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Abstract

Background: Several experimental animal models have been used to study the pathogenesis of dengue disease;
however, most of the studies used laboratory-adapted viruses, which lack the virulence of viruses circulating in
humans. The aim of this study was to analyze the ability of clinical Dengue virus (DENV) isolates (D2/BR/RP/RMB/09
and D3/BR/SL3/02) to infect immunocompetent C57BL/6 mice.

Methods: Two strategies of intraperitoneal infection, which were based on the concept of the antibody dependent
enhancement phenomenon, were used. In one strategy, the animals were inoculated with macrophages infected in
vitro with dengue viruses, which were incubated with enhancing antibodies, and in the other strategy, the animals
were inoculated with a complex of enhancing antibodies and dengue viruses.

Results: The D3/BR/SL3/08 isolate showed a higher ability of infection (virus RNA was more frequently detected in
the serum and in several organs) in the experimental model compared to both the D2/BR/RP/RMB/2009 isolate and
a laboratory adapted DENV-1 strain (Mochizuki strain), regardless of the infection strategy used. The main features of
the D3/BR/SL3/08 isolate were its neuroinvasiveness and the induction of an extended period of viremia. Enhancing
antibodies did not influence on the infection of animals when macrophages were used, but the level of viremia
was increased when they were used as a complex with a D3/BR/SL3/02 isolate.

Discussion: We showed that DENV isolates could infect immunocompetent C57BL/6 mice, which have has been
previously used to study some aspect of dengue disease when infected with laboratory adapted strains. DENV
genome was detected in the same organs found in humans when autopsy and biopsy samples were analyzed,
showing that C57BL/6 mice reproduce some aspects of the DENV tropism observed in humans. The main
difference observed between the D3/BR/SL3/02 and D2/BR/RP/RMB/2009 clinical isolates was the neuroinvasive
ability of the first one. Neuroinvasiveness has been described in some DENV infected cases and is common for
other members of the Flavivirus genus.

Conclusions: These results suggest that C57BL/6 mice can be used as an experimental model to evaluate virulence
differences among DENV clinical isolates.
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Background
Dengue is the most important illness caused by arboviruses
(arthropod born viruses) in humans. Its incidence has in-
creased dramatically around the world in recent decades.
Over 2.5 billion people, more than 40 % of the world’s popula-
tion, are now at risk of dengue infection. The World Health
Organization (WHO) currently estimates there may be 50–
100 million dengue infections worldwide every year [1]. The
Aedes aegyptimosquito is the primary vector of dengue; how-
ever, other mosquitoes, such as the Aedes albopictus and Ae-
des africanus, are also important vectors in Asia and Africa,
respectively. Dengue virus (DENV), a member of the Flavivi-
rus genus and the Flaviviridae family, has a positive-sense,
single-stranded RNA genome of approximately 11 kilobases
that is covered by an icosahedral capsid and a lipid envelope
[2]. Serological studies have classified the virus into four im-
munological related subtypes: DENV-1, DENV-2, DENV-3
and DENV-4 [3–5]. WHO expert consensus groups have
agreed that “dengue is one disease entity with different clinical
presentations and often with unpredictable clinical evolution
and outcome” [6]. Therefore, to facilitate the classification of
dengue cases, in 2009 the WHO proposed a classification of
dengue into levels of severity, dengue (with or without warn-
ing signs) and severe dengue, in place of the former dengue
fever (DF) and dengue hemorrhagic fever (DHF) classification
[6]. Themain symptoms of dengue include fever, retro-orbital
pain, headache, skin rash and bone andmuscle pain; themore
severe form is characterized by severe plasma leakage, severe
hemorrhage and/or severe organ impairment. Most patients
recover following a self-limiting, non-severe clinical course;
however, a small proportion progress to severe disease, mostly
characterized by plasma leakage. The pathogenesis of severe
disease remains unclear, and several factors appear to be in-
volved in the development of hemorrhagic manifestations
and vascular leak syndrome development. Epidemiological
studies have shown that a secondary infection with a different
virus subtype is highly associated with the severe form of the
disease [7]. However, few individuals develop the more severe
forms after a secondary infection in endemic regions. It is be-
lieved that host, environment and virus factors are involved in
the outcome of the disease. Several experimental animal
models have been used to study the pathogenesis of the dis-
ease [8]; however, most studies used laboratory adapted vi-
ruses, which lack the virulence of viruses that circulate in
humans. In this study, we demonstrated a differential ability of
infection of clinical DENV isolates in C57BL/6 mice, suggest-
ing that this experimental model can be used to study viru-
lence differences among clinical isolates.

Methods
Viruses
A laboratory-adapted DENV-1 (Mochizuki strain) and clin-
ical DENV-2 (D2/BR/RP/RMB/2009 isolate) [9] and DENV-
3 (D3/BR/SL3/02 isolate) isolates [10] were used in this

study. The viruses were propagated in C6/36 cells, which
were cultured in a flask containing Leibovitz’s L-15 medium
(Vitrocell, Campinas, Brazil) supplemented with 2 % fetal
bovine serum (FBS) (Gibco-BRL Life Technologies, Grand
Island, NY) and maintained at 28 °C for up to seven days.
The D2/BR/RP/RMB/2009 and D3/BR/SL3/02 clinical iso-
lates were passed in C6/36 cells culture three and five times,
respectively, to increase the viral titers. The supernatant was
aliquoted and stored at −70 °C until use. Viral titers were de-
termined with a plaque assay [11] and with a quantitative
real-time RT-PCR using a viral RNA transcribed in vitro to
construct an standard curve as described previously [12].

Ethics statement
Three-to-four-week-old immunocompetent C57BL/6 mice
and Swiss mice were obtained from the Central Animal
Facility at the University of Sao Paulo, Ribeirao Preto
branch. All animal experiments were performed according
to the guidelines of the Brazilian College of Animal Experi-
mentation and approved by the Ethical Committee on
Animal Experimentation at the Medical School of Ribeirao
Preto, University of Sao Paulo (CETEA/FMRP/123/2010).

Preparation of mice immune sera
Mice immune sera were prepared from DENV-1 (Mochizuki
strain)- and DENV-2- (D2/BR/RP/RMB/2009 isolate)-in-
fected Swiss mice using standard protocols [13]. Briefly, the
animals were intraperitoneally inoculated with 2.0x105 plaque
forming units (PFU) (~2.0x108 RNA copies/mL) of virus and
Freund’s complete adjuvant. Three other viral inoculations
were performed weekly using Freund’s incomplete adjuvant.
One week after the last virus inoculation, the animals were
anesthetized using a mixture of ketamine-xylazine for blood
collection [14]. The immune serumwas separated after blood
clotting by centrifugation and was stored at −80 °C until use.

Peritoneal macrophages preparation and infection
C57BL/6 mice were intraperitoneally injected with 1 mL of
phosphate buffer saline (PBS) containing 3 % thioglycolate
(Sigma-Aldrich, St Louis, MO, USA). Four days later, mice
peritoneum was rinsed with cold Leibovitz’s L-15 medium to
collect the peritoneal cells. Cells from different animals were
centrifuged for 10 min at 1000 g and then washed three times
with PBS. These cells were resuspended in Leibovitz’s L-15
medium supplemented with 10 % FSB and were added to 12-
well culture plates (TPP, Swiss) at a density of 2.0x106 cells per
well. Macrophages were allowed to adhere to the plate surface
for two hours at 37 °C, and then the non-adherent cells were
washed off with PBS. Leibovitz’s L-15 medium supplemented
with 10% FBSwas added to themacrophage cells, whichwere
further incubated at 37 °C for 24 h. Macrophages were in-
fected with a 0.1 multiplicity of infection (MOI) with the
Mochizuki strain, the D2/BR/RP/RMB/2009 isolate or the
D3/BR/SL3/02 isolate and were incubated at 37 °C for two
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days. Infection was confirmed by detection of viral RNA in
the cell culture supernatant with a quantitative real-time RT-
PCR, using a pair of primers ( 5′UTR-S: AGT TGT TAG
TCT ACG TGG ACC GA and 5′UTR-C: CGC GTT TCA
GC A TAT TGA AAG) to amplify a region of 120 base
pairs of the 5′ end of the viral RNA [12, 15].

Antibody-dependent enhancement (ADE) assay
The D3/BR/SL3/02 isolate (2.0x105 PFU, 2.0x109 RNA copies)
was incubated with several dilutions (1:10, 1:100, 1:1000,
1:2000, 1:5000, 1:10000, 1:100000) of DENV-1 immune serum,
naive serum or PBS for 1 h at 37 °C. The immune complexes
were used to infect the macrophages contained in a 12-well
plate, which was prepared as mentioned above. Three repli-
cates of macrophages were infected with each immune com-
plex. After 2 h, the cells were washed with PBS to remove
unbound immune complexes. Leibovitz’s L-15 medium sup-
plemented with 10 % FSB was added to the cells, which were
further incubated at 37 °C for twodays. TheADEenhancement
of macrophage infection was determined based on virus titer
quantification in the cell culture supernatant using a real-time
RT-PCR [12]. ADE assays for theD2/BR/RP/RMB/2009 isolate
and the Mochizuki strain were performed using DENV-1 and
DENV-2 immune sera, respectively.

Animal infections
C57BL/6mice were infected using two strategies. In one strat-
egy, the animals were infected by intraperitoneal (i.p.) inocula-
tion of 2.0x105 PFU of viruses (200 μL) that were previously
incubated for one hour with enhancing antibodies or PBS. In
the other strategy, the animals underwent i.p inoculation with
macrophages that were infected in vitrowith viruses that were
previously incubated for one hour with enhancing antibodies
or PBS. Animals inoculated with PBS and uninfected-
macrophages (sham-infected) were used as controls.

Blood and organ collection
Animals were anesthetized using a mixture of ketamine-
xylazine [14] at different times post-infection (p.i.) (n= 5 at each

time point). Blood was obtained from the retroorbital region
and collected in a tube containing sodium citrate (3.8 %) as an
anticoagulant. An aliquot of the blood was collected in a tube
without anticoagulant for viral load quantification in the serum.
Then, the animals underwent intracardiac perfusion with 15–
20 mL of a 0.9 % NaCl solution, followed by the removal of the
liver, brain, spleen and kidney. Thewhole organswere placed in
2 mL tubes containing 500 μL of PBS and were homogenized
with a tissue homogenizer (Ultra Stirrer, Biosystems, PR, Brazil).
The organ suspensions were centrifuged at 8000 g for 5 min,
and the supernatantswere used for viral load quantification.

Statistical analysis
Data are expressed as the means ± standard deviations
(SDs). Statistical significance was assessed by using one-
way ANOVA, followed by a Tukey multiple comparison
test. A p-value of less than 0.05 was considered significant.

Results
DENV infect C57BL/6 peritoneal macrophages
To determine the susceptibility of C57BL/6 macrophages to
infection by DENV, peritoneal macrophages were incubated
in vitro with laboratory-adapted (DENV-1, Mochizuki strain)
and clinical DENV isolates (DENV-2, D2/BR/RP/RMB/2009
and DENV-3, D3/BR/SL3/02). Cell infection was confirmed
by detection of viral RNA genome in the cell culture super-
natants with a real-time RT-PCR at 1, 24 and 48 h post in-
oculation (Fig. 1). The highest viral load in the cell culture
supernatants was observed at 48 h post inoculation.

Antibodies enhance infection of C57BL/6 peritoneal
macrophages
To investigate the effect of DENV-specific antibodies on
macrophage infection, an ADE assay was performed. The
D3/BR/SL3/02 isolate was incubated with several dilutions
of DENV-1 immune serum to induce the formation of
antibody/virus complexes. Then, these complexes were
used to infect C57BL/6 peritoneal macrophages for 48 h.
Figure 2 shows that several dilutions of the heterologous

Fig. 1 Susceptibility of C57BL/6 mice peritoneal macrophages to infection with DENV. Real-time RT-PCR for the detection and quantification of
the virus genome in the supernatant of the culture of C57BL/6 mice macrophages after 1, 24 and 48 h of infection with the Mochizuki strain, the
D3/BR/SL3/02 and the D2/BR/RP/RMB/2009 isolates
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immune serum enhanced macrophage infection, confirm-
ing the presence of antibodies in enhancing concentra-
tions in those dilutions. The highest viral titer in the cell
culture supernatants was observed when the virus was in-
cubated with a dilution of 1:5000 of DENV-1 immune
serum. ADE tests with the Mochizuki strain and the
D2/BR/RP/RMB/2009 isolate were performed using
DENV-2 and DENV-1 mice immune sera, respectively. In
these experiments, only the dilution (1:5000) that induced
the highest enhancement of D3/BR/SL3/02 infection on
macrophages was used. Figure 3 shows that heterologous
antibodies also enhanced the infection of macrophages
with the Mochizuki strain and the D2/BR/RP/RMB/2009
isolate.

Clinical DENV isolates infect C57BL/6 mice
To investigate the susceptibility of C57BL/6 mice to in-
fection with clinical DENV isolates, two strategies of
intraperitoneal infection were used. In one strategy, the
animals were inoculated with macrophages infected in vitro
with viruses that were previously incubated with enhancing
antibodies or PBS, and in the other strategy, the animals
were inoculated with viruses that were previously incubated
with enhancing antibodies or PBS.

Inoculation of animals with macrophages infected with
DENV
The clinical D3/BR/SL3/02 and D2/BR/RP/RMB/2009
isolates, and the laboratory-adapted Mochizuki strain were
incubated for 1 h with enhancing antibodies (1:5000) or
PBS as mentioned in the ADE assay, and then used to in-
fect the peritoneal macrophages in vitro. The infected cells
were inoculated via the i.p. route into C57BL/6 mice, and
infection of the animals was determined by virus genome
detection with a real-time-RT-PCR. The animals were
highly susceptible to infection with the D3/BR/SL3/02 iso-
late; which was detected in the blood and several organs
(Fig. 4a, and b). Detection of the virus genome in the brain
on the three analyzed days was the most substantial find-
ing in animals inoculated with macrophages infected with
the D3/BR/SL3/02 isolate, regardless of the use of enhan-
cing antibodies or not (Fig. 4a, and b). The spleen was the
only organ in which the D3/BR/SL3/02 genome was not
detected.
Mice were less susceptible to infection with the D2/

BR/RP/RMB/2009 isolate and the Mochizuki strain; the
virus genome was detected only in the brain and the
spleen, 7 and 16 days p.i., respectively (Fig. 4c), in the
animals inoculated with macrophages infected with the
D2/BR/RP/RMB/2009 isolate with enhancing antibodies;
in the brain and the spleen, 7 days p.i in the animals in-
oculated with macrophages infected with the Mochizuki

Fig. 2 Antibody-dependent enhancement (ADE) of infection of
C57BL/6 mice macrophages with DENV-3. The enhancement of
infection was evaluated by quantification of the viral titer in the
supernatant of the macrophage cultures 48 h post-infection with
the D3/BR/SL3/02 isolate, which was previously incubated with
different dilutions of DENV-1 immune serum (1:10, 1:100, 1:1000,
1:2000, 1:5000, 1:10000 and 1:100000). Data represent the mean
values ± SD. The results are representative of two similar and
independent experiments. ***p < 0.001 when the virus incubated
with DENV-1 immune serum was compared to the virus incubated
with PBS or naive serum

Fig. 3 Antibody-dependent enhancement (ADE) of infection of C57BL/6 mice macrophages with DENV-1 and DENV-2. The enhancement of
infection was evaluated by the quantification of the viral titer in the supernatant of the macrophage cultures 48 h post-infection with the
Mochizuki strain and the D2/BR/RP/RMB/2009 isolate, which were previously incubated with 1:5000 dilutions of DENV-2 and DENV-1 immune sera,
respectively. Data represent the mean values ± SD. The results are representative of two similar and independent experiments. ***p < 0.01 when
viruses incubated with heterologous immune sera were compared to viruses incubated with PBS
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strain with enhancing antibodies (Fig. 4e); and in the
kidney and liver, 7 and 16 days p.i, respectively, in the
animals inoculated with macrophages infected with the
Mochizuki strain without enhancing antibodies (Fig. 4f ).

Inoculation of animals with a complex DENV/enhancing
antibodies
The D3/BR/SL3/02 and D2/BR/RP/RMB/2009 isolates,
and the Mochizuki strain were incubated with enhancing
antibodies or PBS as mentioned in the ADE assay, and
then used to infect C57BL/6 mice via the i.p. route. The
susceptibility of the C57BL/6 mice to infection with

DENV was again confirmed by detection of virus genomes
in the serum and several organs (Fig. 5). Animals infected
with the D3/BR/SL3/02 isolate showed a longer period of
viremia (up to 7 days p.i.) than the animals infected with
the other viruses (Fig. 5a). In addition, enhancing anti-
bodies induced a higher level of viremia (Fig. 5a) and the
appearance of virus in the brain (Fig. 5c) of the D3/BR/
SL3/08-infected animals. Mice infected with the Mochi-
zuki strain showed viremia only on day 2 p.i., while mice
infected with D2/BR/RP/RMB/2009 did not show viremia.
The use of heterologous antibodies did not change greatly
the profile of virus detection in bloods and organs of

Fig. 4 Susceptibility of C57BL/6 mice to infection with DENV. The animals were inoculated with macrophages infected in vitro with D2/BR/RP/
RMB/2009 (n = 5) (a and b) and the D3/BR/SL3/02 (n = 5) (c and d) isolates, and Mochizuki strain (n = 5) (E and F), which were previously
incubated with heterologous antibodies (a, c and e) or PBS (b, d and f). The infection was confirmed by detection of the virus genome by
real-time RT-PCR in serum and organs. Data represent the mean values ± SD. The results are representative of two similar and
independent experiments
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Fig. 5 Susceptibility of C57BL/6 mice to infection with DENV. The animals were infected with D3/BR/SL3/02 (n = 5) (a, b and c) and D2/BR/RP/
RMB/2009 (n = 5) (a, d and e) isolates, and Mochizuki strain (n = 5) (a, f and g). The infection was confirmed by detection of the virus genome by
real-time RT-PCR in serum (a) and different organs (b-g). The animals were infected with D3/BR/SL3/02 and D2/BR/RP/RMB/2009 (n = 5) isolates,
and Mochizuki strain, which were incubated with PBS (b, d and f, respectively) or enhancing antibodies (c, e and g, respectively). Data represent
the mean values ± SD. The results are representative of two similar and independent experiments. *p < 0.05 when viruses incubated with
heterologous immune sera were compared to viruses incubated with PBS
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animals infected with D2/BR/RP/RMB/2009 isolate and
Mochizuki strain.

Discussion
The development of a suitable animal model for DENV
infection has been hampered by the low level or lack of
replication of DENV clinical isolates in wild-type mice
and the lack of clinical disease in non-human primates
[Review in [8]]. In this study, we showed that immuno-
competent C57BL/6 mice were susceptible to infection
with clinical Dengue virus isolates. This animal model
has been previously shown to be useful for the study of
hemorrhagic phenomena and endothelial damage after
infection with very high doses of DENV-2 (3.0x109 PFU
of DENV-2 strain 16681) [16–18]. In addition, C57BL/6
mice were used to study cytokine and chemokine pro-
duction after infection with a mouse-adapted DENV-2
(strain P23085) [18, 19]. We have also observed some
aspects of human disease, such as thrombocytopenia,
liver damage, and increases of IFNγ and TNFα cytokine
production when this animal model was infected with a
laboratory adapted DENV-1 (Mochizuki strain) [20].
Mosquitoes can intravascularly inoculate 104 and 106

PFU of West Nile virus per bite [21]; thus, it can be as-
sumed that similar doses of DENV is inoculated by the
Aedes species when feeding on humans. Therefore, inocu-
lation of 104 and 106 PFU of DENV in animal models can
mimic the dose of the virus inoculated with the mosquito
bite. However, because immunocompetent mice have a
natural resistance to DENV infection, high doses (108-109

PFU) of virus is usually required to induce clinical signs
[16, 17, 22]. To overcome the requirement of high doses
of the virus, which is difficult to produce in the laboratory,
we sought to infect the animals using the antibody
dependent enhancement (ADE) phenomenon. ADE of cell
infection has been implicated in severe secondary dengue
virus infection [23]. According to this hypothesis, anti-
bodies from the primary infection at sub-neutralizing con-
centrations form infectious immune complexes with
dengue virus of a secondary infection, enhancing the virus
production in Fc receptor-bearing cells. Several authors
have confirmed this phenomenon in vitro using either hu-
man or mouse cells [24–27]. Macrophages as well as
monocytes and immature and mature dendritic cells are
major targets of dengue virus infection [28, 29]. Those
cells have also been found to be infected in experimental
animals models [30]. In vitro infection of these cells with a
complex of enhancing antibodies and virus results in the
suppression of the innate response and an increase in
DENV production [25, 26]. Therefore, based on the ADE
concept, we used two strategies to facilitate infection of
C57BL/6 mice with clinical Dengue virus isolates. In one
strategy, we first infected macrophage cells in vitro with
DENV incubated with enhancing antibodies and then

used the cells to infect the animals. In the other strategy,
we used a complex of enhancing antibodies and DENV to
infect the animals. We found that C57BL/6 mice were
susceptible to clinical Dengue virus type 3 and 2 (D3/BR/
SL3/02 and D2/BR/RP/RMB/2009) isolates using both in-
fection strategies, especially the first one, which was de-
tected in the serum and in several organs like liver, spleen,
kidney and brain. Similarly, the same organs were found to
be infected with DENV in humans when autopsy and bi-
opsy samples were analyzed [28, 29, 31–33], demonstrating
that C57BL/6 mice reproduce some aspects of human
DENV tropism. We have shown previously, analyzing the
C57BL/6 mouse model that DENV-1 (Mochizuki strain)
can be detected up to 10 and 16 days p.i. in the organs and
serum, respectively [20]. Using the same animal model in
this new study, we have found an extension of the period of
virus detection (up to 16 days p.i.) in the organs, especially
for D3/BR/SL3/02 isolate, which might be related to the
strategy of infection used, enhancing antibodies and in-
fected cells.
Due to the resistance of immunocompetent mouse

models to DENV infection, intracranial inoculation, which
does not represent a natural way of infection and induced
neurological signs, is widely used for therapeutic and vac-
cine testing [8, 34]. Although the strategies of infections
used in our study do not also represent natural infection,
they can be an alternative to intracranial infection for
therapeutic and vaccine testing, since DENV can be de-
tected in the blood stream and several organs.
It is believed that laboratory adapted strains are more

competent at infecting animals, which is why they are
widely used in the literature to analyze several experimental
models. However, in this study, we found a higher replica-
tive ability of the clinical D3/BR/SL3/02 isolate than the
laboratory-adapted Mochizuki strain in C57BL/6 mice; the
virus genome was detected more frequently in the blood
and in several organs in mice infected with the former
virus. On the other hand, C57BL/6 mice showed low infec-
tion levels with a clinical DENV-2 (D2/BR/RP/RMB/2009)
isolate, suggesting a differential replication ability of clinical
Dengue virus isolates in this animal model. Consistent with
these results, clinical DENV-3 isolates have also shown dif-
ferent replication ability and virulence patterns in C57BL/6
mice after intracranial inoculation [35]. Viruses that repli-
cate more efficiently are often hypothesized to be more
pathogenic in the host [36, 37]. In that sense, the severity of
dengue disease has been associated with higher viral load in
patient serum [38, 39]. In addition, the difference in the
replicative ability of clinical DENV-3 isolates in dendritic
cells has been associated with modulation of apoptosis and
cytokine production [40]. Therefore, the replicative ability
of DENV isolates found in this study, suggest that C57BL/6
mice can be used as an experimental model to evaluate
virulence differences among clinical DENV isolates.
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Several studies have shown that virulence is dependent
on virus genetic characteristics [36, 41, 42]. The DENV-
3 (D3/BR/SL3/08) used in this study was isolated in Sao
Luis, Maranhao State, Brazil, in 2002, from a DF patient
[10, 43]. DENV-3 was introduced in Brazil in 2000 and
then spread throughout the country causing large epi-
demic outbreaks. This Dengue virus type 3 belongs to
genotype III, which was associated with an increase in
the number of severe cases worldwide [44]. DENV-2
(D2/BR/RP/RMB/2009) was isolated from a DF patient
in Ribeirao Preto in 2009. DENV-2 was responsible for
the more severe dengue epidemic in the city of Rio de
Janeiro in 2007–2008 [45], which then spread to several
regions of the country, reaching Ribeirao Preto in 2009,
where it was less virulent. Ribeirao Preto faced the great-
est epidemic in 2010–2011 with more than 29949 re-
ported cases and 9 deaths, when DENV-1, DENV-2 and
DENV-3 were circulating, but with a higher prevalence
of DENV-1. Comparing the E protein amino acid se-
quence of these viruses with other flaviviruses, we found
that the D3/BR/SL3/02 isolate but not the D2/BR/RP/
RMB/2009 isolate has an RGD-like motif (IGD) (Fig. 6),
the integrin-binding motif, which is important in cell-
extracellular matrix and cell-cell adhesion [46]. It is
speculated that this motif located in the putative
receptor-binding site might be involved in the adsorp-
tion into host cells. Mutation of the E protein of the
Murray Valley encephalitis virus has demonstrated the
importance of this motif, with a fundamental role for
residue D390, in tropism and virulence. Thus, the pres-
ence of an RGD-like motif might explain the higher in-
fectivity of the D3/BR/SL3/02 isolate in this mouse
model compared to the D2/BR/RP/RMB/2009 isolate.
In addition to the febrile illness and the more severe

hemorrhagic form, 1 % to 5 % of infected patients

develop neurological manifestations [47]. Encephalitis is
the most common neurological manifestation, and the
main symptoms are seizures, altered consciousness, and
headaches [48]. Evidence of DENV replication in the
brain has been observed in autopsy studies based on the
detection of virus antigens/RNA and virus isolation from
brain specimens [31, 32, 49, 50]. In addition, viral RNA
was detected, and the virus was isolated from cerebro-
spinal fluid (CSF) samples of dengue cases with neuro-
logical manifestations [51]. The involvement of the
central nervous system (CNS) in DENV infection is diffi-
cult to study because unmodified viruses do not infect
or cause symptoms in experimental animal models.
Intracranial inoculation of newborn or adult mice has
been used to study neurovirulence; however, this might
not have much biological relevance because the strains
used are not necessarily neuroinvasive. In our study,
viral RNA was detected more frequently in the brain
when the animals were infected with the D3/BR/SL3/02
clinical isolate, suggesting that this is a neuroinvasive
strain. The mechanism by which flaviviruses cross the
blood–brain barrier to enter the brain parenchyma is
not well understood. The use of experimental animal
models have shown that Japanese encephalitis virus in-
fects the CNS by typical endocytosis and transcytosis
through the cerebral blood vessels and blood–brain bar-
rier [52], whereas West Nile virus penetration into the
CNS occurs by diffusion between capillary endothelial
cells into the brain parenchyma induced by endogenous
mediators [53, 54]. In both transcytosis and diffusion, a
high viral load in the blood might play a crucial role in
virus penetration into the CNS. In this study, we found
viral RNA in the brain of mice infected with the D3/BR/
SL3/02 isolate incubated with enhancing antibodies, which
had higher viremia levels (Fig. 5), supporting the

Fig. 6 Comparison of the E protein amino acid sequence of flaviviruses. Alignment of a partial amino acid sequence of the E protein of
flaviviruses, including the RGD motif. The E protein sequences of the following viruses were included in the alignment: Japanese encephalitis virus
(JEV), Murray Valley encephalitis virus (MVEV), Usutu virus (USUV), West Nile virus (WNV), Saint Louis encephalitis virus (SLEV), and Dengue virus type 1,
3 and 4 (DENV-1, DENV-3, DENV-4). The clinical Dengue virus isolates and the RGD motif are shown in boxes. The GenBank accession number of
the sequences is indicated in parenthesis
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hypothesis of virus penetration into the CNS by transcyto-
sis and/or diffusion. Another possibility is that viruses
enter the CNS within infected leukocytes that may infil-
trate the brain parenchyma. This mechanism is known as
a “Trojan horse” entry because the pathogens are hidden
within these immune defense cells, which are naturally
able to traverse the blood–brain barrier [55, 56]. Infiltra-
tion of peripheral macrophages into the CNS has been
demonstrated in experimental models and in fatal human
cases after infection with Japanese encephalitis virus [57,
58]. In this study, viral RNA was detected in the brain of
mice inoculated with macrophages infected with the D3/
BR/SL3/02 isolate, suggesting that peripheral macrophages
could be the carrier of the virus to the brain parenchyma.
The low detection rate of viral RNA in the brain of mice in-
oculated with macrophages infected with either the D2/BR/
RP/RMB/2009 isolate or the Mochizuki strain strongly sug-
gests that detection of the D3/BR/SL3/02 isolate represents
true replication of this virus in the brain and is not just the
presence of the virus within the infiltrated macrophages.
Based on experimental evidence in the literature sug-

gesting that a complex of enhancing antibodies and virus
can lead to suppression of the innate response and an
increase in DENV production in the infected Fc bearing
cells [25, 26], we expected to find a more robust infec-
tion of animals inoculated with macrophages infected in
vitro with viruses incubated with enhancing antibodies,
which induced a higher virus titer in vitro (Fig. 3 and 4).
However, a similar pattern of infection was observed in
mice inoculated with infected macrophages regardless of
the use of enhancing antibodies or not. These results
suggest that DENV does not necessarily require enhan-
cing antibodies to suppress the innate response of mac-
rophages and that the virus can continue replication in
those cells even after their inoculation into the mice.
This is consistent with studies showing that DENV with-
out enhancing antibodies inhibited the production of
type I interferon, which is an important antiviral factor,
in primary human dendritic cells [59]. On the other
hand, a higher viremia level and the appearance of the
virus in the brain were observed when the animals were
infected with a complex of enhancing antibodies and the
D3/BR/SL3/02 isolate, suggesting the enhanced infection
of Fc receptor-bearing cells and an increase in viral pro-
duction, as expected based on the ADE concept [60].
This result is consistent with the increased DENV infec-
tion observed in the AG129 mice after receiving subpro-
tective levels of antibodies [61].

Conclusions
Clinical DENV isolates have shown differential replication
ability in immunocompetent C57BL/6 mice, suggesting
that this experimental model can be used to study the
virulence differences of clinical isolates. The virus was

detected in the same organs found in humans, showing
that C57BL/6 mice reproduce some aspects of the DENV
tropism observed in humans. The main difference ob-
served between the D3/BR/SL3/02 and D2/BR/RP/RMB/
2009 clinical isolates was the neuroinvasive ability of the
first one. Mice inoculated with macrophages infected with
D3/BR/SL3/02 showed evidence of virus replication in the
CNS, even in the absence of viremia, strongly suggesting
that peripheral macrophages are the carrier of the virus
into the brain parenchyma. However, D3/BR/SL3/02 RNA
was also detected in the brain when enhancing antibodies
induced a higher viral load in the blood, suggesting that
the CNS may also be infected by transcytosis and/or diffu-
sion of DENV. Further histopathological and cytokine
production studies are being performed in our laboratory
to better analyze the virulence differences of the DENV
clinical isolates.
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