA24N plasmid alone was used as a control.
Fig. 5b shows the survival of BW25113 cells carrying
these plasmids in the presence of IPTG and 16.5% (v/
v) ethanol. The plasmid-only strain displayed signifi-
cantly lower survival after an hour-long ethanol ex-
posure as compared to the fecA over-expression
strain. Thus, either a gain or a loss of fecA expression
appears to improve the survival of E. coli in the pres-
ence of ethanol.

Discussion
FBR5 has greater ethanol sensitivity than the K-12
ancestor
We demonstrate here that the ethanologenic E. coli
strain FBR5 is significantly more sensitive to ethanol
than its ancestral K-12 strain (Fig. 1). This is somewhat
unexpected as one might anticipate that FBR5 would

Table 4 Comparison of acyl chains detected in strains grown under different conditionsa

Acyl
Chainb

30 °C without Ethanol 30 °C with 4% v/v Ethanol 37 °C without Ethanol 37 °C with 4% v/v Ethanol

FBR5 ARR ARS FBR5 ARR ARS FBR5 ARR ARS FBR5 ARR ARS

C12:0 + + + + + + + + + + + +

C14:0 + + + + + + + + + + + +

C14:1Δ7 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

C15:0 + + + + + + + + + + + +

C16:0 + n.d. n.d. + + n.d. + + n.d. n.d. + n.d.

C16:1Δ9 + + n.d. + + n.d. + + + + + n.d.

C18:0 + + n.d. + + n.d. + + n.d. n.d. + +

C18:1 Δ9 + + + + + + + + n.d. + + +

C18:1 Δ11 n.d. n.d. + n.d. n.d. n.d. + n.d. + n.d. n.d. n.d.
aAcyl chains compared to (ref. [40]). Abbreviations: +, lipid detected; n.d., not detected
bAcyl chains were isolated and converted to fatty acid methyl esters for analysis; see Methods
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have greater ethanol tolerance than E. coli K-12. Because
ethanol fermentation is the only anaerobic metabolism
available to FBR5, it would not be unreasonable to pre-
dict that normal culturing and passages of FBR5 in the
laboratory would result in frequent exposure to ethanol,
and thus also create selective pressure for the ability to
grow in the presence of ethanol. Nevertheless, the fact
remains that somewhere during its history the FBR5
lineage acquired ethanol sensitivity, a finding that is im-
portant with respect to the use of FBR5 as a ethanolo-
genic biocatalyst.
The genome sequence of FBR5 includes mutations in

several different loci that are known to experience sub-
stantial changes in expression in response to ethanol

exposure or that have been implicated in ethanol toler-
ance (Table 2). Presumably these changes are the under-
lying cause for the ethanol sensitive phenotype of FBR5.
Interestingly, FBR5 was reported as a xylose-utilizing
mutant of NZN111 [4], but we did not observe any mu-
tations in loci that are directly related to the metabolism
of five carbon sugars. Mutations were observed in genes
for a putative symport permease and two putative ABC
transporters, however (Table 2). If one or more of those
transporters is capable of moving five carbon sugars,
then it is possible that the mechanism underlying the
increased utilization of xylose by FBR5 is a change in the
sugar transport activities rather than metabolic reactions
inside the cell.

Phenotypic characterization of ethanol tolerant mutants
of FBR5
MIC experiments conducted during this study have
shown FBR5 has an MIC below 4.5% v/v (Fig. 2), a value
that is not dissimilar to the reported ethanol yield from
FBR5 fermentation of corn fiber [3]. We report here the
isolation of a collection of twenty FBR5 derivatives via a
selective enrichment protocol, many of which have MIC
values greater than 4.5% v/v (Fig. 2).
Alcohols have been shown to contribute to membrane

leakage and resultant disruption of intracellular ion con-
centration which can lead directly to cell death [37–39].
This is consistent with in vitro and in silico results
showing that ethanol disrupts acyl chain packing at the
interior of the bilayer promoting the liquid disordered
phase and can result in the formation of non-bilayer
phases or interdigitated phases [48–52]. In addition to
physical effects on the molecular behavior of membrane
components, alterations in temperature can affect the
rate of protein synthesis and other biochemical reactions
key to survival and homeostasis [53]. It has been sug-
gested that due to such effects, cellular maintenance of
the membrane fluidity and permeability is a dynamic
and tightly controlled process. It is known, for example,
that environmental changes can induce alterations in
membrane sterol content, in the ratio of desaturated to
saturated acyl chains, and in the utilization of longer acyl
chains in membrane lipids in various microorganisms
[12, 54, 55]. E. coli is known to respond to temperature
by regulating membrane fluidity through lengthening
acyl chains and modulating the abundance of specific
lipid species in the bilayer (cf. [55, 56]). E. coli has also
been observed to alter its membrane constituents in
response to ethanol (cf. [12, 37]), particularly in the
presence of high concentrations of ethanol [48]. On the
other hand, it has also been reported that the organism
does not substantially alter its ratio of saturated and un-
saturated lipids during ethanol exposure and this

Fig. 5 Survival curve data demonstrating the effect of fecA mutations
on the ethanol tolerance phenotype of E. coli. Panel (a) depicts the
performance of strains BW25113 and BW25113 ΔJW4251 (a fecA
deletion strain) and Panel (b) depicts the performance of strains
bMH33 and bMH34. Strains were grown for 60 min in 16.5% (v/v)
ethanol, and viable cell counts were conducted at specific time points
during that incubation period. In Panel (b), both cultures were also
supplemented with 0.1 mM IPTG. For both panels, the data shown is
the average of three technical replicates. Each of the plotted data
points are the average of three independent trials. Error bars represent
observed maximum and minimum values from all trials
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apparently allows its membrane fluidity to increase as a
consequence [13].
For these reasons, it was important to examine the

membrane permeability for each of the mutants under a
variety of environmental conditions. Initial experiments
measured indirectly ONPG diffusion across the inner
membrane at 30 °C in the absence of ethanol, and these
results (Fig. 3), in conjunction with MIC data (Fig. 2),
facilitated categorization of the mutants in the collection
(Table 3). Mutants with membrane permeability greater
than FBR5, all of which also have an ethanol MIC
greater than FBR5, were designated as High Permeability
mutants. Mutants with membrane permeability compar-
able to FBR5 were denoted as Low Permeability mu-
tants. Some Low Permeability mutants have MIC
phenotypes greater than FBR5, and some do not.
As a group, the High Permeability/High MIC mutants

show relatively little change in their membrane perme-
ability in response to increases in temperature or ethanol
concentration (Fig. 4). In other words, these strains
maintain relatively high membrane permeability under
all examined conditions and display considerably less
dynamism in their membrane permeability than FBR5.
Conversely, a number of Low Permeability/High MIC
mutants show substantial changes in their membrane
permeability phenotype in response to the environment
(Fig. 4). For many of these strains, the magnitude of
their phenotypic responses are roughly similar to that of
FBR5. Thus, these strains have acquired higher ethanol
tolerance than FBR5 but have maintained membrane
permeability phenotypes that are similar to the parent
strain. One mutant from the Low Permeability/High
MIC group, ARR, is noteworthy in that it exhibits mark-
edly greater changes in permeability than any other
strain in the collection. Presumably strain ARR repre-
sents an ethanol tolerance mechanism that is somehow
different from the rest of the Low Permeability/High
MIC strains. Interestingly, the additive effects both etha-
nol exposure and temperature increase are apparently
minimal in terms of the overall membrane permeability
in all of our strains. Because the physiological responses
of the membrane to temperature or ethanol do not
appear to be additive, they may represent a threshold of
adaptive response to environmental pressures.
A number of the Low Permeability/Low MIC strains

appear to behave very similarly to FBR5 in the assays
reported here. The abundance of low MIC strains in the
collection likely means that the enrichment regimen
used to isolate the mutant collection was not overly
stringent, thus allowing strains similar to FBR5 to persist
to the endpoint of the entire procedure. However, a
number of the low MIC isolates do show substantially
reduced plasticity in their membrane permeability rela-
tive to FBR5 (Fig. 4), thus confirming that they are

physiologically distinct from FBR5. Consequently it may
be that these strains may exhibit greater ethanol toler-
ance than FBR5 under conditions that are more similar
to those of the enrichment protocol rather than the MIC
assays, although this is currently untested.
To further investigate the permeability shifts, we per-

formed a series of qualitative analyses on membrane
lipid composition of the strains. We have examined the
lipid composition of a number of representative strains
from our collection and detected no gross changes in
membrane constituents relative to FBR5 in response to a
temperature shift or to a 4% v/v ethanol challenge
(Table 4). Thus, ethanol tolerance in all of our high
MIC strains likely result from a mechanism other
than membrane lipid metabolism, a result that is con-
cordant with the observations reported for K-12 and
MG1655 by Huffer et al. [13]. In addition, the
increased membrane permeability of the High Perme-
ability strains and their ability to maintain that per-
meability constitutively must also arise via a mechanism
other than membrane lipid metabolism.

Mutational changes in the ethanol tolerant strain
collection
Beyond membrane lipid metabolism, published literature
regarding ethanol tolerant E. coli and other ethanolo-
genic microbes suggests that, in principle, alterations in
sugar transport, increased TCA activity, transcriptional
regulation of electron transport components or fermen-
tation enzymes, altered expression of transcriptional reg-
ulators such as FNR, increased peptidoglycan synthesis,
elevated biosynthesis or transport of various amino
acids, increased betaine production, and uptake or reten-
tion of metals such as iron or zinc can contribute to
ethanol tolerance (cf. [28, 29, 57–59]) reviewed in [60].
Indeed, changes to genes in a number of those categor-
ies are represented in our collection of ethanol tolerant
strains. Consistent with the GC-MS results, we observed
no mutations in known lipid biosynthetic genes or in
known regulators of membrane lipid and porin genes
such as invR, micA, omrA/B, or rseX (reviewed in [46,
47, 61]). Only two strains (ANC, AND) carry a change
in rybB, a regulator of outer membrane porin genes
(reviewed in [46, 47]).
None of the mutants display extensive genetic changes.

This may be the consequence of using sub-lethal con-
centrations of alcohol during the mutant isolation pro-
cedure. Remarkably, some members of the mutant
collection do not have detectable nucleotide changes, in-
cluding the Low Permeability/High MIC outlier ARR. In
addition, three strains are apparently genetically identical
(ARO, ANG, ANI) but their performance in our experi-
ments merited placement into separate phenotypic cat-
egories. Taken together, these observations suggest that
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epigenetic mechanisms may be at work in at least some
members of the collection regardless of the number of
detected nucleotide changes. We note that another study
[62] has also suggested that epigenetic mechanisms can
contribute to ethanol tolerance in E. coli.

Evidence that fecA can influence ethanol tolerance
The most surprising observation from the genomic
data of the mutant collection was that four of the
strains independently acquired an identical single nu-
cleotide change in the fecA gene (Table 5). FecA is an
outer membrane protein that is required for iron ac-
quisition via ferric citrate uptake [63]. Survival assays
demonstrated that either the deletion (Fig. 5a) or the
over-expression (Fig. 5b) of fecA in BW25113 im-
proves ethanol tolerance. Although changes in fecA
transcription have been implicated in the E. coli etha-
nol stress response of E. coli [28], to the best of our
knowledge, this is the first direct phenotypic demon-
stration of an association between the fecA genotype
and ethanol tolerance.
Importantly, the recurring mutation in fecA is transla-

tionally silent, and the predicted amino acid structure of
the mutant FecA protein is not expected to be different
from that of the parental FBR5 strain. It is possible that
the location of the silent mutation observed in our mu-
tants may be involved in some type of RNA-RNA inter-
action that serves to regulate fecA expression. If this is
the case, then the observation that same nucleotide
change appeared in four independent lineages would be
suggestive that this particular nucleotide plays a critical
role in the hypothesized RNA base pairing. In E. coli,
iron uptake and metabolism is regulated in part by a
small RNA molecule RyhB [64, 65] and it has been
shown that fecA is weakly regulated by RyhB [65].
Whether the RNA-mediated regulation that we propose
as an explanation for the importance of the silent fecA
mutation described here is related to RyhB activity or is
a consequence of some other molecule remains to be
seen.
The apparent benefit to cell survival when fecA is

deleted or over-expressed makes it difficult to predict
whether the observed silent mutation confers an in-
crease or decrease in FecA synthesis. In addition, an im-
portant caveat to the experiments reported here is that
the kan insertion marker in strain BW25113 Δ JW4251
is likely to be polar and alter expression of the entire fec
operon. In contrast, the pCA24N + JW4251 plasmid ex-
presses the fecA open reading frame rather than the en-
tire fec operon. Nevertheless, our results collectively
suggest that the levels of expression from the fecA locus
are important to the E. coli cell when it is exposed to
ethanol.

Conclusion
We describe here the characterization of a collection of
ethanol tolerant strains derived from the ethanologenic
Escherichia coli strain FBR5. Many of the strains in the
collection have membrane permeability alterations, but
GC-MS revealed no qualitative changes in the acyl chain
components of their membrane lipids. None of the
strains displayed mutations in genes known to control
membrane lipid synthesis, and in fact a few strains car-
ried no mutations at all. It was also observed that four
of the strains acquired an identical C→A (V244V)
silent mutation in the ferric citrate transporter gene
fecA. We present the first direct phenotypic evidence
that changes in the expression of fecA can influence
ethanol tolerance. We suggest that the recurring silent
mutation might alter RNA-mediated regulation of fecA
expression.
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